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One of the most famous equations that are widely used in various branches of physics,

mathematics, financial markets, etc. is the Langevin equation. In this work, we investigate the existence
of the solution for two generalized fractional hybrid Langevin equations under different boundary
conditions. For this purpose, the problem of the existence of a solution will become the problem
of finding a fixed point for an operator defined in the Banach space. To achieve the result, one of
the recent fixed point techniques, namely the a--contraction technique, will be used. We provide
sufficient conditions to use this type of contraction in our main theorems. In the calculations of the
auxiliary lemmas that we present, the Mittag-Leffler function plays a fundamental role. The fractional
derivative operators used are of the Caputo type. Two examples are provided to demonstrate the validity
of the obtained theorems. Also, some figures and a table are presented to illustrate the results.
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1. Introduction and preliminaries

Needless to say, many researchers today are working on various aspects of fractional derivatives.
Perhaps the reason for all this attention is the high ability of fractional calculus to model natural
phenomena. The most important advantage of the fractional derivative over the integer-order
derivative is its ability in memory, which gives it a special ability to model. With the success of
researchers in this field, we are witnessing the growth and application of fractional differential
equations in mathematics, physics, engineering and biology every day. In bio-math, for example,
various teams around the world using fractional differential equations have developed models for the
human liver [1], mumps virus [2], Corona virus in China [3], heroin addiction [4] and hepatitis B [5].
Other researchers have developed models for thermostats [6-9]. The stability of fractional dynamic
systems was also examined by others [10-13]. Attempts have also been made to find numerical and
analytical solutions to the fractional cases of important equations such as Sturm-Liouville and
others [14-30].

As we know, in the history of mathematics and physics, many famous equations have been of
interest to various researchers. One of them is the Sturm-Liouville equation. It should be noted that
some other important equations such as the Hermite, Jacobi, Bessel and Legendre equations can also
be written as Sturm-Liouville [31]. However, what we want to address in this study is one of the most
important special cases of Sturm-Liouville, called the Langevin equation. As we know, the beginning
of the 20th century saw many of great scientific developments, and 1905 is one of the most important
years in the history of science. It was in this year that Einstein published four important papers on the
theory of special relativity, the photoelectric effect and Brownian motion. A year later, the young
Polish physicist Marian Smoluchowski gave an independent explanation of Brownian motion [32].
Finally, in 1908, the French physicist Paul Langevin untied the 80-year-old conundrum with the
publication of an article entitled “On The Theory of Brownian Motion” [33]. In doing so, he
formulated an important equation known as the Langevin equation. Langevin’s research had a
significant impact on the research fields of mathematics and physics and is still often cited. The
Langevin equation is an important tool in mathematical physics, and it can be used to describe
physical phenomena concerning the temporal evolution of Brownian motion in oscillating
environments [34-36]. The most important applications of the Langevin equation are describing as
anomalous diffusion [37], modeling gait variability [38] and modeling of memory in financial
markets [39]. Numerous contributions have been made to the numerical and analytical solutions of
the Langevin equation in recent years. For example, in 2012 [40], Bhrawy et al. proposed the
Jacobi-Gauss-Lobatto collocation method for solving numerically the nonlinear fractional Langevin
equation. In the same year, Ahmad et al. studied a nonlinear Langevin equation involving two
fractional orders using Krasnoselskii’s fixed point theorem [41]. In 2017 [42], Wang et al. examined
the existence of local center stable manifolds of Langevin differential equations. In 2018
upper-solution and lower-solution methods were presented for Langevin equations with two fractional
orders [43]. Qualitative properties of the implicit impulsive Langevin equation involving mixed order
derivatives were investigated by Zada et al. [44]. In 2020 the stochastic resonance (SR) of the
fractional order Langevin equation was reviewed by periodic modulated noise with mass
fluctuation [45]. For more contributions about the fractional Langevin equation we refer to [46-52].

In addition to the above, the study of hybrid differential equations has recently received much
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attention from new researchers. Nonlinear differential equations that have quadratic perturbations are
called hybrids in the literature [53]. Using fixed point theory, researchers examined the necessary and
sufficient conditions for the existence of such equations [53-55]. In 2010 [56], Dhage and
Lakshmikantham developed the theory of existence for hybrid nonlinear differential equations under
mixed Lipschitz and Caratheodory conditions. The reader, for more information about this manner,
can refer to [57-61].

To the best of our knowledge, there is no study of the hybrid version of the fractional Langevin
equation using the Mittag-Leffler function. Therefore, motivated by the aforesaid topics presented in
this work, we intend to investigate the existence of the solution to the fractional Langevin equation with
the hybrid boundary condition using the a-iy-contraction technique and the Mittag-Lefller function.

In 2011, Zhao et al. [59] investigated the following fractional hybrid differential equation:

[ ( (b

= f(t, %(1)),
g(t, ﬂ(t))) (Lo

(1.1)
¥(0) =0,

where 0 <t < 1,g € C([0,1] x R,R - {0}), and f € C([0, 1] X R, R).
In 2020 [52], Fazli et al. investigated the following fractional Langevin equation involving two
fractional orders:

DUDE + D) = Ft, (), 0<t<l,
99(0) = i, 0<i<l
9EP(0) = v, 0<i<n,

wherem—1 < <m,n—-1< <n,l=max{m,n}, m,n € N, D!, and D?? denote Caputo fractional
derivatives and F : [0, 1] Xx R — R is a given function.

In this work motivated by the above, at first, we investigate the generalized fractional hybrid
Langevin equation which reads as follows:

ol (e UOIINS _
D ((Dc + ﬂ)(—p(t, 5 t))) J(t, ﬁ(t))) = A(t, 9(1)),
ot ﬂ(t»)Lo = 3(0.5(0). (12)
S GO) o Ty
22@0&§@9)+§;po$ﬁo@)‘a“m

i=0 j=0

[E

where (1,4 € (0,1], I = [0,T], such that T > 0. Moreover, Z)g‘ and Z)fz denote Caputo fractional
derivatives, A,J € CIXR,R), p € CAXR,R —{0}), apm : N XN — R is a sequence, «;, 7j € R, and
Mi, Vj € [0, 1].

Next, we investigate the generalized fractional hybrid Langevin equation via the integral boundary
condition which reads as

J(t)
1 ()2 =
D208 + i 50, 7900, 100, Todmy) ~ 2O
H0) =0, (-
I(t)
6} =
| 50 790, 2590 T e
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where {1, $, 61,62, -5k € (0,1], Z)i' and Z)ﬁ2 denote Caputo fractional derivatives, ¢, 7*2, ..., 15!
denote Riemann—Liouville fractional integrals, A € C(I X R,R), and T € C(I x R**! R — {0}).

It is well known that the Riemann—Liouville fractional integral of order ¢ of a function f is defined
by I'f(t) = % foz(t— $) £(s)ds(t > 0), and the Caputo derivative of order ¢ for a function f is defined by

1 t)
Tn—0) Jo (= sy

where n = [¢]+ 1. For more details on the Riemann—Liouville fractional integral and Caputo derivative,
see [62—64].

Definition 1.1. [65] Let a,8 > 0, A € R and o € L,([0, 1]). The Prabhakar integral is formulated as

DH(t) =

t
E(a,B, )o(t) = f (t = sP'E, gA(t — s)’ds,
0

where E, 4(.) is called the two parameter Mittag-Leffler function, such that it is defined by

i n

_ Z
Eop(2) = Z C(na +p)

n=0
Lemma 1.2. [65] Assume that a,B,y > 0, 1 € R, and o € L,([0, 1]). Then, we have

I"E(a, B, Vo(t) = E(a, B, )70 (t) = E(a, B + 7y, Do(t).

Samet et al. [66] introduced the following new contraction in fixed point theory, which will play a
key role in this paper. As we recall from [51], throughout our main theorems, we will utilize the family
of nondecreasing functions ¢ : [0, +o0) — [0, +00), with P, such that )}, " (f) < +oo for all # > 0,
where y" is the n-th iterate of . Let T : Z — Z beaself map and a : ZXZ — [0, +00) be a function.
We say that T is a-admissible whenever a(x,z) > 1 implies that a(7T'x, Tz) > 1. Furthermore, assume
that v € W. Then, a self-map T : Z — Z is called an a-y-contraction whenever Yx,z € Z and we
have a(x,2)d(T x, Tz) < ¥(d(x,z)). The following lemma is widely used in the sequel.

Lemma 1.3. [66] Let (Z,d) be a complete metric space and T : Z — Z an a-y-contraction and
a-admissible map. Assume that there exists zo € Z such that a(zo, Tzo) > 1. Furthermore, if {z,} is a
sequence in Z with z, — z and ®(z2,,,2,+1) = 1 for all n > 1, we have a(z,,z) > 1, Yn > 1. Then, T has
a fixed point.

2. Main results

Lemma 2.1. Assume that o € L'([0, 1]). Consider the following equation:
(L)
4] {2 — ) — =
D; ((Dc TR L ﬂ(t))) a(t), 2.1
with boundary conditions
(L)
76) —

= dpm-

o, 0w) - o, 9(vy)) -
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Then, the function ¥ € C([0, 1]) is a solution of the problems (2.1) and (2.2) whenever
t
H) = p(t, ﬂ(t))[ f (t = )27 By, 1, (<At — 9)?)o(s)ds
0
n i
- R, (-at?) Y & f (1 = 97 B, 1 (-t — $))r(s)ds
i=0 0
— OE,, ;(-At®) Z Tj f J(vj — $)ITCTE, 4 (—A(v; — 9)?)o(s)ds
=0 0
t
+ (L, 19(0)[ f (t —8)* ' Eq, 4, (—A(t — 8)*) I (s, 9(s))ds
0
n i
- OE, (-at?) Y & f (1 = 9% Egy 1, (~ At — $)*)3 (5, 9(5))ds
i=0 0
— OE,, ;(-At®) Z Tj f " (vj = )2 Egy 1, (v — 8)) I (s, 9(s))ds
=0 Y0
+ @E(Ll(—u@)an,m],

where
3 1

C YRokEL () + T g 1 (i)

and

n

Z GE 1 (—452) + Z 7B, 1 (=4v?) # 0.

i=0 §=0

Proof. The following equation is another version of Eq (2.1):
(1)

P(t, (D))

By applying the operator 7¢! on both sides, we deduce that
(L)

P(t, 9(t))

7i-a [%((g)gz + )( ) - 3, ﬁ(t)))] =o(v.

[ (@8 + 2

W )= 3t 0®))| = 7o)

which implies that

o LONNS e (t) _
(DF + D gs) ~ I 0(0) ez (o ﬁ(t)))]tzo+f5<o, 9(0)) = T (t).
Since 50
{2 —
|02 + 2 gt ﬂ(t)))]tzo 3(0, 9(0)),
then we get
0 LONNS _
(OF + D)~ ICW) = T,

(2.3)
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Equivalently,
(L) (L)
DL A = T%0(t) + J(t, %(t)).
‘o) T Gramy =IO IO
The Laplace transform of the above equation implies that
(t) - 3(t)
S@Qs(m) — L™ + ﬂﬁs(m) = &I o(b) + L(T(t, (1)),
where £, = (%)tzo- So, by utilizing the inverse Laplace transform, we get
It LI (t L(T(t, It -l
O _ 1 BT0®) o SOEI0) o
P(t, 9(t)) s + 1 s+ A s+ A

= 27 Ep 0 (—At2) x T90(t) + 27 By, 1, (—At2) % J(t,9(t)) + (oEq,, 1 (—At52)

t
= f (t = )2 "'Ep 4 (—A(t — s)?) T8 0 (s)ds
0

t
+ f (t =) B, (= A(t — $)2)T(s,9(s))ds + (oE 1 (—A2).
0

Since
t
f (t =) "Ep, 1, (At — $)2) I 0 (8)ds = E((o, &, — DT o (t) = E({o, &1 + Lo, — D0 (t)
0

t
- f (t = sy R, (= A(t — $)?)a(s)ds,
0
we get

I(t)

t
ot D) fo (t =) Ep 4, (-A(t = 8)*)r(s)ds

+ fo t(t —8)2 By, o, (At — $))T(s, 9(s))ds + (oK, 1 (—At2).
For simplicity, let
Ei(t) = f t(t — )R, o (—A(t — 8)?)o(s)ds
and 0
Ey(t) = fo t(t —8)27 B, o, (—A(t — $)2)T(s, 9(s))ds.

So,

n n n

; % = ; KiZy () + ZIO:KiEz(,Ui) + & ; KiE(z,l(_/l/Ji'(z),

(2.4)
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and

D () S p

—_— 721 + ) Ti2a(v) + € ) TiEp 1 (—Avi?).

JZO: vy, 9(v)) ;; JZ(; JZ;‘

Thus,
by = Planm — Y ki) = D k() = Y TZi0p) = ) 5Z0p)],
i=0 i=0 i=0 i=0
where 1
d =

Zito kB (=) + Tty TiE 1 (- v2)
Now, by substituting the value of ¢, in (2.4), we obtain

& = ft(t - S)(l +{2_1E( : (At - s)fz)o'(s)ds
pt.9®)  Jy
t
" f (t = )27 Ep 1, (-A(t = $)*) (5, 9(5))ds + Eq, 1 (- At2) D[ 2 m (2.5)
0
- Z KiE (1) — Z KiZo (i) — Z 7i21(v) = Z =207yl
iz0 i=0 i=0 i=0
After doing some simple computations and substitutions, we get (2.3). O

Now, we are going to establish and prove our first main theorem.
Theorem 2.2. Let the following conditions hold:

(P1) There exist x1,x2,x3 € C(Z,R") such that the following inequalities are satisfied,
JA(t, r11) — A(t,r)l < yi(Or —rnl, Y(tr,rp) € Z XRXR,
13(t,1r21) — B(t, 1)l < x2(Olrn —ral,  Y(t,ra,rn) € I XRXR,
lp(t, r31) — p(t, r32)| < x3(Olrs2 — r31l, Y(t, 131, r30) € I XRXR.

(P,) There exists { > 0, such that

(014 + 0)(x3¢ + 9) < ¢ and x5 + 93)01 + x50, < 1,

U, = ({])il St )(n T || HZ(Z 7+ Z " )

where

and

N S N
0, = ( 0_ _0)(n* OIS 7 + Ki)) + |DIIT; | ml,
LH+06 LN n JZOZ : ; 1

in which x7, x5 X5 95 3¢ Ay 115, 1L indicate the supremum of x 1 (t), x»(t), x3(t), p(t,0), 3(t,0),
A(t,0), |[Eg, ., (—t2)|, and [Eg, 1 (—t9)|, respectively.
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Then, the problem formulated in (1.2) has at least one solution.
Proof. Let Z* = C(J). Define a : Z* X Z* — [0, o) by

Lif () < forallte 1
0 otherwise.

a(@,9) = {
Furthermore, we define the operator K- V,(0) - Z* by
t
(K@) = p(t, ﬂ(t))[ f (t = )17 Ey, 4, (= A(t = )?)A(L, 9(1)ds
0
n Hi
— OF, (-4t%) ) & f (i = )07 By 1, (= A — $Y?)A(L, 9(0)ds
i=0 0
— OE,, | (-At?) Z 7 f -9 TR, 6 (= — $)P)A(L, 9(b))ds
=0 Y0
t
+ SO(ta ﬂ(t))[ f (t - s)gz_lEgvz,(z(_/l(t - S)gz)ﬁ(s, 0(5))({5
0
n Hi
— OF, (-4t%) ) & f (i = )7 By 1, (= At — )3 (5, 0(s)dls
i=0 0
— OE,, ;(—At?) Z 7| f J(Vj — 8)27E, 4, (—A(vj — 8)?) I (s, 9(s))ds
=0 Y0
+ (I)Egz’l(—/ltgz)an,m].
Define two single-valued mappings B, 8, : V;(0) - Z* by
t
(B = f (t — )T Ey, 4 (—A(t — $)?)A(L, (t))ds
0
n i
— OF, (-4t%) Y & f (i = )0 By 1, (= A — 9 AL, D()ds
i=0 0
—(DEgz,l(—/ltgz)ZTj f = 9B, (=20 — DAL, B(D)ds
=0 V0
t
+ f (t = )2 "Ep, 4 (—A(t — 8)2) I (s, 9(s))ds
0
n Wi
— OF, (-2t%) Y & f (i = )7 By 1y (=t — )3 (s, B(s))dls
i=0 0

