Research article

Global well-posedness and scattering of the four dimensional cubic focusing nonlinear Schrödinger system

  • Received: 05 July 2024 Revised: 09 August 2024 Accepted: 16 August 2024 Published: 04 September 2024
  • MSC : 35A15, 35B15, 35P25, 35Q55

  • In this paper, the Cauchy problem for a class of coupled system of the four-dimensional cubic focusing nonlinear Schrödinger equations was investigated. By exploiting the double Duhamel method and the long-time Strichartz estimate, the global well-posedness and scattering were proven for the system below the ground state. In our proof, we first established the variational characterization of the ground state, and obtained the threshold of the global well-posedness and scattering. Second, we showed that the non-scattering is equivalent to the existence of an almost periodic solution by following the concentration-compactness/rigidity arguments of Kenig and Merle [17] (Invent. Math., 166 (2006), 645–675). Then, we obtained the global well-posedness and scattering below the threshold by excluding the almost periodic solution.

    Citation: Yonghang Chang, Menglan Liao. Global well-posedness and scattering of the four dimensional cubic focusing nonlinear Schrödinger system[J]. AIMS Mathematics, 2024, 9(9): 25659-25688. doi: 10.3934/math.20241254

    Related Papers:

  • In this paper, the Cauchy problem for a class of coupled system of the four-dimensional cubic focusing nonlinear Schrödinger equations was investigated. By exploiting the double Duhamel method and the long-time Strichartz estimate, the global well-posedness and scattering were proven for the system below the ground state. In our proof, we first established the variational characterization of the ground state, and obtained the threshold of the global well-posedness and scattering. Second, we showed that the non-scattering is equivalent to the existence of an almost periodic solution by following the concentration-compactness/rigidity arguments of Kenig and Merle [17] (Invent. Math., 166 (2006), 645–675). Then, we obtained the global well-posedness and scattering below the threshold by excluding the almost periodic solution.