—@E&,l(—zt&)zq f J(vj — )27 Ey, 4,(—A(v; — 9)2) T (s, 9(s))ds
=0 o

+ OE, 1 (- At?)agm
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and

(B19)(1) = (L, I(D)).
Also, note that ‘]A((ﬁ) = B,98,1 for all ¥ € ‘74(0). In view of Lemma 2.1, (7A( 1) is the integral version
of problem 1.2. By using Lemma (1.3), o solves problem 1.2 if and only if o is a fixed point of

(%9). Now, we are going to prove that all conditions of Lemma 1.3 hold for K. Let a(9,d) > 1. Then,
9(t) < £ and 9(t) < ¢ for t € I. Thus,

JA(t, ()] = [A(L, I(t) — A(t,0) + A(t, 0)] < x1(DIFD)] + A(t,0) < x| + Ay,
and
|3, H)| = |T(t, Ft) — T(t,0) + I(t,0)] < x2(OIF)] + 3(t,0) < x5 + Iy,

On the other hand, we have the following inequalities:

t t
| f (t = )7 By, 0, (= At - I2)AL IW)ds| < TT;(}¢ + AY) f (t— )11 ds
0 0

o oo (2.6)
< 1) [+ Ay
TO+LT L+ G
n i |
OBz, 1 (=A%) ) kg f (1 = )7 B, (=t — $)2)A(L, D(B)ds|
i=0 0
n n 2.7)
_ IO Sk IR AD S
B H+8 L+6 ’
DB, 1(-At%) Y 7y f (v = )T E, 4, (= A0 — DAL, F()ds|
=0 . 2.8)
 IOILTEY Xyt I AG X0 T
B O+8 L+6
and
t H* * H*:‘*
'f (t— )% By, 1, (—A(t — )5 (s, B($))ds| < 227 + ——0, (2.9)
0 ‘ 163 &
n i |
OB, 1(=A8%) ) ki f (i = )% Ep 5, (= A — ) I(s,9(5))ds|
=0 ) (2.10)
_ [T, X ki 4 [T TG Xito i
- & & ’
m Vi |
OB, (-4t%) ) 7y f (v = $)° 7 Egy (= A(v; — $)?) I (s, (s))ds|
=0 0 2.11)

OIS 220 75 IPHLIL TG 25k 7
< J+ .
14} &
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Now, since

t
(B0 < f (t = )Ty (= At = )AL, 9(t)ds|
0
+@%wm%me%wwMH%Adw—WMmmWﬂ
i=0 V0
+ |DE,, | (-t?) Z 7 f Vj(vj — )R, 4 (—A(vs — 8)P)A(L, 9(1)ds
=0 0
t
+ f (t = )2 "By, o, (—A(t — $)2) I (s, 9(s))ds]|
0
n i
+ |®E§2,1(_/lt§2)ZKi f (i = 9% By, 1, (= A — )*) T (s, 9(s5))ds|
i=0 V0

+|(I)E§2,1(—/lt§2)ZTj f J(Vj—s)gz_lEgz,gz(—/l(vj—s)ﬁ)ﬁ(s,ﬂ(s))dsl
— 0

+ |DE, 1 (—At2)ag m,
by using (2.6)—(2.11), we conclude that

R Iyt IA? Oy Y K (DH*H*A* K;

H+8 O+80 H+0 §1+{2

N IO T, X0 7 . |OILITLAG X2, 7 N x5 N I35
OH+o G +8 O 14}
N O TN, i Kig . [OITTLIG ik & N QI Ty, Xt Tj€+ [T TG X2 7
O O O 16
o [ T OGSk 9T S Ty
S VR G+ 6 G+ 6 &
N |DIT I x5 2t ki N |OIT Iy, 2, T‘i]{+ IT[ A N DI A, Yt &
14} 14} H+0 H+0
|(D|H*H*A* Z 0Tj N HTS(*) N |(D|HTH;53 Z?:o Ki N |(D|H’{H§58 Zjn;o Tj + Ol ]
OH+0o O §2 O e
X Xz)( Ay TN

= IT; + |O|IT; HZ(ZTJ+ZK, )§+( —) I

OH+o O H+8H O
Hmmmzqum%@mmm:mMUL

=0 i=0
and this yields
(B19)(1)] < U1 + V. (2.12)
Also, we have
18,9 < lp(t, ()| < x5 + 05 (2.13)
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Hence, by using (2.12) and (2.13), we get
(KD < (U1 + V(3¢ +95) < ¢
Similarly, we obtain
(KDl < ¢,

that is, a(K9, K9) > 1. So, K is an e-admissible mapping. Furthermore, we can obtain

' J1+0H—1 0 9 HTXJ{ 9
(t—s) [Es 0 (=A(t = 8)2)[JA(L, F(t)) — A(t, F(t))lds < [ = 3,
0 gl 52
and
n Ui X
|D|[E, 1 (—At))] Z |Kil f (i — )T E,, 4 (— A — SP)AL, (b))
i=0 0
_ OIT Ty T Ik 3
~ A Bctyds < DD 2ol 5,
H+80H
Also,
|D|[Eg, 1 (—At2)| Z 75l € tgj(vj — )4 +'(2_1|E42,42(—/1(Vj — )AL, (b))
j=0
- [OIIT I X 2, |7l -
— AL, B(t))|ds < I Zjso 11 19 = J||.
OH+86
Then,
t H* *
o1 o 3 X2 3
(t—8)? [Eg, 1, (—A(t — 8))[|T (s, 9(s)) — T(s, H(s))lds| < ; 19 =9I,
0
and
n i X
ICDIIE,;QJ(—M&)IZ |« f (i — 927 Ep, o, (=i — )1 T(s, 9(s))
i=0 0
i OIT Ty ™ Ik i
~ 50, D(s)lds < DI Bizo kil o 5
g
SO

|®IIE_:2,1(—/lt{2)IZ |7l f J(Vj — )7 Eq, o, (=A(vj — )13 (s, ¥(s))
§=0 0

PITILY; 2% [l

— J(s,s))|ds <
16

19 — .

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)
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Now,
t
[(B)(t) — (BN < fo (t = )T B, o (At — $)P)A(L, 9(1) — At, D(t))lds

+ |D||E, 1 (—t?)| Zn: kil fo m(,ui — )R, o (A — $)P) AL, (1))
— A(t,9(t))lds h
+ |D||E, 1 (—At?)| i |7 fo yj(Vj = 8) 2 By, 4, (- — $)P)IA(L, (1))
— A(t, B(t))|ds -

t
+ f (t = )7 B, 4, (= At = )| T (s, 9(5)) — (s, F(s))lds
0
t
+ f (t =) B, 4, (= At = 9))||T (s, 9(5)) — (s, F(s))lds
0

+ | D||E,,, (-At%)| Z |l Om(ﬂi —8)2 7 [Eg, 0 (A — $)2)]|T(s, 9(5))
— J(s, 9(s))ds. -
Hence, we get
(B1)(1) = (B9 D)) < Tyl[$ - DI,
Also, we have
B9 — BoB| < x3(B)lp(t, B (1) — (L, FB)] < x3l18 - DI. (2.20)
On the other hand, K(8) = 8,95, for all 9 € V,(0), so
1K) — K@D = |8,98,0 — B,98,0| = |8,98,0 — B,98,5 + B,98,0 — B,98,9)|
= |BH By — B19B,D) + BN (B9 — B

< |B,918,9 — B0 + 18,9|8,9 — B,
< X5+ TN = Bl + T (i + ol — |

= (@6 + ov1 +x302 19 - 31
and hence
K@) — KDl < ((2)5 + 90Ul +)(§Uz)||ﬁ = .
Let P(t) = ¢t, where £ = 2y} + 9;)U; + x5U, < 1. Thus,
1K (@) = K@) < (19 - D).
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Therefore, as also stated in [51], K is an @ — Y-contractive mapping. Assume that {:},} is a sequence in
Z where a(9¥,_1,9,) = 1 foralln > 1, and ¥, —» & € Z. Thus, 3,(4) < &. Then, lim,_,., #,(3) =9 < g.
So, a(¥,,9) > 1 for all n > 1. Also, evidently, there exists ¥, € Z such that a(%y, Ki) > 1.

Then, all conditions of Lemma 1.3 are valid, and %K has a fixed point in Z which is a solution for the
problem (1.2). O

We further need the following lemma to prove our second main result.
Lemma 2.3. Consider the following equation:

(L)
Y(t, I(t), T19(t), T929K(t), ..., Ts9(t))

DE(DE + 2 ) =Bt 90, (221)

with boundary conditions

9(0) = 0,
(2.22)

9(t) _o.

[(D e /l)(‘Y'(t, 90, T59(8), T20(8), .. T99H)) )]t_o B

Then, the function ¥ € C([0, 1]) is a solution of problems (2.21) and (2.22) if

t S
() = T(t) f f (5 — Tt — 87 B 1 (—A(t — 8)7)B(r, 8(r))drds,
0 0

where
T(t) =

T(t, ), T99 (), W), ..., TFL)).
F(Q)( (t) (t) (t) ®)

Proof. Equation (2.21) can be written as

(L)
Y(t, H(t), T19(t), T29K(t), ..., Ts-(t))

Il [%(@? + /1)( )] = B(t, 9(t)).

By applying the operator I°' on both sides, we get

| i 5 ﬂ(t) — 74
7| ot + ”)(‘r(t, 9O, T50(0, I20(1), ., T59(D)) )| = reme 0w
Consequently,
I(t)
&2
(D + /l)(T(t, (L), TS19(t), I29(t), ..., I“’ﬁ(t)))
I(t)
_ {2 =TI
o+ ”)('r(t, (O, 2990, I5:0(0), ., I50(1)) )., = 7B 00
Now, since 9(t)
{2 s =
o+ ”(T(t, 9(0), 79 0(0), T0(1), .. 7 0(1)) )., =0
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we then have

(L)
2 — 74
D+ ﬂ)(’r(t, 3, T19(t), Ts2(t), ..., Ickﬂ(t))) = LBt ().
Equivalently,

42( (t) )

ANY(L, KK, T19(t), I929(1), ..., Ts9(t))

9(b) . (2.23)

/1( T(t, 9(t), T99(t), I29(1), ..., ICkﬂ(t))) = LB 5.

The Laplace transform of the above equation implies that
s ¢ ( 5O ) + 552‘1( o) )
\r(t, 9(t), Ts19(t), T:9(t), ..., T 9(t)) T(t, H(t), Is19(t), I29(8), ..., Ts:9(t)) /=0
(L) 3 4
ﬁs(‘Y‘(t, I(t), Ts19(t), Ts20(¢), ..., fckﬂ(t))) B QS(I - Bt ﬁ(t)))'
Since ol ( () ) _ 0
Y(t, (), Is19(t), T20(t), ..., TO(t)) Jeo
we get
oy i )
T(t, 9(t), Is19(t), I929(1), ..., Ts9(t))
(L) 3 4
4 QS( Y(t, 9(t), I99(t), T2 (), ..., Ickﬂ(t))) B QS(I Bt ﬂ(t)))’
that is,
L) 1 4
53S(‘r(t, I(t), Ts1(t), Ts20(t), ..., Icm(t))) s+ aﬁs(fc B(t, ﬁ(t)))'

Now, by utilizing the inverse Laplace transform, we obtain

(L)
T(t, I(t), Ts19(t), T92:9(t), ..., T59(t))

1

- ¢ (e (B )
(- e(zE o)

= 127 By, 4, (- At2) % TOB(L, 9(t))

t
= f (t — )27 By, 1, (=A(t — $)*) T B(s, (s))ds
0
1 t s
T fo (t =) "Eg 0, (-A(t — 5)?) fo (s — ) 'B(, 9(1))drds
1 t S
= Té’l) j(; j(: (s—7) 71t - S)gz_lEgz,gz(—/l(t — $)2)B(t, 9(1))drds,
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which implies that

t S
() = Y(t) f f (s = D7 (t = )27y, 1, (- A(t - 8))B(, H(1))dds,
0 0

where
T(t) =

1
T(t, O(L), T 9(t), T), ..., T()).
F({l)( (t) (t) () )

This complete the proof. O
Theorem 2.4. Suppose that the following conditions hold:
(P1) There exist B, x3 € C(Z,R") such that the following inequalities are satisfied:

IB(t,r1) — B(t, r2)| < x3(lr2 — 1yl
|T(t, 1o, 115 «ees rK) - T(ta 805 S15 o0y SK)l S ﬁ(t) Z:;:O |rm = Smls

forall (t,r),15) € T XRXR and (£, 79,71, ..., s S0» S15 oy 8) € T X RZ*F2,
(P») There exists & > 0 such that

L TENIGE B
B i T Taran <

and

TN (o
TG+ 6+ s §+BO); o )<

where B, x;, B, NI, T* indicate the suprema of B(t), x3(t), B(t,0), Eévz,{z(—/lt@) and
1(t,0,0,0,...,0,0), respectively.
Then, the problem mentioned in (1.3) has at least one solution.

Proof. Let Z* = C(1). Define a : Z* X Z* — [0, 00) by

1 if 9t)<é& Ve,

0, otherwise.

m&m:{
Furthermore, we define the operator K : V,(0) - Z* by

t S
(K9)(t) = T(t) f f (s — D7 (t = )27 Ep, 1, (At — )2)B(r, %(1))dds,
0 0

where

¥, 1 9 (9] Sk
T(t) = TQ)T(L ), I519(t), I529(¢), ..., T559(1)).

Define two single-valued mappings 8, 8, : V,(0) - X by
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(B19)(1) = Y(t) = T(t, (L), T9(L), T9(L), ..., TH(t))

and
t S
(By9)(t) = L f f (s = D)7 (t = )% Eq 4, (- At — )?)B(7, ¥(1))d7ds.
') Jo Jo

According to Lemma 2.3, (K9) is the integral version of problem 1.3. By using Lemma (1.3), o
solves the problem 1.3 if and only if oy is a fixed point of (K9). Now, we are going to prove that
all conditions of Lemma 1.3 hold true for H. At first, assume that a(3, ) > 1. Then, 9(t) < {, and
9(t) < { fort € 1. Hence,

B(t, H(t)] = [B(t, H(t)) — B(t,0) + B(t, 0) < x3(OIH®)] + B(t,0) < x3& + B,

Then, we deduce that

t S
[(B,9)(t)| < L f (s — )7 (t = )27 Eg, 4, (—A(t — $)2)|[B(1, 9(7))ldrds
'y Jo Jo

1 t S
sNﬂx%w&%)xrqovg‘E(s—ﬂ“”a—sﬁ”dnm

* o x * 1 1{1 H-1
SNI(X3§+BO)Xm‘£S (1—8)

= N (x3¢ + By X B({, + 1,4) (where B is the beta function)

L&+ DIG) D(HNT (¢ + By)

1
[+ 1)

= R (yié + Bp) X = ,
B X F TG v o+ ) TG +a+ D)
which yields
A [L(HINT (€ + Bp)
(B (b)] < F@:£+DO' (2.24)
Furthermore, we can conclude that
Y(t, I(t), 519(t), I29(8), ..., ngﬂ(t))‘ = ‘T(t, o(t), I519(L), T29(8), ..., To9(t))
-7(t,0,0,0,...,0,0) + Y(t,0,0,0,...,0,0)
< B(t) Z |Z5m9(t)| + |Y(t,0,0,0,...,0,0)|
m=0
<m%2——L—+W
- pour I'm, +1) ’
which implies that
« . 1
[(B1()] < B¢ — + Y. (2.25)
mZ:o TS+ 1)
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By applying (2.24) and (2.25), we have

R K N* * *
COUELEDY oy (2R R), o

= TG + 1) LG+ a+1)

and so (‘]A(ﬁ)(t) < &. Similarly, we can prove that (7A( 9)(t) < £. Hence, a(?A(ﬁ, K 9) > 1, that is, K is an
a-admissible mapping. Next, we will prove that K is an a-y-contractive mapping. Note that

(B,9)(t) — (B (D)

t S
< ) v[(; \fo (s— 7)51—1(t - S){z_lEgz,gz(—/l(t — S){Z)lB(T, 1)) — B(7, 19(7'))|de8

t S
f f (5 = T (t = )% Egy (<At — ) Wa(DI(T) — B(\drds

<
F(é 1)

H&) x Nyl — ﬁuxj‘j}s—)ﬁ (t— )2 drds

FONY,
—_— |9 - .
“Ta+a+ph Y

Thus,
LN XS

39\t — (BoF P ——
[(B23)(t) — (B29) (V)] < LG +a+1)

19 — l. (2.26)

Finally, we deduce that

(B — (B < () Y 1T59(t) — T F (D)
m=0

<B® ) Tt - B(v)
m=0

K 1 .
<p T =9
<p ;:Or@m+ plle =2

So, we get

19 — . (2.27)

(Bi9)(t) — (BiB)t) < Z TG e D

Therefore, by using (2.24)—(2.27), we obtain
(KI)(E) — (KD E)] = (BN Br)(t) — (B1F)(t) (B9 ()]
= (B Ba)(t) — (BIH(Br(t) + (BN (B D)(E) — (B H()( B D))
< (BIHOIB2)(t) — (Bad)(B)] + (BaHON(B19)(t) — (B F)(B)|
L 1 . TN -
< T — |9 =
PN R Ty )” :
T(OINT (€ + BY)
YTrararn F Zr( on
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Now, we minimize the right side of the above inequality:

LN 1 . LN XS -
(ﬁme"‘T )Xmﬂﬁ—ﬁll

TN (i + BY)
-
TG G+ ﬁznm 7=l

[(&)N} *

F(§1+§ +1)( 3’Bgszr( S +,B (Xaf“‘Bo)Z
_ r(é/Z) 1 . . . 3
B m((%ﬁ ) mZ:o m + X3)|Iz9 .

Hence, we get

- *)||19—19||
r<m DI

7 el r((z)x‘f * 0k * - 1 % 3
(KE) - (KB < m(@)@ﬂ £+B)) mzo T X )i = Bl
Now, we define the map ¢ : [0, 00) — [0, c0) by

TN ]
Y(t) = m((b@ﬁ f"‘Bo)mZ:O m + rrX3)t-

Therefore, as also stated in [51], ¥ € ¥, and ||‘]A(19 - ‘kﬁll < Y(|lo — &ll). On the other hand,
if a(®,9) = 0, then (3, KIS — KI| = 0 < y(|9 — J)). Thus, for all 9,3 € Z, we possess
a(?, 5‘)||7A(19 - 7%5‘” < Y|l - 9. Hence, we conclude that K is a-y-contractive mapping. Suppose
that {¢},} is a sequence in Z such that a(¢,-;,%,) > 1 foralln > 1, and ¢, — ¥ € Z. So, 3,(#) < &.
Then lim,, o, 9,() = ¥ < g, i.e., a(d,,#) > 1 for all n > 1. Also, evidently, there exists ¥y € Z such
that a(dy, ’f(ﬂo) > 1. Then, all conditions of Lemma 1.3 are valid, and %K has a fixed point in Z which
is a solution for the problem (1.3). O

3. Examples

To illustrate the effectiveness of the proposed method in this work, two test examples are carried
out in this section.

Example 3.1. Consider the following fractional boundary value problem:

001 9(t) cos’(t) » sm2 21
DI((D; + 1 - ot - oo

(@t s T 0 )= o)

2 (t)

: 2+1n<1+t>) = mw“’) +1), 3.1)

t
3001 0O + Ty /=0

2 3

10079(r) 3 200799(e) 1
Lo, 9 ) L p(ed, ded))  100m + 200
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In this case, we take (| = %, O = % {=1,4=01,=100"(i=0,1,2), 7; =200~ (j = 0,1,2,3),
N COS3 —
= ot dM) = GO + TR SO = s + e ') and

a =
n,m nm+me’

s 2 oat
A(t, 9(t)) = 5“1602 (%ﬁ(t) + %). To better understand this example, graphs of some functions are

presented in Figures 1-3.

Graph of p(t,¥(t))

)
Figure 1. The graph of p(t, ¥(t)) in Example 3.1.

-
=]

)

-
-1

Graph of 3(t, ¥(t))

=x107%

t,0(t))

{
\

e
~4

W - -1

Figure 2. The graph of J(t, ¥(t)) in Example 3.1.
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Graph of A(t, ¢(t))

Figure 3. The graph of A(t, J(t)) in Example 3.1.

Furthermore, in this case we have

~ 1t ~
[p(t, HB) — p(t, HO)] < 555100 - H(),

and
- cos3(t) -
|3 (t, 9(t) — I(t, Ht))| < mlﬁ(t) — ().
Also,
- 2 nt
- > -
[A(t, F(D) — A(t, H(D)] < 1200 [(t) — I(t)|.

Now, we find x; =~ 0.0002380952, x5 ~ 0.0025, x; ~ 0.005, p; = 2, I ~ 0.0025, Aj ~ 0.0055555556.
Also, ay3 ~ 0.0011657517, IT} ~ 0.9421485569355, and 11 ~ 1. So,

1

D = —5 = ~ 0.4962471002,
| 2ito kg1 (—A2) + X5l 1By, 1 (—Av2)
and
U, = ( LI )ﬁ)(n*; ; |q>|n’;ng(i T+ Z Ki)) ~ 0.0149828586729,
Oh+&o O = p

A g % .
U, = ( 0, _0)(n* OIS 7 + Ki)) + |O|IT [ag | ~ 0.0238649003463.
o+ N b ; : iZ:o: o

Thus, we get

(U1 + Vo) (il + 1) ~ 0.077889756833496 < 1 = £
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and
(2x5 + 95)01 + x50, = 0.0002691530884605 < 1.

Hence, all conditions of Theorem 2.2 hold, and the problem (3.1) has at least one solution.

Example 3.2. Consider the following fractional hybrid Langevin problem:

6 1 L
DD + 1 ( () _ ): 2 IO 1H -t
( ) 7f°%fz'+mf(§3a+ (IL’*‘“Z?(Z;) [t 5 ds)a0s) IO T
te ¢ +mto)(g
9(0) =0, (3.2)
ot 24 -0
2\ cos?at , 0 1-sin 22 [t 8 _ '
O+ e+ O ot = 8) T O(s)ds =0
In this case, we take ¢ = 0.1, (| = g, OH = %, S0=0,¢1=% A= %
27w x| 1
B(t,x) = + e™,
(&%) 1+ x| 1+34
and
cos? mit y 1 —sin® 7
T(t,y,z) = + + z
(ty.2) 1+et |t +emt 14 + ns?
Then, [B(t,x;) - B(t, %,)| < 277 [x; = Xol, and
1 1 — sin® 7t
|T(t’ Yi Z]) - T(t’ Y2, zZ)l < max{ltl Lot 14— a2 }(lyl - YZl + |Z1 - ZZl)-

S0, x3(t) = 277 and B(t) = max {==. Lsin’ 21} Now, we obtain x; ~ 0.7071067811865 and 8* = 0.5.

Furthermore, By = 0.0121951219512, T* = 0.73105857863, and NI ~ 0.1796520355079. Then we
find

N 1 L DNT (3¢ + Bp)
(ﬁfmz:or(ng, TR TT A AEY

) = 0.0687162196187 < 0.1 = ¢,

and

T({)NT

- 1
— (2B ¢ + B, e T *) ~ 0.6861695496883 < 1.
T Gk D2t T

Hence, all conditions of Theorem 2.4 hold, and the problem (3.2) has at least one solution. In addition,

to better understand this example, the graphs and numerical results of some functions are presented in
Figures 4 and 5 and Table 1.

AIMS Mathematics Volume 7, Issue 10, 18253—-18279.



18274

AIMS Mathematics

Table 1. Numerical results for some functions in Example 3.2.

1—sin® 7t

' xs(t) - S B(t)

0 0.5 1 0.0714 1
0.1 0.5325 0.4083 0.0472 0.4083
0.2 0.5612 0.1748 0.0279 0.1748
0.3 0.5867 0.0754 0.0700 0.0754
04 0.6095 0.0324 0.0592 0.0592
0.5 0.6299 0.0138 0.0094 0.0138
0.6 0.6484 0.0059 0.0659 0.0659
0.7 0.6651 0.0025 0.0617 0.0617
0.8 0.6803 0.0010 0.0003 0.0010
09 0.6943 0.0004 0.0593 0.0593

1 07071 0.0001 0.0579 0.0579

Graph of T(t, y.z)

Figure 4. The graph of Y(t,y, z) in Example 3.2.

Graph of B(t,x)

Figure 5. The graph of B(t, x) in Example 3.2.

Volume 7, Issue 10, 18253—-18279.



18275

4. Conclusions

In this work, we have presented some sufficient conditions dealing with the existence of the solution
for the generalized fractional hybrid Langevin equation with two different boundary conditions. First,
in the form of two auxiliary lemmas, we solve a simplified form of our problem with the help of the
Mittag-Lefller function, Laplace transforms and fractional calculus. Then, we design a fixed point
problem in Banach space; in fact, we want to turn the problem of finding a solution into the problem
of finding a fixed point for an operator. Once the desired operator is defined, the existence results
are proved using the a-y-contraction theorem. Our proposed method is very simple and practical, so
researchers can use our approach to solve equations that model natural phenomena. For our two main
theorems, we have provided two numerical examples to test the efficiencies of our proposed method in
numerical calculations. We obtained these results using the Caputo derivative, so other researchers can
test our results with different fractional derivative operators, such as Hadamard, etc., to pave the way.
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