    加载中


    [1] T. Aubin, Probl$\grave{e}$mes isopérimétriques et espaces de Sobolev, J. Differential Geometry, 11 (1976), 573–598.
    [2] N. Akhmediev, A. Ankiewicz, Paritially coherent solitons on a finite background, Phys. Rev. Lett., 82 (1999), 2661–2664. https://doi.org/10.1103/PhysRevLett.82.2661 doi: 10.1103/PhysRevLett.82.2661
    [3] J. Bourgain, Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case, J. Amer. Math. Soc., 12 (1999), 145–171. https://doi.org/10.1090/S0894-0347-99-00283-0 doi: 10.1090/S0894-0347-99-00283-0
    [4] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on $\mathbb{R}^3$, Commun. Pur. Appl. Math., 57 (2004), 987–1014. https://doi.org/10.1002/cpa.20029 doi: 10.1002/cpa.20029
    [5] J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrodinger equation in $\mathbb{R}^3$, Ann. Math., 167 (2008), 767–865. https://doi.org/10.4007/annals.2008.167.767 doi: 10.4007/annals.2008.167.767
    [6] T. Cazenave, F. B. Weissler, Some remarks on the nonlinear Schrödinger equation in the critical case, In: Nonlinear semigroups, partial differential equations and attractors, Heidelberg: Springer, 1989, 18–29. https://doi.org/10.1007/BFb0086749
    [7] T. Cazenave, F. B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$, Nonlinear Anal. Theor., 14 (1990), 807–836. https://doi.org/10.1016/0362-546X(90)90023-A doi: 10.1016/0362-546X(90)90023-A
    [8] X. Cheng, Y. F. Gao, J. Q. Zheng, Remark on energy-critical NLS in 5D, Math. Method. Appl. Sci., 39 (2016), 2100–2117. https://doi.org/10.1002/mma.3627 doi: 10.1002/mma.3627
    [9] X. Cheng, Z. H. Guo, G. Hwang, H. Yoon, Global well-posedness and scattering of the two dimensional cubic focusing nonlinear Schrödinger system, 2022, arXiv: 2202.10757.
    [10] B. Dodson, Global well-posedness and scattering for the defocusing, $L^2$-critical nonlinear Schrödinger equation when $d\geq3$, J. Amer. Math. Soc., 25 (2012), 429–463. https://doi.org/10.1090/S0894-0347-2011-00727-3 doi: 10.1090/S0894-0347-2011-00727-3
    [11] B. Dodson, Global well-posedness and scattering for the focusing, cubic Schrödinger equation in dimension $d = 4$, Ann. Sci. Ecole Norm. S., 52 (2019), 139–180. https://doi.org/10.24033/asens.2385 doi: 10.24033/asens.2385
    [12] J. Ginibre, G. Velo, Smoothing properties and retarded estimates for some dispersive evolution equations, Commun. Math. Phys., 144 (1992), 163–188. https://doi.org/10.1007/bf02099195 doi: 10.1007/bf02099195
    [13] M. G. Grillakis, On nonlinear Schrödinger equations: nonlinear Schr?dinger equations, Commun. Part. Diff. Eq., 25 (2000), 1827–1844. https://doi.org/10.1080/03605300008821569 doi: 10.1080/03605300008821569
    [14] Y. F. Gao, Z. Y. Wang, Concentration of blow-up solutions for the coupled Schrödinger equations in $R^2$, J. Math. Anal. Appl., 429 (2015), 591–601. https://doi.org/10.1016/j.jmaa.2015.04.034 doi: 10.1016/j.jmaa.2015.04.034
    [15] S. Keraani, On the blow-up phenomenon of the critical nonlinear Schrödinger equation, J. Funct. Anal., 235 (2006), 171–192. https://doi.org/10.1016/j.jfa.2005.10.005 doi: 10.1016/j.jfa.2005.10.005
    [16] M. Keel, T. Tao, Endpoint Strichartz estimates, Am. J. Math., 120 (1998), 955–980. https://doi.org/ 10.1353/ajm.1998.0039 doi: 10.1353/ajm.1998.0039
    [17] C. E. Kenig, F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645–675. https://doi.org/ 10.1007/s00222-006-0011-4 doi: 10.1007/s00222-006-0011-4
    [18] R. Killip, M. Visan, The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher, Am. J. Math., 132 (2010), 361–424. https://doi.org/10.1353/ajm.0.0107 doi: 10.1353/ajm.0.0107
    [19] R. Killip, M. Visan, Global well-posedness and scattering for the defocusing quintic NLS in three dimensions, Anal. PDE, 5 (2012), 855–885. https://doi.org/10.2140/apde.2012.5.855 doi: 10.2140/apde.2012.5.855
    [20] R. Killip, M. Visan, Nonlinear Schrödinger equations at critical regularity, Clay Mathematics Proceedings, 17 (2013), 325–437.
    [21] T. C. Lin, J. C. Wei, Ground state of N coupled nonlinear Schrödinger equations in $\mathbb{R}^n, n\leq3$, Commun. Math. Phys., 255 (2005), 629–653. https://doi.org/10.1007/s00220-005-1313-x doi: 10.1007/s00220-005-1313-x
    [22] C. M. Li, L. Ma, Uniqueness of positive bound states to Schrödinger systems with critical exponents, SIAM J. Math. Anal., 40 (2008), 1049–1057. https://doi.org/10.1137/080712301 doi: 10.1137/080712301
    [23] L. Tang, Dynamical behavior and multiple optical solitons for the fractional Ginzburg-Landau equation with $\beta$-derivative in optical fibers, Opt. Quant. Electron., 56 (2024), 175. https://doi.org/10.1007/s11082-023-05761-1 doi: 10.1007/s11082-023-05761-1
    [24] L. Tang, Optical solitons perturbation and traveling wave solutions in magneto-optic waveguides with the generalized stochastic Schrödinger-Hirota equation, Opt. Quant. Electron., 56 (2024), 773. https://doi.org/10.1007/s11082-024-06669-0 doi: 10.1007/s11082-024-06669-0
    [25] C. X. Miao, G. X. Xu, L. F. Zhao, Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equations of fourth order in dimensions $d\geq9$, J. Differ. Equations, 251 (2011), 3381–3402. https://doi.org/10.1016/j.jde.2011.08.009 doi: 10.1016/j.jde.2011.08.009
    [26] C. X. Miao, G. X. Xu, L. F. Zhao, Global well-posedness and scattering for the focusing energy-critical nonlinear Schrödinger equations of fourth order in the radial case, J. Differ. Equations, 246 (2009), 3715–3749. https://doi.org/10.1016/j.jde.2008.11.011 doi: 10.1016/j.jde.2008.11.011
    [27] S. J. Montgomery-Smith, Time decay for the bounded mean oscillation of solutions of the Schrödinger and wave equation, Duke Math. J., 91 (1998), 393–408. https://doi.org/10.1215/S0012-7094-98-09117-7 doi: 10.1215/S0012-7094-98-09117-7
    [28] E. Ryckman, M. Visan, Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in $\mathbb{R}^{1+4}$, Am. J. Math., 129 (2007), 1–60. https://doi.org/10.1353/ajm.2007.0004 doi: 10.1353/ajm.2007.0004
    [29] R. S. Strichartz, Restriction of Fourier transform to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44 (1977), 705–714. https://doi.org/10.1215/s0012-7094-77-04430-1 doi: 10.1215/s0012-7094-77-04430-1
    [30] J. Shatah, W. Strauss, Instability of nonlinear bound states, Commun. Math. Phys., 100 (1985), 173–190. https://doi.org/10.1007/BF01212446 doi: 10.1007/BF01212446
    [31] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pur. Appl., 110 (1976), 353–372. https://doi.org/10.1007/BF02418013 doi: 10.1007/BF02418013
    [32] T. Tao, Global well-posedness and scattering for the higher-dimensional energy-critical nonlinear Schrödinger equation for radial data, New York J. Math., 11 (2005), 57–80.
    [33] M. E. Taylor, Partial differential equations, Vols. 1–3, 2 Eds., Cham: Springer, 2011.
    [34] M. Visan, The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions, Duke Math. J., 138 (2007), 281–374. https://doi.org/10.1215/S0012-7094-07-13825-0 doi: 10.1215/S0012-7094-07-13825-0
    [35] M. Visan, Global well-posedness and scattering for the defocusing cubic nonlinear Schrödinger equation in four dimensions, Int. Math. Res. Notices, 2012 (2012), 1037–1067. https://doi.org/10.1093/imrn/rnr051 doi: 10.1093/imrn/rnr051
    [36] J. C. Wei, W. Yao, Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations, Commun. Pur. Appl. Anal., 11 (2012), 1003–1011. https://doi.org/10.3934/cpaa.2012.11.1003 doi: 10.3934/cpaa.2012.11.1003
    [37] G. X. Xu, Dynamics of some coupled nonlinear Schrödinger systems in $\mathbb{R}^3$, Math. Method. Appl. Sci., 37 (2014), 2746–2771. https://doi.org/10.1002/mma.3015 doi: 10.1002/mma.3015
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(79) PDF downloads(15) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog