In this paper, the Cauchy problem for a class of coupled system of the four-dimensional cubic focusing nonlinear Schrödinger equations was investigated. By exploiting the double Duhamel method and the long-time Strichartz estimate, the global well-posedness and scattering were proven for the system below the ground state. In our proof, we first established the variational characterization of the ground state, and obtained the threshold of the global well-posedness and scattering. Second, we showed that the non-scattering is equivalent to the existence of an almost periodic solution by following the concentration-compactness/rigidity arguments of Kenig and Merle [
Citation: Yonghang Chang, Menglan Liao. Global well-posedness and scattering of the four dimensional cubic focusing nonlinear Schrödinger system[J]. AIMS Mathematics, 2024, 9(9): 25659-25688. doi: 10.3934/math.20241254
[1] | Saleh Almuthaybiri, Radhia Ghanmi, Tarek Saanouni . On the nonlinear Schrödinger equation with critical source term: global well-posedness, scattering and finite time blowup. AIMS Mathematics, 2024, 9(11): 30230-30262. doi: 10.3934/math.20241460 |
[2] | Saleh Almuthaybiri, Radhia Ghanmi, Tarek Saanouni . Correction: On the nonlinear Schrödinger equation with critical source term: global well-posedness, scattering and finite time blowup. AIMS Mathematics, 2025, 10(2): 2413-2414. doi: 10.3934/math.2025112 |
[3] | Jishan Fan, Tohru Ozawa . Well-posedness for the Chern-Simons-Schrödinger equations. AIMS Mathematics, 2022, 7(9): 17349-17356. doi: 10.3934/math.2022955 |
[4] | Cyril Dennis Enyi, Soh Edwin Mukiawa . Dynamics of a thermoelastic-laminated beam problem. AIMS Mathematics, 2020, 5(5): 5261-5286. doi: 10.3934/math.2020338 |
[5] | Saleh Almuthaybiri, Tarek Saanouni . On coupled non-linear Schrödinger systems with singular source term. AIMS Mathematics, 2024, 9(10): 27871-27895. doi: 10.3934/math.20241353 |
[6] | Linlin Tan, Meiying Cui, Bianru Cheng . An approach to the global well-posedness of a coupled 3-dimensional Navier-Stokes-Darcy model with Beavers-Joseph-Saffman-Jones interface boundary condition. AIMS Mathematics, 2024, 9(3): 6993-7016. doi: 10.3934/math.2024341 |
[7] | Qian Zhang, Ai Ke . Bifurcations and exact solutions of generalized nonlinear Schrödinger equation. AIMS Mathematics, 2025, 10(3): 5158-5172. doi: 10.3934/math.2025237 |
[8] | Ninghe Yang . Exact wave patterns and chaotic dynamical behaviors of the extended (3+1)-dimensional NLSE. AIMS Mathematics, 2024, 9(11): 31274-31294. doi: 10.3934/math.20241508 |
[9] | Grace Noveli Belvy Louvila, Armel Judice Ntsokongo, Franck Davhys Reval Langa, Benjamin Mampassi . A conserved Caginalp phase-field system with two temperatures and a nonlinear coupling term based on heat conduction. AIMS Mathematics, 2023, 8(6): 14485-14507. doi: 10.3934/math.2023740 |
[10] | Xionghui Xu, Jijiang Sun . Ground state solutions for periodic Discrete nonlinear Schrödinger equations. AIMS Mathematics, 2021, 6(12): 13057-13071. doi: 10.3934/math.2021755 |
In this paper, the Cauchy problem for a class of coupled system of the four-dimensional cubic focusing nonlinear Schrödinger equations was investigated. By exploiting the double Duhamel method and the long-time Strichartz estimate, the global well-posedness and scattering were proven for the system below the ground state. In our proof, we first established the variational characterization of the ground state, and obtained the threshold of the global well-posedness and scattering. Second, we showed that the non-scattering is equivalent to the existence of an almost periodic solution by following the concentration-compactness/rigidity arguments of Kenig and Merle [
In this paper, we consider the following cubic-focusing energy-critical nonlinear Schrödinger system on R4
{i∂tuj(t,x)+Δuj(t,x)=−Fj(u),u(0,x)=u0=(u1,0,u2,0)∈(˙H1x(R4))2, | (1.1) |
where j=1,2,u=u(t,x)=(u1(t,x),u2(t,x)):R×R4→C2 is the unknown function and the nonlinear term Fj(u) is given by the relation
Fj(u):=(|uj(t,x)|2uj(t,x)+|uk(t,x)|2uj(t,x)), |
where k=1,2, and k≠j.
The nonlinear Schrödinger system (1.1) enjoys the following conservation laws.
1) Mass conservation
M(u1(t),u2(t))=∫R4(|u1(t,x)|2+|u2(t,x)|2)dx=M(u1(0),u2(0)). | (1.2) |
2) Energy conservation
E(u1(t),u2(t))=12∫R4(|∇u1(t,x)|2+|∇u2(t,x)|2)dx−14∫R4(|u1(t,x)|2+|u2(t,x)|2)2dx=E(u1(0),u2(0)). | (1.3) |
System (1.1) is called energy-critical since a solution (u1,u2) to system (1.1) is invariant under the scaling
(u1(t,x),u2(t,x))↦λ(u1(λ2t,λx),u2(λ2t,λx)). |
We first briefly recall the results of the Cauchy problem for the single nonlinear Schrödinger equation
{i∂tu+Δu=μf(u),u(0,x)=u0∈˙H1(Rd), | (1.4) |
where dimension d≥3, μ=±1,f(u)=|u|4d−2u, and u(t,x):R×Rd→C. By rescaling the values of u, it is possible to restrict attention to the case μ=−1 or μ=1; these are known as the focusing and defocusing equations, respectively.
There is a large number of works on problem (1.4). In the defocusing case, Bourgain [3] first proved the global well-posedness and scattering for radial initial data in dimensions (d=3,4) by introducing the induction on energy method. Grillakis [13] demonstrated global regularity for the three-dimensional energy-critical defocusing NLS with spherically symmetric initial data, that is, he proved that smooth spherically symmetric initial data lead to a globally smooth solution. This result can be deduced a posteriori from [3]; however, the argument in [13] is rather different. Further advancements in the spherically symmetric case were made by Tao [32], who extended the result to higher dimensions. For non-radial initial data, Colliander et al. [5] achieved a significant breakthrough by proving the global well-posedness and scattering for d=3, introducing a wealth of new ideas and tools to the problem. Specifically, the authors utilized an interaction Morawetz inequality (introduced in [4]), which is more suitable for the non-radial case than the Morawetz inequality used in previous works. Subsequently, Ryckman and Visan [28] extended the argument from [5] to d=4, and Visan [34] obtained global well-posedness and scattering for d≥5. Interested readers can refer to [8,19,35] for an easier understanding of the global well-posedness and scattering for d=3,4,5 using the long-time Strichartz estimate of Dodson [10].
In the focusing case, Kenig and Merle [17] established global well-posedness and scattering when d=3,4,5 for radial initial data, where they first put forward the concentration compactness/rigidity method. Killip and Visan [18] extended this to global well-posedness and scattering for non-radial initial data when d≥5. Later, Dodson [11] obtained global well-posedness and scattering for non-radial initial data in d=4. However, it seems difficult to solve the problem for d=3 due to the fact that the stationary solution W(x) of problem (1.4) does not belong to L2(Rd) when d=3,4. Here, W(x) denotes the ground state. Therefore, the case (d=3) remains an open question.
We can summarize the above research results in the following theorem.
Theorem 1.1. Let u0∈˙H1(Rd), when μ=1, the corresponding solution u to problem (1.4) is global for d≥3.
When μ=−1 and E(u0)<E(W), the following results hold.
1) If ‖∇u0‖L2(Rd)<‖∇W‖L2(Rd), then the solution u of problem (1.4) is global for d≥4, and this is also true for d=3 in the radial case.
2) If ‖∇u0‖L2(Rd)>‖∇W‖L2(Rd), and if either u0∈L2(Rd) or u0∈H1(Rd) is radial, then the solution u of problem (1.4) blows up in finite time for d≥3.
Furthermore, the global solution scatters in ˙H1(Rd).
When μ=−1, there exists global solution to problem (1.4) that does not scatter, that is,
W(t,x)=W(x):=1(1+|x|2d(d−2))d−22, | (1.5) |
which solves the nonlinear elliptic equation
ΔW+|W|4d−2W=0, | (1.6) |
then W(t,x)=W(x) is a stationary solution to problem (1.4). Moreover, the energy of ground state W is
E(W)=12‖∇W‖2L2(Rd)−d−22d‖W‖2dd−2L2dd−2(Rd)=d−1C−dd. |
Here, the sharp constant
C−dd=‖∇W‖2L2(Rd)=‖W‖2dd−2L2dd−2(Rd), | (1.7) |
comes from the Sobolev embedding inequality
‖u‖L2dd−2(Rd)≤Cd‖∇u‖L2(Rd). | (1.8) |
By following the arguments in [1,31], we obtain W is a maximizer in the sharp Sobolev embedding inequality.
There are also some results on the nonlinear Schrödinger equation of fourth order. Miao et al. [26] considered the focusing energy-critical nonlinear Schrödinger equation of fourth order iut+Δ2u=|u|8d−4u with d≥5. They proved that if a maximal-lifespan radial solution u:I×Rd→C obeys supt∈I‖Δu(t)‖2≤‖ΔW‖2, then it is global and scatters both forward and backward in time. In addition, if a solution has both energy and kinetic energy lower than those of the ground state W at some point in time, then the solution is global and scatters. After that, they considered the defocusing energy-critical nonlinear Schrödinger equation of fourth order iut+Δ2u=−|u|8d−4u in [25]. They proved that any finite energy solution is global and scatters both forward and backward in time in dimensions d≥9.
Some results on nonlinear Schrödinger system were also obtained. For example, Cheng et al. [9] obtained the global well-posedness and scattering of the cubic focusing infinite coupled nonlinear Schrödinger system on R2 below the threshold in L2xh1(R2×Z). Gao and Wang [14] proved a concentration result for blow-up solutions of the coupled Schrödinger equations with non-spherically symmetric initial data in H1(R2). There are also some papers on other types of nonlinear Schrödinger systems, for instance, [21,36,37]. Compared to the single nonlinear Schrödinger equation, results on the nonlinear Schrödinger system is relatively short.
The main motivation of this article is to provide a satisfactory answer to the following Theorem 1.2 and to extend the results of single nonlinear Schrödinger (NLS) equation to a class of coupled systems, which contributes to a better understanding of the long-time evolution between systems. Such finite coupled nonlinear Schrödinger system has already been applied in nonlinear optics; see [2] and the references therein. It provides a useful approximation for describing the propagation of self-trapped, mutually incoherent wave packets in nonlinear optics. In order to prove the following Theorem 1.2, we first establish the variational characterization of the ground state and determine the threshold for global well-posedness and scattering, which is a pivotal initial step. Subsequently, we employ the approach developed by Kenig and Merle [17], utilizing concentration-compactness/rigidity method to reduce the problem of global well-posedness and scattering to the exclusion of almost periodic solutions. In other words, we need to exclude the existence of almost periodic solutions to system (1.1) that satisfy K=∫RN(t)−2dt<∞ and K=∫RN(t)−2dt=∞. We prove the global well-posedness and scattering of the four-dimensional cubic focusing energy-critical nonlinear Schrödinger system below the ground state. Our main results are listed as follows.
Theorem 1.2. If the initial data u0∈(˙H1x(R4))2 satisfies
E(u0)<E(W),‖u0‖(˙H1(R4))2<‖W‖(˙H1(R4))2, |
where W=(1√2W,1√2W),W is shown in (1.5), then the corresponding solution u to system (1.1) is globally well-posed and scatters for both time directions.
Remark 1.3. If not otherwise specified, the following W=(1√2W,1√2W),W denotes ground state and is the stationary solution to problem (1.4), when μ=−1. The specific characterizations of ground state W can be attained in Section 3.
The proof of Theorem 1.2 is based on the following three theorems.
Theorem 1.4. (Reduction to almost periodic solution, [17,18]) If system (1.1) is not globally well-posed and scattering for all data satisfying E(u0)<E(W),‖u0‖(˙H1(R4))2<‖W‖(˙H1(R4))2, then there exists a non-zero solution u to system (1.1) that is almost periodic for the entire time of its existence.
So far, reducing almost periodic solutions has become a standard technique in the analysis of dispersive equations at critical regularity. Their existence was first established by Keraani [15] in the context of the mass-critical nonlinear Schrödinger equation, and was initially employed by Kenig, Merle [17] as a tool to prove global well-posedness. As mentioned above, Theorem 1.4 has been proven in [17,18].
Next, is the definition of almost periodicity in Theorem 1.4.
Definition 1.5. If there exists N(t):I→(0,∞) and x(t):I→R4 such that for all t∈I,1N(t)u(x−x(t)N(t)) lies in a compact set K⊂˙H1(R4), then u is almost periodic for all t∈I, where I is the maximal interval of its existence.
Theorem 1.6. The only almost periodic solution on the maximal interval of its existence I satisfying ‖∇u(t)‖(L∞tL2x(I×R4))2<‖W‖(L2(R4))2 is u≡0.
Theorem 1.7. To prove Theorem 1.6, it suffices to show that the only global, almost periodic solution to system (1.1) on R satisfying
N(t)≥1,N(0)=1, |
is u≡0.
The outline of the paper is as follows. In Section 2, we present the local well-posedness of system (1.1) and some analytic tools. In Section 3, we establish variational characterizations of the ground state. In Section 4, we give that the non-scattering is equivalent to the existence of almost periodic solutions. In Section 5, we prove the long time Strichartz estimate, which plays a pivotal role in proving the main results. In Section 6, we first preclude the almost periodic solution to system (1.1) satisfying K=∫RN(t)−2dt<∞ (see Theorem 6.1). Second, we exclude the almost periodic solution to system (1.1) with K=∫RN(t)−2dt=∞ (see Theorem 6.2). Our study excursion comes to an end with the provided conclusion in Section 7.
In this section, we will briefly recall the local well-posedness theory of system (1.1) and some basic results.
We use the following notations throughout this paper. We will use X≲ whenever there exists some constant C > 0 such that X\le CY. Similarly, we use X\thicksim Y if X\lesssim Y\lesssim X. For any space-time slab I\times \mathbb{R}^4 , we use (L^q_t L^r_x(I\times\mathbb{R}^4))^2 to denote the Banach space time of function \textbf{u}:I\times\mathbb{R}^4\rightarrow \mathbb{C}^2 whose norm is
\|\textbf{u}\|_{(L^q_t L^r_x(I\times\mathbb{R}^4))^2}: = (\displaystyle{\int}_{I}\|\textbf{u}\|^q_{(L^r_x(\mathbb{R}^4))^2}dt)^\frac{1}{q} |
with the usual modifications when q or r are equal to infinity. When q = r , we abbreviate L^q_tL^r_x as L^q_{t, x} .
We define the Fourier transform on \mathbb{R}^4 to be
\mathscr{F}\textbf{f}(\xi): = (2\pi)^{-d/2}\displaystyle{\int}_{\mathbb{R}^4}e^{-ix\xi}\textbf{f}(x)dx. |
For s\in\mathbb{R} , we define the fractional differentiation/integral operator
\mathscr{F}(|\nabla|^s\textbf{f}(\xi)): = |\xi|^s\mathscr{F}\textbf{f}(\xi), |
which in turn define the homogeneous Sobolev norm
\|\textbf{f}\|_{(\dot{H}^s(\mathbb{R}^4))^2}: = \||\nabla|^s\textbf{f}\|_{(L^2(\mathbb{R}^4))^2}. |
In this subsection, we will review local well-posedness and some important estimates. We first give the precise definition of solution in the energy spaces.
Definition 2.1. A function \textbf{u}:I\times\mathbb{R}^4\rightarrow \mathbb{C}^2 on a nonempty time interval t_0\in I\subset\mathbb{R} is a strong \dot{H}^1 solution of system (1.1) if it lies in the class C^0_t\dot{H}^1_x(K\times\mathbb{R}^4)\bigcap L^6_{t, x}(K\times\mathbb{R}^4) for all compact K\subset I, and obeys the Duhamel formula
u_j(t_1) = e^{i(t_1-t_0)\Delta}u_{j,0}+i\displaystyle{\int}_{t_0}^{t_1}e^{i(t_1-t)\Delta}F_j(\textbf{u}(t))dt |
for all t_1\in I and j = 1, 2. We refer to the interval I as the lifespan of \textbf{u}. It is said that \textbf{u} is a maximal-lifespan solution if the solution cannot be extended to any strictly larger interval, and that \textbf{u} is a global solution if I = \mathbb{R}.
Next, we will give the definition of scattering size and blow up.
Definition 2.2. The scattering size of a solution to system (1.1) on a time interval I by
S_I(\textbf{u}): = \displaystyle{\int}_I\displaystyle{\int}_{\mathbb{R}^4}|\textbf{u}(t,x)|^6dxdt. |
Definition 2.3. A solution \textbf{u} to system (1.1) blows up forward in time if there exists a time t_1\in I such that
S_{[t_1,\sup I)}(\textbf{u}) = \infty, |
and that \textbf{u} blows up backward in time if there exists a time t_1\in I such that
S_{(\inf I,t_1]}(\textbf{u}) = \infty. |
Let e^{it\Delta} be the free Schrödinger evolution. From the explicit formula
e^{it\Delta}\textbf{f}(x) = \frac{1}{(4\pi it)^2}\displaystyle{\int}_{\mathbb{R}^4}e^{{i|x-y|^2}/4t}\textbf{f}(y)dy, |
one easily obtains the standard dispersive inequality
\|e^{it\Delta }\textbf{f}\|_{(L^\infty(\mathbb{R}^4))^2}\lesssim|t|^{-2}\|\textbf{f}\|_{L^1(\mathbb{R}^4))^2}, |
for all t\neq0.
A different way to express the dispersive effect of the operator e^{it\Delta} is in terms of space-time integrability. To state the estimates, we first need the following definition.
Definition 2.4. (Admissible pairs) For d\ge3, a pair of exponents (q, r) is an admissible pair if
\frac{2}{q}+\frac{d}{r} = \frac{d}{2},2\le q,r\le \infty, |
and (d, q, r)\neq(2, 2, \infty).
For a fixed space-time slab I\times\mathbb{R}^d, we define the Strichartz norm
\|\textbf{u}\|_{(S^0(I))^2}: = \sup\|\textbf{u}\|_{(L^q_tL^r_x(I\times\mathbb{R}^d))^2},\quad \|\textbf{u}\|_{(\dot{S}^s(I))^2}: = \||\nabla|^s\textbf{u}\|_{(S^0(I))^2}, |
where (q, r) is an admissible pair and s\in\mathbb{R} . We write S^0(I) for the closure of all test functions under this norm and denote by N^0(I) the dual of S^0(I) .
Now, we are ready to state the standard Strichartz estimates.
Theorem 2.5. (Strichartz estimates) Let I be a compact time interval, and let \mathit{\boldsymbol{u}}:I\times\mathbb{R}^4\rightarrow \mathbb{C}^2 be a solution to the forced Schrödinger system
i\partial_tu_j(t,x)+\Delta u_j(t,x) = -F_j(\textbf{u}), |
then for any t_0\in I
\|\nabla u_j\|_{S^0(I)}\lesssim\|u_j(t_0)\|_{\dot H^1(\mathbb{R}^d)}+\|\nabla F_j\|_{N^0(I)}. |
Proof. We treat the non-endpoint case following [12,29]. For the endpoint (q, r) = (2, \frac{2d}{d-2}) in dimensions d\geq3 , see [16]. For failure of the d = 2 endpoint, see [27].
Theorem 2.6. (Littlewood-Paley) For any 1 < p < \infty,
\Big\|\Big(\Sigma_N|P_N \mathit{\boldsymbol{f}}|^2\Big)^{1/2}\Big\|_{(L^p(\mathbb{R}^4))^2}\sim_{p,d}\|\mathit{\boldsymbol{f}}\|_{(L^p(\mathbb{R}^4))^2}. |
Theorem 2.7. (Sobolev embedding, [33]) For 1\le p\le q\le \infty, N\in \mathbb{Z},
\|P_N \mathit{\boldsymbol{f}}\|_{(L^q(\mathbb{R}^4))^2}\lesssim2^{4N(\frac{1}{p}-\frac{1}{q})}\|P_N \mathit{\boldsymbol{f}}\|_{(L^p(\mathbb{R}^4))^2}. |
Theorem 2.8. (Bernstein's estimate) For any s\in \mathbb{R}, N\in \mathbb{Z}, 1 < p < \infty,
2^{Ns}\|P_N \mathit{\boldsymbol{f}}\|_{(L^p(\mathbb{R}^4))^2}\thicksim\||\nabla|^s P_N \mathit{\boldsymbol{f}}\|_{(L^p(\mathbb{R}^4))^2}. |
Theorem 2.9. (Maximal Strichartz estimate) Suppose t, t_0\in I, and
v_j(t) = \displaystyle{\int}_{t_0}^te^{i(t-s)\Delta}F_j(s)ds, |
then for d = 4, q > 4, j = 1, 2,
\Big\|\sup 2^{N(\frac{4}{q}-2)}\|P_N v_j(t)\|_{L^q_x(\mathbb{R}^4)}\Big\|_{L^2_t(I)}\lesssim_q\|F_j\|_{L^2_tL^1_x(I\times \mathbb{R}^4)}. |
With the aid of Theorem 2.5, the following local well-posedness theory is obtained. Because the proof is relatively standard, we do not review it here and refer interested readers to [6,7].
Theorem 2.10. (Local well-posedness) Assume \mathit{\boldsymbol{u}}_0\in(\dot{H}^1(\mathbb{R}^4))^2 and t_0\in\mathbb{R}, there exists a unique maximal-lifespan \mathit{\boldsymbol{u}}:I\times\mathbb{R}^4\rightarrow \mathbb{C}^2 to system (1.1) with initial data \mathit{\boldsymbol{u}}(t_0) = \mathit{\boldsymbol{u}}_0. This solution has the following properties
1) Local existence: I is an open neighborhood of t_0.
2) Blow-up criterion: If \sup I < \infty, then S_{[t_1, \sup I)}(\textbf{u}) = \infty. Similarly, if \inf I < \infty, then S_{(\inf I, t_1]}(\textbf{u}) = \infty.
3) Scattering: If \sup I = \infty, and \textbf{u} does not blow up forward in time, then \textbf{u} scatters forward in time, that is, there exists a unique \textbf{u}_+\in(\dot{H}^1(\mathbb{R}^4))^2 such that
\lim\limits_{t\to \infty}\|\textbf{u}(t)-e^{it\Delta}\textbf{u}_+\|_{(\dot{H}^1(\mathbb{R}^4))^2} = 0. |
4) Small data global existence: If \|\nabla \textbf{u}_0\|_{(L^2(\mathbb{R}^4))^2} is sufficiently small, then \textbf{u} is a global solution, which does not blow up either forward or backward in time. Indeed, in this case, S_\mathbb{R}(\textbf{u})\le\|\nabla\textbf{u}_0\|^6_{(L^2(\mathbb{R}^4))^2}.
In this section, we mainly study the variational characterizations of the ground state. Let us first define the ground state to the system (1.1).
Set ground state \textbf{W} = (W_1, W_2) of the system (1.1), that is \textbf{W} , is stationary solution of system (1.1), and \textbf{W} solves the following elliptic system
\begin{equation} \begin{cases} \Delta W_1 = -|W_1|^2W_1-|W_2|^2W_1,\\ \Delta W_2 = -|W_2|^2W_2-|W_1|^2W_2, \end{cases} \end{equation} | (3.1) |
then by subtracting the second equation from the first equation of (3.1), we obtain
\begin{equation} \Delta(W_1-W_2) = \Big(|W_1|^2+|W_2|^2\Big)\Big(W_2-W_1\Big). \end{equation} | (3.2) |
Multiplying the Eq (3.2) by \Big(W_1-W_2\Big) , it follows that
\begin{equation} (W_1-W_2)\Delta(W_1-W_2) = -\Big(|W_1|^2+|W_2|^2\Big)\Big(W_1-W_2\Big)^2. \end{equation} | (3.3) |
Then, integrating by parts over \mathbb{R}^4 , we have
\begin{equation} \displaystyle{\int}_{\mathbb{R}^4}\Big|\nabla(W_1-W_2)\Big|^2dx = -\displaystyle{\int}_{\mathbb{R}^4}\Big(|W_1|^2+|W_2|^2\Big)\Big(W_1-W_2\Big)^2dx, \end{equation} | (3.4) |
which implies W_1 = W_2 in \dot{H}^1(\mathbb{R}^4) . Hence, the system (3.1) can be reduced to the single nonlinear elliptic equation
\begin{equation} \Delta \widetilde{W} = -2|\widetilde{W}|^2\widetilde{W}. \end{equation} | (3.5) |
The positive solution of (3.5) is known as radially symmetric and unique up to translation and dilation (see [22]) and is identified by
\begin{equation} W(t,x) = W(x): = \frac{1}{1+\frac{|x|^2}{8}}, \end{equation} | (3.6) |
which uniquely solves (1.6) (see [31]). As we all know, the solution of (3.5) minimizes the corresponding energy functional (see [30]), and W obtains the best constant of the Sobolev embedding equality (1.8), that is (1.7), is shown.
The ground state is associated with the best constant in the vector-valued sharp Gagliardo-Nirenberg inequality:
2\displaystyle{\int}_{\mathbb{R}^4}(|u_1|^2+|u_2|^2)^2dx-\displaystyle{\int}_{\mathbb{R}^4}(|u_1|^4+|u_2|^4)dx\leq C_{res}\Big(\displaystyle{\int}_{\mathbb{R}^4}(|u_1|^2+|u_2|^2)dx\Big)\Big(\displaystyle{\int}_{\mathbb{R}^4}(|\nabla u_1|^2+|\nabla u_2|^2)dx\Big), |
we define the Weinstein functional
F(\mathbf{u}): = \frac{2\int_{\mathbb{R}^4}(|u_1|^2+|u_2|^2)^2dx-\int_{\mathbb{R}^4}(|u_1|^4+|u_2|^4)dx}{\Big(\int_{\mathbb{R}^4}(|u_1|^2+|u_2|^2)dx\Big)\Big(\int_{\mathbb{R}^4}(|\nabla u_1|^2+|\nabla u_2|^2)dx\Big)}. |
By standard variational argument, a maximizer \mathbf{W} = (W_1, W_2) of the Weinstein functional F(\mathbf{u}) weakly solves the system (3.1), if it exists.
If a maximizer \mathbf{W} = (W_1, W_2) exists and we assume it is non-negative, then by a standard argument using the maximum principle, each component W_j of such a non-negative maximizer is indeed strictly positive. In addition, due to strict positivity of each W_j and (3.4), we can derive W_1 = W_2 .
Therefore, under spatial translation and dilation, \textbf{W} = (W_1, W_2) = (\frac{1}{\sqrt{2}}W, \frac{1}{\sqrt{2}}W) is the unique positive solution of (3.1) that minimizes the corresponding energy functional.
In this section, we will show that the non-scattering is equivalent to the existence of almost periodic solutions. For any 0\le E\le\|\nabla \textbf{W}\|_{(L^2(\mathbb{R}^4))^2}, we define
L(E): = \sup\Big\{S_R(\textbf{u})\Big|\|\textbf{u}\|_{(L^\infty_t\dot{H}^1_x)^2}\le E\Big\}, |
thus, L:\Big[0, \|\nabla \textbf{W}\|_{(L^2(\mathbb{R}^4))^2}\Big]\rightarrow \Big[0, \infty\Big] is a nondecreasing function with L\Big(\|\nabla \textbf{W}\|_{(L^2(\mathbb{R}^4))^2}\Big) = \infty , and by [18, Lemma 1.4], we see that L is continuous.
To prove system (1.1) is globally well-posed, and scatters satisfying E(\textbf{u}_0) < E(\textbf{W}) and \|\textbf{u}_0\|_{({\dot{H}}^1(\mathbb{R}^4))^2} < \|\textbf{W}\|_{({\dot{H}}^1(\mathbb{R}^4))^2}, it suffices to prove that L(E) < \infty for E < \|\nabla\textbf{W}\|_{(L^2(\mathbb{R}^4))^2}. Therefore, if Theorem 1.2 does not hold, then by the continuity of L(E) , there exists E_c < \|\nabla\textbf{W}\|_{(L^2(\mathbb{R}^4))^2} such that L(E_c) = \infty , and according to L is nondecreasing function, L(E) < \infty for all E < E_c. E_c is called minimal energy. If we can prove E_c = \|\nabla\textbf{W}\|_{(L^2(\mathbb{R}^4))^2} , then the global well-posedness, and scattering are established. Suppose E_c < \|\nabla\textbf{W}\|_{(L^2(\mathbb{R}^4))^2} , by following the concentration-compactness/rigidity arguments in [17,18], we obtain the following theorem.
Theorem 4.1. Assume E_c < \|\nabla\mathit{\boldsymbol{W}}\|_{(L^2(\mathbb{R}^4))^2} , there exists a solution \mathit{\boldsymbol{u}}\in C^0_t\dot{H}^1_x(K\times\mathbb{R}^4)\bigcap L^6_{t, x}(K\times\mathbb{R}^4) of system (1.1) with \sup_{t\in I}\|\nabla \mathit{\boldsymbol{u}}(t)\|^2_{(L^2(\mathbb{R}^4))^2} = E_c , which is almost periodic in the sense that exists \Big(N(t), x(t)\Big)\in \mathbb{R}^+\times\mathbb{R}^4 such that for any \eta > 0 , there exists C(\eta) < \infty satisfying for any t\in I ,
\begin{equation} \displaystyle{\int}_{|x-x(t) > \frac{C(\eta)}{N(t)}}|\nabla \mathit{\boldsymbol{u}}(t,x)|^2dx+\displaystyle{\int}_{|\xi| > C(\eta)N(t)}|\xi|^2|\hat {\mathit{\boldsymbol{u}}}(t,\xi)|^2d\xi < \eta. \end{equation} | (4.1) |
Remark 4.2. Note that we have the freedom to modify N(t) by any bounded function of t , provided that we also modify compactness modulus function C accordingly. In particular, one could restrict N(t) to be a constant locally if one wishes to. Thus, recall that [20, Lemma 5.21], one can choose N(t) such that
\begin{equation} |N'(t)|\lesssim N(t)^3, \end{equation} | (4.2) |
and
\begin{equation} \displaystyle{\int}_IN(t)^2dt\lesssim_\textbf{u}\displaystyle{\int}_I\displaystyle{\int}_{\mathbb{R}^4}|\textbf{u}(t,x)|^6dxdt \lesssim_\textbf{u}1+\displaystyle{\int}_IN(t)^2dt. \end{equation} | (4.3) |
Sketch of proof of Theorem 1.7. Suppose u(t) is an almost periodic solution to system (1.1), one can take a limit of \textbf{u}(t_n) in \dot{H}^1/G (G is a symmetry group) and deduce a solution to system (1.1) satisfying either
N(t)\ge1,N(0) = 1, |
or that u(t) blows up in finite time.
First, at t = 0 and by time reversal symmetry, suppose u(t) blows up as t\rightarrow0 , then by (4.2) and (4.3), N(t)\rightarrow \infty as t\rightarrow0 .
The next step is to prove that \int_{\mathbb{R}^4}|\textbf{u}(t, x)|^2dx = 0 for any t > 0 , which implies the solution u is identically zero, thus contradicting that u blows up in finite time.
For any R > 0 , we define
M_R(t): = \displaystyle{\int}_{\mathbb{R}^4}\phi\Big(\frac{x}{R}\Big)^2|\textbf{u}(t,x)|^2dx, |
where \phi is a smooth, radial function, such that
\phi(r) = \left\{ \begin{array}{rcl} 1 & & {|r|\leq1},\\ 0 & & {|r|\geq2}. \end{array} \right. |
By (4.1) and Hölder's inequality, we obtain
\begin{equation} \lim\limits_{t\to0}M_R(t) = 0. \end{equation} | (4.4) |
Moreover, by integration by parts, one has
\begin{equation} \partial_tM_R(t)\leq\frac{1}{R}\int_{\mathbb{R}^4}\phi'\Big(\frac{x}{R}\Big)\phi\Big(\frac{x}{R}\Big) |\nabla \textbf{u}(t,x)||\textbf{u}(t,x)|dx\leq\frac{1}{R}\Big(M_R(t)\Big)^{1/2}\|\nabla \textbf{u}(t,x)\|^2_{(L^2(\mathbb{R}^4))^2}. \end{equation} | (4.5) |
Therefore, (4.4) combined with the fundamental theorem of calculus and (4.5) implies
\displaystyle{\int}_{\mathbb{R}^4}|\textbf{u}(t,x)|^2dx = 0 |
for any t > 0 , then according to conservation of mass (1.2), it implies \textbf{u}\equiv0 , which contradicts u blowing up in finite time. Hence, Theorem 1.2 has been reduced to Theorem 1.7.
The main result of this section is a long-time Strichartz estimate; since the usual interaction Morawetz estimate is not positive definite in the focusing case, we will rely on long-time Strichartz estimate based on K = \int_IN(t)^{-2}dt.
Theorem 5.1. (Long-time Strichartz estimate) Suppose I is an interval and given above K , then for any l\in\mathbb{Z},
\begin{equation} \Big(\sum\limits_{k\leq l}\|\mathit{\boldsymbol{u}}_k\|^2_{(\dot{S}^1(I\times\mathbb{R}^4))^2}\Big)^{1/2}+2^{2l}\Big\|\sup\limits_{k\geq l}2^{-2k}\|\mathit{\boldsymbol{u}}_k\|_{(L^\infty_x(\mathbb{R}^4))^2}\Big\|_{(L^2_t(I))^2}\lesssim(1+2^{4l}K)^{1/2}. \end{equation} | (5.1) |
Remark: To simplify notation, it is convenient to write \textbf{u}_k instead of P_k\textbf{u}.
Proof. It follows from Theorem 2.7, Strichartz estimate, and Theorem 2.8 that
\begin{equation} \begin{aligned} &2^{4l}\sum\limits_{k\geq l}2^{-4k}\|e^{i(t-t_0)\Delta}\textbf{u}_k(t_0)\|^2_{(L^2_tL^\infty_x(I\times\mathbb{R}^4))^2} \lesssim2^{4l}\sum\limits_{k\geq l}2^{-2k}\|e^{i(t-t_0)\Delta}\textbf{u}_k(t_0)\|^2_{(L^2_tL^4_x(I\times\mathbb{R}^4))^2}\\ &\qquad\lesssim2^{2l}\|\textbf{u}_{\geq l}(t_0)\|^2_{(L^2(\mathbb{R}^4))^2} \lesssim\|\nabla\textbf{u}(t_0)\|^2_{(L^2(\mathbb{R}^4))^2} \lesssim1, \end{aligned} \end{equation} | (5.2) |
and
\begin{equation} \sum\limits_{k\leq l}\| \nabla e^{i(t-t_0)\Delta}\textbf{u}_k(t_0)\|^2_{(L^2_tL^4_x(I\times\mathbb{R}^4))^2} \lesssim\|\nabla\textbf{u}(t_0)\|^2_{(L^2(\mathbb{R}^4))^2}\lesssim1. \end{equation} | (5.3) |
Let
\begin{equation} \begin{aligned} \|\textbf{u}\|_{(Y(I\times\mathbb{R}^4))^2}& = \sup\limits_l2^{2l}(1+2^{4l}K)^{-1/2}\Big\|\sup\limits_{k\geq l}2^{-2k}\|\textbf{u}_l(t)\|_{(L^\infty_x(\mathbb{R}^4))^2}\Big\|_{(L^2_t(I))^2}\\ &\quad +\sup\limits_l(1+2^{4l}K)^{-1/2}\Big(\sum\limits_{k\leq l}2^{2k}\|\textbf{u}_k(t)\|^2_{(L^2_tL^4_x(I\times\mathbb{R}^4))^2}\Big)^{1/2}. \end{aligned} \end{equation} | (5.4) |
Our goal is to use (5.2), (5.3) and the smallness of u away from the scale N(t) to prove an estimate of the form
\begin{equation} \|\textbf{u}\|_{(Y(I\times\mathbb{R}^4))^2}\lesssim1+\eta\|\textbf{u}\|_{(Y(I\times\mathbb{R}^4))^2}. \end{equation} | (5.5) |
To this end, we decompose
\begin{equation} F(\textbf{u}) = F(\textbf{u}_{\geq l})+O(\textbf{u}^2_{\geq l}\textbf{u}_{\leq l})+O(\textbf{u}^2_{\leq l}\textbf{u}_{\geq l})+F(\textbf{u}_{\leq l}). \end{equation} | (5.6) |
By (4.1), it is possible to choose c(\eta) > 0 such that
\begin{equation} \|\textbf{u}_{\leq c(\eta)N(t)}\|_{(L^\infty_t\dot{H}^1_x(\mathbb{R}\times\mathbb{R}^4))^2}\leq\eta. \end{equation} | (5.7) |
Step 1. Estimation for F(\textbf{u}_{\geq l}).
By Bernstein's inequality, we obtain
\begin{equation} \begin{split} &\|P_{\leq cN(t)}\textbf{u}_{\geq l}\|^3_{(L^6_tL^3_x(I\times\mathbb{R}^4))^2}\\ &\lesssim\Big\|\sum\limits_{l\leq k_1\leq k_2\leq k_3}\|P_{\leq cN(t)}\textbf{u}_{k_1}\|_{(L^\infty_x(\mathbb{R}^4))^2}\|P_{\leq cN(t)}\textbf{u}_{k_2}\|_{(L^2_x(\mathbb{R}^4))^2}\|P_{\leq cN(t)}\textbf{u}_{k_3}\|_{(L^2_x(\mathbb{R}^4))^2}\Big\|_{(L^2_t(I))^2}\\ &\lesssim\|P_{\leq cN(t)}\textbf{u}\|^2_{(L^\infty_t\dot{H}^1_x(\mathbb{R}\times\mathbb{R}^4))^2}\Big\|\sup\limits_{k\geq l}2^{-2k}\|\textbf{u}_k\|_{(L^\infty_x(\mathbb{R}^4))^2}\Big\|_{(L^2_t(I))^2}\\ &\lesssim\eta^22^{-2l}(1+2^{4l}K)^{1/2}\|\textbf{u}\|_{(Y(I\times\mathbb{R}^4))^2}, \end{split} \end{equation} | (5.8) |
and
\begin{equation} \begin{split} \|P_{\geq cN(t)}\textbf{u}\|^3_{(L^6_tL^3_x(I\times\mathbb{R}^4))^2}&\lesssim\Big(\int_I\|\textbf{u}_{\geq cN(t)}\|^2_{(L^2_x(\mathbb{R}^4))^2}\|\textbf{u}\|^4_{(L^4_x(\mathbb{R}^4))^2}dt\Big)^{1/2}\\ &\lesssim\|\textbf{u}\|^4_{(L^\infty_t\dot{H}^1_x(\mathbb{R}\times\mathbb{R}^4))^2} \Big(\int_Ic^{-2}N(t)^{-2}dt\Big)^{1/2}\\ &\lesssim c^{-1}K^{1/2}. \end{split} \end{equation} | (5.9) |
Then, combining (5.8) with (5.9), we see that
\begin{equation} \|\textbf{u}^3_{\geq l}\|_{(L^2_tL^1_x(I\times\mathbb{R}^4))^2}\lesssim\eta^22^{-2l}(1+2^{4l}K)^{1/2} \|\textbf{u}\|_{(Y(I\times\mathbb{R}^4))^2}+c^{-1}K^{1/2}. \end{equation} | (5.10) |
It follows from Theorem 2.9 and (5.10) that
\begin{equation} \begin{split} &\Big\|\sup\limits_{k\geq l}2^{-2k}\|P_k\int_{t_0}^te^{i(t-\tau)\Delta}F(\textbf{u}_{\geq l})d\tau\|_{(L^\infty_x(\mathbb{R}^4))^2}\Big\|_{(L^2_t(I))^2} \lesssim\|\textbf{u}^3_{\geq l}\|_{(L^2_tL^1_x(I\times\mathbb{R}^4))^2}\\ &\qquad\lesssim\eta^22^{-2l}(1+2^{4l}K)^{1/2} \|\textbf{u}\|_{(Y(I\times\mathbb{R}^4))^2}+c^{-1}K^{1/2}. \end{split} \end{equation} | (5.11) |
Therefore,
\begin{equation} \begin{split} &\Big(\sum\limits_{k\leq l}2^{2k}\|P_k\int_{t_0}^te^{i(t-\tau)\Delta}F(\textbf{u}_{\geq l})d\tau\|^2_{(L^2_tL^4_x(I\times\mathbb{R}^4))^2}\Big)^{1/2}\\ &\lesssim\Big(\sum\limits_{k\leq l}2^{4k}\Big)^{1/2}\|\textbf{u}^3_{\geq l}\|_{(L^2_tL^1_x(I\times\mathbb{R}^4))^2}\\ &\lesssim\eta^2(1+2^{4l}K)^{1/2} \|\textbf{u}\|_{(Y(I\times\mathbb{R}^4))^2}+c^{-1}K^{1/2}2^{2l}. \end{split} \end{equation} | (5.12) |
Step 2. Estimation for O(\textbf{u}^2_{\geq l}\textbf{u}_{\leq l}) .
By Sobolev embedding theorem, Littlewood-Paley theorem, and interpolation, then,
\begin{equation} \begin{split} \|\textbf{u}_{\leq l}\|_{(L^6_{t,x}(I\times\mathbb{R}^4))^2}&\lesssim\|\nabla \textbf{u}_{\leq l}\|_{(L^6_tL^{12/5}_x(I\times\mathbb{R}^4))^2}\\ &\lesssim \|\nabla \textbf{u}_{\leq l}\|^{2/3}_{(L^\infty_tL^2_x(I\times\mathbb{R}^4))^2} \Big(\sum\limits_{k\leq l}2^{2k}\|\textbf{u}_k\|^2_{(L^2_tL^4_x(I\times\mathbb{R}^4))^2}\Big)^{1/6}\\ &\lesssim(1+2^{4l}K)^{1/6} \|\textbf{u}\|^{1/3}_{(Y(I\times\mathbb{R}^4))^2}. \end{split} \end{equation} | (5.13) |
By Hölder's inequality, Theorem 2.7, (5.10), and (5.13), one has
\begin{equation} \begin{split} &\|\textbf{u}^2_{\geq l}\textbf{u}_{\leq l}\|_{(L^2_tL^{4/3}_x(I\times\mathbb{R}^4))^2}\lesssim\|\textbf{u}_{\geq l}\|^2_{(L^6_tL^3_x(I\times\mathbb{R}^4))^2}\|\textbf{u}_{\leq l}\|_{(L^6_tL^{12}_x(I\times\mathbb{R}^4))^2}\\ &\lesssim2^{l/3}\|\textbf{u}_{\geq l}\|^2_{(L^6_tL^3_x(I\times\mathbb{R}^4))^2}\|\textbf{u}_{\leq l}\|_{(L^6_{t,x}(I\times\mathbb{R}^4))^2}\\ &\lesssim2^{l/3}\Big(\eta^22^{-2l}(1+2^{4l}K)^{1/2} \|\textbf{u}\|_{(Y(I\times\mathbb{R}^4))^2}+c^{-1}K^{1/2}\Big)^{2/3}(1+2^{4l}K)^{1/6} \|\textbf{u}\|^{1/3}_{(Y(I\times\mathbb{R}^4))^2}. \end{split} \end{equation} | (5.14) |
Theorem 2.7, Strichartz estimate, and (5.14) imply
\begin{equation} \begin{split} &\Big\|\sup\limits_{k\geq l}2^{-2k}\|P_k\int_{t_0}^te^{i(t-\tau)\Delta}O(\textbf{u}^2_{\geq l}\textbf{u}_{\leq l})d\tau\|_{(L^\infty_x(\mathbb{R}^4))^2}\Big\|_{(L^2_t(I))^2}\\ &\lesssim2^{-l}\Big\|\int_{t_0}^te^{i(t-\tau)\Delta}O(\textbf{u}^2_{\geq l}\textbf{u}_{\leq l})d\tau\Big\|_{(L^2_tL^4_x(I\times\mathbb{R}^4))^2}\\ &\lesssim2^{-l}\|\textbf{u}^2_{\geq l}\textbf{u}_{\leq l}\|_{(L^2_tL^{4/3}_x(I\times\mathbb{R}^4))^2}\\ &\lesssim2^{-2l/3}\Big(\eta^22^{-2l}(1+2^{4l}K)^{1/2} \|\textbf{u}\|_{(Y(I\times\mathbb{R}^4))^2}+c^{-1}K^{1/2}\Big)^{2/3}(1+2^{4l}K)^{1/6} \|\textbf{u}\|^{1/3}_{(Y(I\times\mathbb{R}^4))^2}\\ &\lesssim2^{-2l}\eta^{4/3}(1+2^{4l}K)^{1/2}\|\textbf{u}\|_{(Y(I\times\mathbb{R}^4))^2} +2^{-2l/3}c^{-2/3}K^{1/3}(1+2^{4l}K)^{1/6}\|\textbf{u}\|^{1/3}_{(Y(I\times\mathbb{R}^4))^2}. \end{split} \end{equation} | (5.15) |
It follows from Strichartz estimate and (5.15) that
\begin{equation} \begin{split} &\Big(\sum\limits_{k\leq l}2^{2k}\|P_k\int_{t_0}^te^{i(t-\tau)\Delta}O(\textbf{u}^2_{\geq l}\textbf{u}_{\leq l})d\tau\|^2_{(L^2_tL^4_x(I\times\mathbb{R}^4))^2}\Big)^{1/2}\lesssim2^l\|\textbf{u}^2_{\geq l}\textbf{u}_{\leq l}\|_{(L^2_tL^{4/3}_x(I\times\mathbb{R}^4))^2}\\ &\lesssim\eta^{4/3}(1+2^{4l}K)^{1/2}\|\textbf{u}\|_{(Y(I\times\mathbb{R}^4))^2} +2^{4l/3}c^{-2/3}K^{1/3}(1+2^{4l}K)^{1/6}\|\textbf{u}\|^{1/3}_{(Y(I\times\mathbb{R}^4))^2}. \end{split} \end{equation} | (5.16) |
Step 3. Estimation for F(\textbf{u}_{\leq l}) .
By Hölder's inequality, Sobolev embedding theorem, and (4.1), one has
\begin{equation} \begin{split} \Big\|(P_{\leq cN(t)}\textbf{u}_{\leq l})\Big\|^2_{(L^2_tL^4_x(I\times\mathbb{R}^4))^2} &\lesssim\|\textbf{u}_{\leq l}\|_{(L^2_tL^\infty_x(I\times\mathbb{R}^4))^2}\|\textbf{u}_{\leq cN(t)}\|_{(L^\infty_tL^4_x(I\times\mathbb{R}^4))^2}\\ &\lesssim\|\nabla \textbf{u}_{\leq l}\|_{(L^2_tL^4_x(I\times\mathbb{R}^4))^2}\|\textbf{u}_{\leq cN(t)}\|_{(L^\infty_tL^4_x(I\times\mathbb{R}^4))^2}\\ &\lesssim\eta(1+2^{4l}K)^{1/2}\|\textbf{u}\|_{(Y(I\times\mathbb{R}^4))^2}. \end{split} \end{equation} | (5.17) |
Bernstein's inequality and Sobolev embedding theorem yield
\begin{equation} \begin{split} \Big\|(P_{\geq cN(t)}\textbf{u}_{\leq l})\Big\|^2_{(L^2_tL^4_x(I\times\mathbb{R}^4))^2} &\lesssim2^l\Big(\int_I\|\textbf{u}_{ > cN(t)}\|^2_{(L^2_x(\mathbb{R}^4))^2}\|\textbf{u}_{\leq l}\|^2_{(L^\infty_x(\mathbb{R}^4))^2}dt\Big)^{1/2}\\ &\lesssim c^{-1}K^{1/2}2^{2l}. \end{split} \end{equation} | (5.18) |
Then, combining (5.17) with (5.18), we obtain
\begin{equation} \|\textbf{u}^2_{\leq l}\|_{(L^1_tL^2_x(I\times\mathbb{R}^4))^2}\lesssim\eta(1+2^{4l}K)^{1/2}\|\textbf{u}\|_{(Y(I\times\mathbb{R}^4))^2} +c^{-1}K^{1/2}2^{2l}. \end{equation} | (5.19) |
It follows from Theorem 2.9 and (5.19) that
\begin{equation} \nonumber \begin{split} &\Big\|\sup\limits_{k\geq l}2^{-2k}\|P_k\int_{t_0}^te^{i(t-\tau)\Delta}F(\textbf{u}_{\leq l})d\tau\|_{(L^\infty_x(\mathbb{R}^4))^2}\Big\|_{(L^2_t(I))^2} \lesssim\|\textbf{u}^2_{\leq l}\|_{(L^1_tL^2_x(I\times\mathbb{R}^4))^2}\\ &\qquad\lesssim\eta(1+2^{4l}K)^{1/2}\|\textbf{u}\|_{(Y(I\times\mathbb{R}^4))^2}+ c^{-1}K^{1/2}2^{2l}. \end{split} \end{equation} |
Therefore,
\begin{equation} \begin{split} &\Big(\sum\limits_{k\leq l}2^{2k}\|P_k\int_{t_0}^te^{i(t-\tau)\Delta}F(\textbf{u}_{\leq l})d\tau\|^2_{(L^2_tL^4_x(I\times\mathbb{R}^4))^2}\Big)^{1/2}\\ &\lesssim\Big(\sum\limits_{k\leq l}2^{4k}\Big)^{1/2}\|\textbf{u}^2_{\leq l}\|_{(L^1_tL^2_x(I\times\mathbb{R}^4))^2}\\ &\lesssim 2^{2l}\eta(1+2^{4l}K)^{1/2}\|\textbf{u}\|_{(Y(I\times\mathbb{R}^4))^2}+ c^{-1}K^{1/2}2^{4l}. \end{split} \end{equation} | (5.20) |
Step 4. Estimation for O(\textbf{u}^2_{\leq l}\textbf{u}_{\geq l}) .
Using (5.17) and (5.18), then,
\begin{equation} \begin{split} &\Big\|\nabla O(\textbf{u}^2_{\leq l}\textbf{u}_{ > l})\Big\|_{(L^2_tL^{4/3}_x(I\times\mathbb{R}^4))^2}+\|\nabla \textbf{u}^3_{\leq l}\|_{(L^2_tL^{4/3}_x(I\times\mathbb{R}^4))^2}\\ &\lesssim\|\nabla \textbf{u}\|_{(L^\infty_tL^2_x(I\times\mathbb{R}^4))^2}\|\textbf{u}^2_{\leq l}\|_{(L^1_tL^2_x(I\times\mathbb{R}^4))^2}\\ &\lesssim c^{-1}K^{1/2}2^{2l}+\eta(1+2^{4l}K)^{1/2}\|\textbf{u}\|_{(Y(I\times\mathbb{R}^4))^2}. \end{split} \end{equation} | (5.21) |
Therefore, we see that
\begin{equation} \begin{split} &\Big(\sum\limits_{k\leq l}2^{2k}\|P_k\int_{t_0}^te^{i(t-\tau)\Delta}O(\textbf{u}^2_{\leq l}\textbf{u}_{ > l})d\tau\|^2_{(L^2_tL^4_x(I\times\mathbb{R}^4))^2}\Big)^{1/2}\\ &\lesssim c^{-1}K^{1/2}2^{2l}+\eta(1+2^{4l}K)^{1/2}\|\textbf{u}\|_{(Y(I\times\mathbb{R}^4))^2}, \end{split} \end{equation} | (5.22) |
Using Sobolev embedding theorem, Bernstein's inequality, Strichartz estimate, and (5.22), we get
\begin{equation} \begin{split} &\Big\|\sup\limits_{k\geq l}2^{-2k}\|P_k\int_{t_0}^te^{i(t-\tau)\Delta}O(\textbf{u}^2_{\leq l}\textbf{u}_{ > l})d\tau\|_{(L^\infty_x(\mathbb{R}^4))^2}\Big\|_{(L^2_t(I))^2}\\ &\lesssim2^{-2l}\Big\|\nabla\int_{t_0}^te^{i(t-\tau)\Delta}O(\textbf{u}^2_{\leq l}\textbf{u}_{ > l})d\tau\Big\|_{(L^2_tL^4_x(I\times\mathbb{R}^4))^2}\\ &\lesssim c^{-1}K^{1/2}+2^{-2l}\eta(1+2^{4l}K)^{1/2}\|\textbf{u}\|_{(Y(I\times\mathbb{R}^4))^2}. \end{split} \end{equation} | (5.23) |
Combining (5.2), (5.3), (5.11), (5.15), (5.16), (5.12), (5.22), and (5.23), it is obvious to get
\|\textbf{u}\|_{(Y(I\times\mathbb{R}^4))^2}\lesssim c(\eta)^{-1}+\eta\|\textbf{u}\|_{(Y(I\times\mathbb{R}^4))^2}. |
By choosing \eta > 0 sufficiently small, Theorem 5.1 is proved.
Remark 5.2. By Theorem 2.9 and above analysis, we have also proved
\begin{equation} 2^{2l}\Big\|\sup\limits_{k\geq l}2^{-4k/3}\|\textbf{u}_k\|_{(L^6_x(\mathbb{R}^4))^2}\Big\|_{(L^2_t(I))^2}\lesssim(1+2^{4l}K)^{1/2}, \end{equation} | (5.24) |
and this result will be applied later.
In this section, we prove the main results by considering the following two cases.
Case 1: K = \int_\mathbb{R}N(t)^{-2}dt < \infty.
Case 2: K = \int_\mathbb{R}N(t)^{-2}dt = \infty.
First, let us prove the nonexistence of almost periodic solution for system (1.1) under Case 1. The following theorem is obtained.
Theorem 6.1. There is no almost periodic solution for system (1.1) satisfying K = \int_\mathbb{R}N(t)^{-2}dt < \infty in Theorem 4.1 .
Proof. By (4.1), for any \eta > 0 , there exists l_0(\eta) such that
\|P_{\leq l_0}\textbf{u}(t)\|_{(L^\infty_t\dot H^1_x(\mathbb{R}\times\mathbb{R}^4))^2}\leq \eta. |
Let k_0 be the integer such that 2^{k_0}\leq K^{-1/4}\leq 2^{k_0+1} , by Duhamel formula, for l\leq k_0 and t\in[-T, T], then,
\nabla P_{\leq l} \textbf{u}(t) = \nabla P_{\leq l} \textbf{u}(-T)-i\nabla P_{\leq l}\displaystyle{\int}_{-T}^te^{i(t-\tau)\Delta}F(\textbf{u}(\tau))d\tau. |
For l\leq{l_0(\eta)} and k_0 ,
\begin{equation} \Big\|\nabla F(\textbf{u}_{\leq l})\Big\|_{(L^2_tL^{4/3}_x([-T,T]\times\mathbb{R}^4))^2} \lesssim\eta^2\|\nabla\textbf{u}_{\leq l}\|_{(L^2_tL^4_x([-T,T]\times\mathbb{R}^4))^2}. \end{equation} | (6.1) |
Exploiting Theorem 2.7 and Hölder's inequality, we derive
\begin{equation} \begin{split} &\Big\|\nabla P_{\leq l}O(\textbf{u}^2_{\leq l}\textbf{u}_{l\leq\cdot\leq k_0})\Big\|_{(L^2_tL^{4/3}_x([-T,T]\times\mathbb{R}^4))^2} \lesssim2^l\Big\|\nabla P_{\leq l}O(\textbf{u}^2_{\leq l}\textbf{u}_{l\leq\cdot\leq k_0})\Big\|_{(L^2_tL^1_x([-T,T]\times\mathbb{R}^4))^2}\\ &\lesssim2^l\|\textbf{u}_{l\leq\cdot\leq k_0}\|_{(L^\infty_tL^2_x(\mathbb{R}\times\mathbb{R}^4))^2}\|\nabla\textbf{u}_{\leq l}\|_{(L^2_tL^4_x([-T,T]\times\mathbb{R}^4))^2}\|\nabla\textbf{u}_{\leq l}\|_{(L^\infty_tL^2_x(\mathbb{R}\times\mathbb{R}^4))^2}\\ &\lesssim\eta\|\nabla\textbf{u}_{\leq l}\|_{(L^2_tL^4_x(I\times\mathbb{R}^4))^2}. \end{split} \end{equation} | (6.2) |
It follows from Bernstein's inequality and Theorem 2.7 that
\begin{equation} \begin{split} &\Big\|\nabla P_{\leq l}O(\textbf{u}^2_{l\leq\cdot\leq k_0}\textbf{u})\Big\|_{(L^2_tL^{4/3}_x([-T,T]\times\mathbb{R}^4))^2}\lesssim2^{2l} \Big\|\nabla P_{\leq l}O(\textbf{u}^2_{l\leq\cdot\leq k_0}\textbf{u})\Big\|_{(L^2_tL^{4/5}_x([-T,T]\times\mathbb{R}^4))^2}\\ &\lesssim2^{2l}\sum\limits_{l\leq k_1\leq k_2\leq k_3}\|\textbf{u}_{k_1}\|_{(L^2_tL^4_x([-T,T]\times\mathbb{R}^4))^2} \|\textbf{u}_{k_2}\|_{(L^\infty_tL^2_x([-T,T]\times\mathbb{R}^4))^2} \|\textbf{u}_{k_3}\|_{(L^\infty_tL^4_x([-T,T]\times\mathbb{R}^4))^2}\\ &\lesssim\Big(\sum\limits_{l\leq m\leq k_0}2^{l-m}\|\textbf{u}_m\|_{(\dot{S}^1([-T,T]\times\mathbb{R}^4))^2}\Big) \Big(\sum\limits_{l\leq m\leq k_0}2^{l-m}\|\textbf{u}_m\|_{(L^\infty_t\dot{H}^1([-T,T]\times\mathbb{R}^4))^2}\Big). \end{split} \end{equation} | (6.3) |
Combining (4.1) with (6.1)–(6.3), obviously,
\begin{equation} \begin{split} &\Big\|\nabla P_{\leq l}F(\textbf{u}_{\leq k_0})\Big\|_{(L^2_tL^{4/3}_x([-T,T]\times\mathbb{R}^4))^2}\lesssim\eta\|\textbf{u}_{\leq l}\|_{(\dot{S}^1([-T,T]\times\mathbb{R}^4))^2}\\ &\quad +\Big(\sum\limits_{l\leq m\leq k_0}2^{l-m}\|\textbf{u}_m\|_{(\dot{S}^1([-T,T]\times\mathbb{R}^4))^2}\Big) \Big(\sum\limits_{l\leq m\leq k_0}2^{l-m}\|\textbf{u}_m\|_{(L^\infty_t\dot{H}^1([-T,T]\times\mathbb{R}^4))^2}\Big). \end{split} \end{equation} | (6.4) |
Using Sobolev embedding theorem, Bernstein's inequality, Strichartz estimate, (4.1), and Theorem 5.1, then,
\begin{equation} \begin{split} &\Big\|\nabla P_{\leq l}\Big[F(\textbf{u})-F(\textbf{u}_{\leq k_0})\Big]\Big\|_{(L^2_tL^{4/3}_x([-T,T]\times\mathbb{R}^4))^2} \lesssim2^l\|\textbf{u}^3_{\geq k_0}\|_{(L^2_tL^1_x([-T,T]\times\mathbb{R}^4))^2}\\ &+2^l\|\textbf{u}_{l\leq\cdot\leq k_0}\|^2_{(L^4_tL^8_x([-T,T]\times\mathbb{R}^4))^2}\|\textbf{u}_{ > k_0}\|_{(L^\infty_tL^2_x([-T,T]\times\mathbb{R}^4))^2}\\ &+2^l\|\nabla \textbf{u}_{\leq l}\|_{(L^2_tL^4_x([-T,T]\times\mathbb{R}^4))^2} \|\textbf{u}_{\leq l}\|_{(L^\infty_t\dot{H}^1_x([-T,T]\times\mathbb{R}^4))^2}\|\textbf{u}_{ > k_0}\|_{(L^\infty_tL^2_x([-T,T]\times\mathbb{R}^4))^2}\\ &\lesssim2^{2l}K^{1/2}+2^{l-k_0}\Big(\sum\limits_{l\leq m\leq k_0}2^{l-m}\|\nabla \textbf{u}_m\|_{(L^2_tL^4_x([-T,T]\times\mathbb{R}^4))^2}\Big)+2^{l-k_0}\eta\|\nabla \textbf{u}_{\leq l}\|_{(L^2_tL^4_x([-T,T]\times\mathbb{R}^4))^2}. \end{split} \end{equation} | (6.5) |
Therefore, we see that
\begin{equation} \begin{split} &\|\textbf{u}_{\leq l}\|_{(\dot{S}^1([-T,T]\times\mathbb{R}^4))^2}\lesssim\Big\|\nabla P_{\leq l}\textbf{u}(-T)\Big\|_{(L^2_x(\mathbb{R}^4))^2}+\eta\|\textbf{u}_{\leq l}\|_{(\dot{S}^1([-T,T]\times\mathbb{R}^4))^2}\\ &+\Big(\sum\limits_{l\leq m\leq k_0}2^{l-m}\|\textbf{u}_{\leq m}\|_{(\dot{S}^1([-T,T]\times\mathbb{R}^4))^2}\Big) \Big(\sum\limits_{m\geq l}2^{l-m}\|\nabla\textbf{u}_m\|_{(L^\infty_tL^2_x([-T,T]\times\mathbb{R}^4))^2}\Big) +2^{2l}K^{1/2}. \end{split} \end{equation} | (6.6) |
It follows from (4.1) that
\sum\limits_{l\leq m}\|\textbf{u}_l\|_{(L^\infty_t\dot{H}^1_x([-T,T]\times\mathbb{R}^4))^2}\lesssim\eta+ 2^{l-l_0(\eta)}. |
Since K = \int_\mathbb{R}N(t)^{-2}dt < \infty, N(-T)\rightarrow +\infty as T\rightarrow +\infty, for any l ,
\begin{equation} \inf\limits_T\Big\|\nabla P_{\leq l}\textbf{u}(-T)\Big\|_{(L^2_x(\mathbb{R}^4))^2} = 0. \end{equation} | (6.7) |
Let \alpha_l = \|\textbf{u}_{\leq l}\|_{(\dot{S}^1([-T, T]\times\mathbb{R}^4))^2} , by Theorem 5.1, we have
\|\textbf{u}_{\leq k_0}\|_{(\dot{S}^1([-T,T]\times\mathbb{R}^4))^2}\lesssim1 |
uniformly in T , then by (6.6) and (6.7),
\begin{equation} \alpha_l\lesssim\eta\sum\limits_{l\leq m\leq k_0}2^{l-m}\alpha_l+2^{2l}K^{1/2}+2^{l-l_0}. \end{equation} | (6.8) |
Let \beta_m = \sum_{m\leq l\leq k_0}2^{3(m-l)/4}\alpha_l , clearly \beta_m\leq\alpha_m for any m , then by (6.8), we can deduce \beta_m\lesssim K^{1/2}2^{3m/4} . Plugging \|\textbf{u}_{\leq l}\|_{(\dot{S}^1(\mathbb{R}\times\mathbb{R}^4))^2}\lesssim2^{3l/4} for l\le k_0 back into (6.6),
\|\textbf{u}_{\leq l}\|_{(\dot{S}^1(\mathbb{R}\times\mathbb{R}^4))^2}\lesssim2^{3l/2}K. |
In particular, this means that
\begin{equation} \|\textbf{u}\|_{(H^{-1/4}(\mathbb{R}^4))^2}\lesssim K. \end{equation} | (6.9) |
By Bernstein's inequality, interpolation, (4.1), and (6.9), for any \eta > 0 , then
\begin{equation} \begin{split} \|\textbf{u}\|_{(L^2(\mathbb{R}^4))^2}&\lesssim\|P_{\leq N(t)/C(\eta)}\textbf{u}\|^{4/5}_{(H^{-1/4}(\mathbb{R}^4))^2} \|P_{\leq N(t)/C(\eta)}\textbf{u}\|^{1/5}_{(\dot{H}^1(\mathbb{R}^4))^2}+ \|P_{\geq N(t)/C(\eta)}\textbf{u}\|_{(L^2(\mathbb{R}^4))^2}\\ &\lesssim K^{2/3}\eta^{1/5}+\frac{C(\eta)}{N(t)}. \end{split} \end{equation} | (6.10) |
Since N(t)\rightarrow +\infty as t\rightarrow +\infty , there exists \eta(t)\rightarrow0 such that (6.10) implies
\|\textbf{u}\|_{(L^2_x(\mathbb{R}^4))^2}\rightarrow0. |
Therefore, conservation of mass (1.2) implies \textbf{u}\equiv0.
In what follows, let us illustrate the nonexistence of almost periodic solution for system (1.1) under Case 2. The following theorem is obtained.
Theorem 6.2. If \mathit{\boldsymbol{u}} is an almost periodic solution to system (1.1) with K = \int_\mathbb{R}N(t)^{-2}dt = \infty in Theorem 4.1 , then \mathit{\boldsymbol{u}}\equiv0.
To prove the Theorem 6.2, we first need the following theorems and lemmas.
Theorem 6.3. If \mathit{\boldsymbol{u}} is an almost periodic solution to system (1.1) satisfying N(t)\geq1 on \mathbb{R} , then
\|\mathit{\boldsymbol{u}}(t)\|_{(L^\infty_tL^3_x(\mathbb{R}\times\mathbb{R}^4))^2} < \infty. |
Proof. See Dodson [11]. It will turn out that the proof for the single case works with a slight modification, so we omit the proof.
Next, we prove that in a general sense, the L^2 -norm of an almost periodic solution satisfy \int_\mathbb{R}N(t)^{-2}dt = \infty logarithmic divergence.
Lemma 6.4. Suppose \psi\in C^\infty_0(\mathbb{R}^4) is a positive, radial, decreasing function,
\begin{equation} \psi(x) = \left\{ \begin{array}{rcl} 1 & & {|x|\leq1},\\ 0 & & {|x|\geq2}. \end{array} \right. \end{equation} | (6.11) |
If K = \int_IN(t)^{-2}dt , then for any 1\leq R\leq K^{1/5},
\begin{equation} \displaystyle{\int}_I\displaystyle{\iint}_{\mathbb{R}^4\times\mathbb{R}^4}|\textbf{u}(t,y)|^2\psi\Big(\frac{N(t)(x-y)}{R}\Big)\Big[|\nabla \textbf{u}(t,x)|^2+|\textbf{u}(t,x)|^4\Big]dxdydt\lesssim K\Big(1+\ln R\Big). \end{equation} | (6.12) |
Proof. The proof is similar to a single case, so we omit its proof; interested readers should consult Colliander et al. [5] or Killip, Visan [19].
Now, we consider the case when N(t)\equiv1.
Theorem 6.5. If \mathit{\boldsymbol{u}} is an almost periodic solution for system (1.1) satisfying N(t)\equiv1 on \mathbb{R} , and \|\mathit{\boldsymbol{u}}\|_{(L^\infty_t\dot{H}^1(\mathbb{R}\times\mathbb{R}^4))^2} < \|\nabla \mathit{\boldsymbol{W}}\|_{(L^2_x(\mathbb{R}^4))^2} , then \mathit{\boldsymbol{u}}\equiv0.
Proof. Set \psi\in C^\infty_0(\mathbb{R}^4) as a radial function satisfying (6.11) and J a large number such that e^J\leq K^{1/10}, then let
\phi(x-y) = \frac{1}{J}\displaystyle{\int}_1^{e^J}\frac{1}{R}\displaystyle{\int}_{\mathbb{R}^4}\psi^2\Big(\frac{x}{R}-s\Big) \psi^2\Big(\frac{y}{R}-s\Big)dsdR = \frac{1}{J}\displaystyle{\int}_1^{e^J}\frac{1}{R}\displaystyle{\int}_{\mathbb{R}^4}\psi^2\Big(\frac{x-y}{R}-s\Big) \psi^2(s)dsdR. |
We notice that \psi(s) = 0 for |s|\geq 2 , so \phi(x-y) is supported on |x-y|\leq4e^J and that \|\phi\|_{L^\infty} is uniformly bounded.
Next, we need to estimate the derivatives of \phi . Let us illustrate for k = 1, 2, 3,
\begin{equation} |\nabla^k\phi(x)|\lesssim\frac{1}{J}\frac{1}{|x|^k}. \end{equation} | (6.13) |
In fact, since \psi(s) = 0 for |s|\geq2,
\begin{equation} \nonumber \begin{split} \nabla \phi(x) & = \frac{2}{J}\iint_1^{e^J}\frac{1}{R^2}\psi\Big(\frac{x}{R}-s\Big) \psi'\Big(\frac{x}{R}-s\Big)\psi^2(s)\frac{(\frac{x}{R}-s)}{|\frac{x}{R}-s|}dsdR\\ & = \frac{2}{J}\int_{\frac{|x|}{4}}^{e^J}\int\frac{1}{R^2}\psi\Big(\frac{x}{R}-s\Big) \psi'\Big(\frac{x}{R}-s\Big)\psi^2(s)\frac{(\frac{x}{R}-s)}{|\frac{x}{R}-s|}dsdR \lesssim\frac{1}{J}\frac{1}{|x|}. \end{split} \end{equation} |
For k = 2, 3, we can obtain by similar computation that \nabla^2\phi(x)\lesssim \frac{1}{J}\frac{1}{|x|^2}, \nabla^3\phi(x)\lesssim\frac{1}{J}\frac{1}{|x|^3}.
Define the interaction Morawetz action
M(t): = \displaystyle{\iint}_{\mathbb{R}^4\times\mathbb{R}^4}|\textbf{u}(t,y)|^2\phi(x-y)(x-y)\cdot \mathrm{Im}[\overline{\textbf{u}}\nabla \textbf{u}](t,x)dxdy. |
By Hölder's inequality, Sobolev embedding theorem, and Young's inequality, then
\begin{equation} \sup|M(t)|\lesssim\|\textbf{u}\|^3_{(L^\infty_tL^4_x(I\times\mathbb{R}^4))^2} \|\nabla\textbf{u}\|_{(L^\infty_tL^2_x(I\times\mathbb{R}^4))^2} \|(x-y)\phi(x-y)\|_{L^{4/3}(\mathbb{R}^4)}\lesssim e^{4J}. \end{equation} | (6.14) |
Integrating by parts, we obtain
\begin{align} M'(t)& = 2\iint_{\mathbb{R}^4\times\mathbb{R}^4}|\textbf{u}(t,y)|^2\phi(x-y)\Big[|\nabla \textbf{u}(t,x)|^2-|\textbf{u}(t,x)|^4\Big]dxdy \end{align} | (6.15) |
\begin{align} &-2\iint_{\mathbb{R}^4\times\mathbb{R}^4}\mathrm{Im}[\overline{\textbf{u}} \partial_l\textbf{u}](t,y)\phi(x-y)\mathrm{Im}[\overline{\textbf{u}} \partial_l\textbf{u}](t,x)dxdy \end{align} | (6.16) |
\begin{align} &+2\iint_{\mathbb{R}^4\times\mathbb{R}^4}|\textbf{u}(t,y)|^2(\partial_k\phi(x-y))(x-y)_l \Big[\mathrm{Re}(\partial_l\overline{\textbf{u}}\partial_k \textbf{u})(t,x)-\frac{1}{4}\delta_{lk}|\textbf{u}(t,x)|^4\Big]dxdy \end{align} | (6.17) |
\begin{align} &-2\iint_{\mathbb{R}^4\times\mathbb{R}^4}\mathrm{Im}[\overline{\textbf{u}} \partial_k\textbf{u}](t,y)(\partial_k\phi(x-y))(x-y)_l\mathrm{Im}[\overline{\textbf{u}} \partial_l\textbf{u}](t,x)dxdy \end{align} | (6.18) |
\begin{align} &-\frac{1}{2}\iint_{\mathbb{R}^4\times\mathbb{R}^4}|\textbf{u}(t,x)|^2\Big(\partial_l\Delta\phi(x-y)(x-y)_l\Big) |\textbf{u}(t,y)|^2dxdy. \end{align} | (6.19) |
Recall (6.12) and (6.13), then
\begin{equation} \begin{split} \int_I(6.18)+(6.19)dt &\lesssim\frac{1}{J}\int_I\int_{|x-y|\leq4e^J}\int_{|x-x(t)|\geq C(\eta)}|\textbf{u}(t,y)|^2\Big[|\nabla\textbf{u}(t,x)|^2+|\textbf{u}(t,x)|^4\Big]dxdydt\\ &+\frac{1}{J}\int_I\int_{|x-y|\leq4e^J}\int_{|x-x(t)|\leq C(\eta)}|\textbf{u}(t,y)|^2\Big[|\nabla\textbf{u}(t,x)|^2+|\textbf{u}(t,x)|^4\Big]dxdydt\\ &\lesssim\frac{\eta}{J}\Big(\int_I\sup\int_{|x-y|\leq4e^J}|\textbf{u}(t,y)|^2dydt\Big) +\frac{1}{J}\int_I\int_{|x-x(t)|\leq8e^J}|\textbf{u}(t,x)|^2dxdt\\ &\lesssim \eta K+\frac{1}{J}\int_I\int_{|x-x(t)|\leq8e^J}|\textbf{u}(t,x)|^2dxdt. \end{split} \end{equation} | (6.20) |
If (6.20) provides a bound on \int_I\int_{|x-x(t)|\leq4e^J}|\textbf{u}(t, x)|^2dxdt , then by (6.12), we see that
\begin{equation} \displaystyle{\int}_I\displaystyle{\int}_{|x-x(t)|\leq e^{J/2}}|\textbf{u}(t,x)|^2dxdt\lesssim K = \displaystyle{\int}_IN(t)^{-2}dt. \end{equation} | (6.21) |
Substituting (6.21) into (6.20), this implies that the left-hand side of (6.21) \ll K , which by (4.1) and Bernstein's inequality forces \textbf{u}\equiv0 .
Next, we will utilize (6.13) to estimate (6.19), that is
\begin{equation} \nonumber \begin{split} \int_I(6.19)dt &\lesssim\frac{1}{J}\int_I\iint_{|x-y|\leq4e^J}|\textbf{u}(t,x)|^2 \frac{1}{|x-y|^2}|\textbf{u}(t,y)|^2dxdydt\\ &\lesssim\frac{1}{J}\int_I\iint_{|x-y|\leq4e^J}|P_h \textbf{u}_{\geq c(\eta)}(t,x)|^2\frac{1}{|x-y|^2}|\textbf{u}_h(t,y)|^2dxdydt\\ &\quad+\frac{1}{J}\int_I\iint_{|x-y|\leq4e^J}|P_h \textbf{u}_{\leq c(\eta)}(t,x)|^2\frac{1}{|x-y|^2}|\textbf{u}_h(t,y)|^2dxdydt\\ &\quad+\frac{1}{J}\int_I\iint_{|x-y|\leq4e^J}|\textbf{u}_m(t,x)|^2 \frac{1}{|x-y|^2}|\textbf{u}_m(t,y)|^2dxdydt, \end{split} \end{equation} |
where P_h = P_{\geq K^{-1/4}} and P_m = 1-P_h.
By Bernstein's inequality and Hardy's inequality, since N(t)\equiv1,
\begin{equation} \begin{split} &\frac{1}{J}\int_I\iint_{|x-y|\leq4e^J}|P_h \textbf{u}_{\geq c(\eta)}(t,x)|^2\frac{1}{|x-y|^2}|\textbf{u}_h(t,y)|^2dxdydt\\ &\lesssim\frac{1}{J}\int_I\|\textbf{u}_{\geq c(\eta)}(t)\|^2_{(L^2(\mathbb{R}^4))^2}\Big(\sup\int\frac{1}{|x-y|^2}|\textbf{u}_h(t,y)|^2dy\Big)dt\\ &\lesssim\frac{1}{J}\frac{1}{c(\eta)^2}\|\nabla \textbf{u}\|^2_{(L^\infty_tL^2_x(I\times\mathbb{R}^4))^2}\int_IN(t)^{-2}dt\\ &\lesssim\frac{K}{J}\frac{1}{c(\eta)^2}. \end{split} \end{equation} | (6.22) |
It follows from Hölder's inequality and Young's inequality that
\begin{equation} \nonumber \begin{split} &\frac{1}{J}\int_I\iint_{|x-y|\leq4e^J}|P_h \textbf{u}_{\leq c(\eta)}(t,x)|^2\frac{1}{|x-y|^2}|\textbf{u}_h(t,y)|^2dxdydt\\ &\lesssim\frac{1}{J}\int_I\sum\limits_{2^l\leq4e^J}2^{-2l}\iint_{2^l\leq |x-y|\leq2^{l+1}}|P_{ > -l}P_h \textbf{u}_{\leq c(\eta)}(t,x)|^2|\textbf{u}_h(t,y)|^2dxdydt\\ &\qquad+\frac{1}{J}\int_I\sum\limits_{2^l\leq4e^J}2^{-2l}\iint_{2^l\leq |x-y|\leq2^{l+1}}|P_{\leq-l}P_h \textbf{u}_{\leq c(\eta)}(t,x)|^2|\textbf{u}_h(t,y)|^2dxdydt\\ &\lesssim\frac{1}{J}\int_I\Big(\sum\limits_l2^{-2l}\|P_{ > -l}P_h \textbf{u}_{\leq c(\eta)}(t,x)\|^2_{(L^2(\mathbb{R}^4))^2}\Big)\Big(\sup\int_{|x-y|\leq4e^J}|\textbf{u}_h(t,x)|^2dx\Big)dt\\ &\qquad+\frac{1}{J}\sum\limits_{1\leq2^l\leq4e^J}2^{-2l}2^{10l/3}\|P_{\leq-l}P_h \textbf{u}_{\leq c(\eta)}(t,x)\|^2_{(L^2_tL^4_x(I\times\mathbb{R}^4))^2}\|\textbf{u}_h\|^2_{(L^\infty_tL^3_x(I\times\mathbb{R}^4))^2}\\ &\qquad+\frac{1}{J}\sum\limits_{l\leq0}2^{2l}\|P_{\leq c(\eta)} \textbf{u}_h\|^2_{(L^2_tL^4_x(I\times\mathbb{R}^4))^2}\|\textbf{u}_h\|^2_{(L^\infty_tL^4_x(I\times\mathbb{R}^4))^2}. \end{split} \end{equation} |
For any fixed t , by Bernstein's inequality and rearranging the order of summation, then
\begin{equation} \nonumber \begin{split} &\sum\limits_l2^{-2l}\|P_{ > -l}\textbf{u}_{\leq c(\eta)}(t)\|^2_{(L^2(\mathbb{R}^4))^2}\\ &\lesssim\sum\limits_l\sum\limits_{-l < k_1\leq k_2}2^{-2l}\|P_{k_1}\textbf{u}_{\leq c(\eta)}(t)\|_{(L^2(\mathbb{R}^4))^2}\|P_{k_2}\textbf{u}_{\leq c(\eta)}(t)\|_{(L^2(\mathbb{R}^4))^2}\\ &\lesssim\sum\limits_l\sum\limits_{-l < k_1\leq k_2}2^{-2l-k_1-k_2}\Big(2^{k_1}2^{k_2}\|P_{k_1}\textbf{u}_{\leq c(\eta)}(t)\|_{(L^2(\mathbb{R}^4))^2}\|P_{k_2}\textbf{u}_{\leq c(\eta)}(t)\|_{(L^2(\mathbb{R}^4))^2}\Big)\\ &\lesssim\sum\limits_{k_1\leq k_2}2^{k_1-k_2}\|\nabla P_{k_1}\textbf{u}_{\leq c(\eta)}(t)\|_{(L^2(\mathbb{R}^4))^2}\|\nabla P_{k_2}\textbf{u}_{\leq c(\eta)}(t)\|_{(L^2(\mathbb{R}^4))^2} \lesssim\eta^2. \end{split} \end{equation} |
By (6.12), we obtain
\begin{equation} \frac{1}{J}\displaystyle{\int}_I\Big(\sum\limits_l2^{-2l}\|P_{ > -l}\textbf{u}_{\leq c(\eta)}(t)\|^2_{(L^2(\mathbb{R}^4))^2}\Big)\Big(\sup\displaystyle{\int}_{|x-y|\leq4e^J}|\textbf{u}_h(t)|^2dx\Big)dt \lesssim\eta^2K. \end{equation} | (6.23) |
Applying Theorem 6.3, Bernstein's inequality, (6.12), Theorem 5.1, P_h = P_{\geq K^{1/4}} , Hölder's inequality, and Young's inequality, then
\begin{equation} \begin{split} &\frac{1}{J}\sum\limits_{1\leq2^l\leq4e^J}2^{-2l}2^{10l/3}\|P_{\leq{-l}}P_h \textbf{u}_{\leq c(\eta)}\|^2_{(L^2_tL^4_x(I\times \mathbb{R}^4))^2} \|\textbf{u}_h\|^2_{(L^\infty_tL^3_x(I\times \mathbb{R}^4))^2}\\ &\lesssim\frac{1}{J}\sum\limits_{1\leq2^l\leq4e^J}2^{-2l/3}K\lesssim\frac{K}{J}. \end{split} \end{equation} | (6.24) |
Since N(t)\equiv1 and \textbf{u}\in{(L^\infty_tL^4_x(I\times \mathbb{R}^4))^2} ,
\begin{equation} \frac{1}{J}\sum\limits_{l\leq0}2^{2l}\|P_{\leq c(\eta)}\textbf{u}_h\|^2_{(L^2_tL^4_x(I\times \mathbb{R}^4))^2}\|\textbf{u}_h\|^2_{(L^\infty_tL^4_x(I\times \mathbb{R}^4))^2} \lesssim\frac{K}{J}. \end{equation} | (6.25) |
Finally, Theorem 6.3, Theorem 5.1, and Sobolev embedding theorem imply
\|\textbf{u}^2_m\|_{(L^2_tL^3_x(I\times \mathbb{R}^4))^2} \lesssim\|\nabla\textbf{u}_m\|_{(L^2_tL^4_x(I\times \mathbb{R}^4))^2}\|\textbf{u}_m\|_{(L^\infty_tL^3_x(I\times \mathbb{R}^4))^2}\lesssim1. |
Hölder's inequality indicates
\begin{equation} \begin{split} &\int_I\iint_{|x-y|\leq 4e^J}|\textbf{u}_m(t,x)|^2\frac{1}{|x-y|^2}|\textbf{u}_m(t,y)|^2dxdydt\\ &\lesssim K^{1/2}e^{2J}\|\textbf{u}^2_m\|_{(L^2_tL^3_x(I\times \mathbb{R}^4))^2} \|\textbf{u}\|^2_{(L^\infty_tL^3_x(I\times \mathbb{R}^4))^2}\\ &\lesssim K^{1/2}e^{2J}. \end{split} \end{equation} | (6.26) |
Then, combining (6.22)–(6.26), we obtain
\begin{equation} \displaystyle{\int}_I(6.19)dt\lesssim\frac{K}{J}\frac{1}{c(\eta)^2}+\eta^2K+K^{1/2}e^{2J}. \end{equation} | (6.27) |
Decompose
\phi(x-y) = \frac{1}{J}\displaystyle{\int}_1^{e^J}\frac{1}{R}\displaystyle{\int}_{\mathbb{R}^4}\psi^2\Big(\frac{x}{R}-s\Big) \psi^2\Big(\frac{y}{R}-s\Big)dsdR. |
For each R, \; s, \; t , there exists a \xi(R, s, t) such that
\begin{equation} \nonumber \begin{split} &\int_{\mathbb{R}^4}\psi^2\Big(\frac{x}{R}-s\Big)\mathrm{Im}\Big(\overline{e^{ix\cdot\xi(R,s,t)}\textbf{u}} \nabla e^{ix\cdot\xi(R,s,t)}\textbf{u}\Big)(t,x)dx\\ & = \int_{\mathbb{R}^4}\xi(R,s,t)\Big|\psi(\frac{x}{R}-s)\textbf{u}(t,x)\Big|^2dx+ \int_{\mathbb{R}^4}\mathrm{Im}(\overline{\textbf{u}}\nabla \textbf{u})(t,x)dx = 0. \end{split} \end{equation} |
Moreover, for any fixed s, t,
\displaystyle{\iint}_{\mathbb{R}^4\times\mathbb{R}^4}\psi^2\Big(\frac{x}{R}-s\Big)\psi^2\Big(\frac{y}{R}-s\Big) |\nabla \textbf{u}(t,x)|^2|\textbf{u}(t,y)|^2-\mathrm{Im}(\overline{\textbf{u}}\nabla \textbf{u})(t,x)\mathrm{Im}(\overline{\textbf{u}}\nabla \textbf{u})(t,y)dxdy |
is invariant under the Galilean transformation \textbf{u}\mapsto e^{-ix\cdot\xi(R, s, t)}\textbf{u} . Therefore, for any R, s, t, it is possible to choose \xi(R, s, t) that removes the momentum squared term.
Integrating by parts, we obtain
\begin{equation} \nonumber \begin{split} &\int_{\mathbb{R}^4}\psi^2\Big(\frac{x}{R}-s\Big)\Big[|\nabla(e^{-ix\cdot\xi(R,s,t)}\textbf{u}(t,x))|^2 -|\textbf{u}(t,x)|^4\Big]dx\\ & = \int_{\mathbb{R}^4}\Big|\nabla \Big(\psi(\frac{x}{R}-s)e^{-ix\cdot\xi(R,s,t)}\textbf{u}(t,x)\Big)\Big|^2dx -\int_{\mathbb{R}^4}\Big|\psi(\frac{x}{R}-s)\textbf{u}(t,x)\Big|^2|\textbf{u}(t,x)|^2dx\\ &\quad+\int_{\mathbb{R}^4}|\textbf{u}(t,x)|^2\Big(\psi(\frac{x}{R}-s)\Delta\psi(\frac{x}{R}-s)\Big)dx. \end{split} \end{equation} |
By (1.8) and \|\textbf{u}\|_{(L^\infty_t\dot{H}^1(I\times\mathbb{R}^4))^2}\leq(1-\overline{\delta})\|\textbf{W}\|_{(\dot{H}^1(\mathbb{R}^4))^2}, we have
\|\textbf{u}\|_{(L^4_x(\mathbb{R}^4))^2}\leq(1-\overline{\delta})\|\textbf{W}\|_{(L^4_x(\mathbb{R}^4))^2}. |
Thus,
\begin{equation} \nonumber \begin{split} &\int_{\mathbb{R}^4}\Big|\nabla\Big(\psi(\frac{x}{R}-s)e^{-ix\cdot\xi(R,s,t)}\textbf{u}(t,x)\Big)\Big|^2dx -\int_{\mathbb{R}^4}\Big|\psi(\frac{x}{R}-s)e^{-ix\cdot\xi(R,s,t)}\textbf{u}(t,x)\Big|^2|\textbf{u}(t,x)|^2dx\\ &\geq\Big\|\nabla\Big(\psi(\frac{x}{R}-s)e^{-ix\cdot\xi(R,s,t)}\textbf{u}(t,x)\Big)\Big\|^2_{(L^2(\mathbb{R}^4))^2} -(1+\frac{\overline{\delta}}{2})\Big\|\psi(\frac{x}{R}-s)\textbf{u}\Big\|^2_{(L^4(\mathbb{R}^4))^2}\Big\|\textbf{u}\Big\|^2_{(L^4(\mathbb{R}^4))^2} \\&\qquad+\frac{\overline{\delta}}{2}\Big\|\psi(\frac{x}{R}-s)\textbf{u}\Big\|^4_{(L^4(\mathbb{R}^4))^2}\\ &\geq\frac{\overline{\delta}}{2}\Big\|\psi(\frac{x}{R}-s)\textbf{u}\Big\|^4_{(L^4(\mathbb{R}^4))^2} +\frac{\overline{\delta}}{2}\Big\|\nabla\Big(\psi(\frac{x}{R}-s)e^{-ix\cdot\xi(R,s,t)}\textbf{u}(t,x)\Big)\Big\|^2_{(L^2(\mathbb{R}^4))^2} \end{split} \end{equation} |
Finally, if |\frac{x}{R}-s|\leq2 and |\frac{y}{R}-s|\leq2, |\frac{x-y}{R}|\leq4 , then
\displaystyle{\int}_{\mathbb{R}^4}\Big|\psi(\frac{x}{R}-s)\Big|\Big|\Delta\psi(\frac{x}{R}-s) \Big|\Big|\psi(\frac{y}{R}-s)\Big|^2ds\lesssim\frac{1}{R^2}\psi(\frac{x-y}{4R}). |
Therefore, it follows from (6.27) that
\begin{equation} \begin{split} &\int_1^{e^J}\frac{1}{R^3}\iint_{\mathbb{R}^4\times\mathbb{R}^4}\psi(\frac{x-y}{R})|\textbf{u}(t,x)|^2|\textbf{u}(t,x)|^2dxdydt\\ &\lesssim\int_I\iint_{|x-y|\leq8e^J}|\textbf{u}(t,x)|^2\frac{1}{|x-y|^2}|\textbf{u}(t,y)|^2dxdydt\\ &\lesssim\frac{K}{J}\frac{1}{c(\eta)^2}+\eta^2K+K^{1/2}e^{2J}. \end{split} \end{equation} | (6.28) |
Now, by (6.11), for |x-y|\leq\frac{R}{2}.
\displaystyle{\int}_{\mathbb{R}^4}\psi^4(\frac{x}{R}-s)\psi^2(\frac{y}{R}-s)ds\gtrsim1, |
then,
\displaystyle{\int}_{\mathbb{R}^4}\psi^4(\frac{x}{R}-s)\psi^2(\frac{y}{R}-s)ds\gtrsim\psi\Big[\frac{4(x-y)}{R}\Big], |
and
\begin{equation} \frac{1}{J}\displaystyle{\int}_1^{e^J}\frac{1}{R}\psi\Big[\frac{4(x-y)}{R}\Big]dR\gtrsim\psi\Big(\frac{x-y}{e^{J/2}}\Big). \end{equation} | (6.29) |
In fact, for any c > 0 ,
\frac{1}{J}\displaystyle{\int}_1^{e^J}\frac{1}{R}\psi\Big[\frac{4(x-y)}{R}\Big]dR\gtrsim_c\psi\Big(\frac{x-y}{e^{J(1-c)}}\Big). |
Therefore, by (6.14), (6.20), (6.27)–(6.29), we have
\begin{equation} \begin{split} e^{4J}\gtrsim\int_IM'(t)dt &\gtrsim\overline{\delta}\int_I\iint_{|x-y|\leq e^{J/2}}|\textbf{u}(t,x)|^4|\textbf{u}(t,y)|^2dxdydt\\ &\quad-\frac{K}{J}\frac{1}{c(\eta)^2}-\eta^2K-e^{2J}K^{1/2}-\frac{1}{J}\int_I\int_{|x-x(t)|\leq 8e^J}|\textbf{u}(t,x)|^2dxdt. \end{split} \end{equation} | (6.30) |
By (4.1), if u is a non-zero almost periodic solution to system (1.1), then \|\textbf{u}(t)\|_{(L^4_x(\mathbb{R}^4))^2} is uniformly bounded for all t\in I , similar to \int_{|x-x(t)|\leq C(\eta)}|\textbf{u}(t, x)|^4dx . Therefore, for J large,
\begin{equation} \nonumber \begin{split} &\iint_{|x-y|\leq e^{J/2}}|\textbf{u}(t,y)|^4|\textbf{u}(t,x)|^2dxdy\\ &\geq\int_{|x-x(t)|\leq\frac{1}{2}e^{J/2}}\int_{|y-x(t)|\leq\frac{1}{2} e^{J/2}}|\textbf{u}(t,y)|^4|\textbf{u}(t,x)|^2dxdy\\ &\geq\int_{|x-x(t)|\leq\frac{1}{2}e^{J/2}}|\textbf{u}(t,x)|^2dx. \end{split} \end{equation} |
Substituting this into (6.30), then
\begin{equation*} \begin{split} &\overline{\delta}\int_I\int_{|x-x(t)|\leq\frac{1}{2}e^{J/2}}|\textbf{u}(t,x)|^2dxdt\\ &\lesssim e^{4J}+\frac{K}{J}\frac{1}{c(\eta)^2}+\eta^2K+K^{1/2}e^{2J} +\frac{1}{J}\int_I\int_{|x-x(t)|\leq8e^J}|\textbf{u}(t,x)|^2dxdt. \end{split} \end{equation*} |
Repeating this argument, it is easily obtained that
\begin{equation*} \begin{split} &\overline{\delta}^2\int_I\int_{|x-x(t)|\leq\frac{1}{2}e^{J/2}}|\textbf{u}(t,x)|^2dxdt\\ &\lesssim e^{8J}+\frac{K}{J}\frac{1}{c(\eta)^2}+\eta^2K+K^{1/2}e^{4J} +\frac{1}{J^2}\int_I\int_{|x-x(t)|\leq128e^{2J}}|\textbf{u}(t,x)|^2dxdt. \end{split} \end{equation*} |
We can choose e^J = K^{1/10} , and combine (6.12), then
\begin{equation} \displaystyle{\int}_I\displaystyle{\int}_{|x-x(t)|\leq\frac{1}{2}e^{J/2}}|\textbf{u}(t,x)|^2dxdt\lesssim\eta^2K+\frac{K}{\ln K}\frac{1}{c(\eta)^2}. \end{equation} | (6.31) |
Since \eta > 0 is arbitrary, we can deduce by (6.31) that there exists a sequence t_n\in\mathbb{R} such that R_n\rightarrow \infty and
\begin{equation} \displaystyle{\int}_{|x-x(t_n)|\leq R^{1/4}_n}|\textbf{u}(t_n,x)|^2dx\rightarrow 0. \end{equation} | (6.32) |
Therefore, combining (4.1) with (6.32), we can deduce that \textbf{u}\equiv0 .
It is possible to generalize to any satisfying \int_\mathbb{R}N(t)^{-2}dt = \infty, N(t)\geq1 by using the argument in the case that N(t)\equiv1. N(t) is replaced with a \tilde{N}(t) that satisfies the following conditions
(a)\; N(t)\gtrsim1,\quad (b)\; |N'(t)|\lesssim N(t)^3,\quad (c)\; \displaystyle{\int}_IN(t)^{-2}dt\lesssim K,\quad (d)\; \displaystyle{\int}_I\frac{|N'(t)|}{N(t)^5}dt\ll K. |
To simplify notation, let N_m(t) denote \tilde{N}_m(t) .
Definition 6.6. Let
\frac{1}{N_0(t)} = \|\textbf{u}_h(t)\|^3_{(L^3_x(\mathbb{R}^4))^2}, |
where N_0(t) satisfies the above conditions.
We refer to [11] possibly after modifying N_0(t) by some function \varepsilon < \alpha(t) < \frac{1}{\varepsilon}, N_0(t)\mapsto\alpha(t)N_0(t), such that
(a)\; N_0(t)\gtrsim1,\quad (b)\; |N_0'(t)|\lesssim N_0(t)^3,\quad (c)\; \displaystyle{\int}_IN_0(t)^{-2}dt\lesssim K. |
The following argument is similar to N(t)\equiv 1 , and we define
M(t): = \displaystyle{\iint}_{\mathbb{R}^4\times\mathbb{R}^4}|\textbf{u}(t,y)|^2\phi\Big((x-y)N_m(t)\Big)(x-y)_j\cdot \mathrm{Im}[\overline{\textbf{u}}\partial_j \textbf{u}](t,x)dxdy. |
Since N_m(t)\gtrsim1 , by Hölder inequality and Young's inequality, |M(t)|\lesssim\frac{e^{4J}}{N_m(t)^4}\lesssim e^{4J} , we have
\begin{align} M'(t)& = 2\iint_{\mathbb{R}^4\times\mathbb{R}^4}|\textbf{u}(t,y)|^2\phi\Big((x-y)N_m(t)\Big)\Big[|\nabla \textbf{u}(t,x)|^2-|\textbf{u}(t,x)|^4\Big]dxdy \end{align} | (6.33) |
\begin{align} &-2\iint_{\mathbb{R}^4\times\mathbb{R}^4}\mathrm{Im}[\overline{\textbf{u}} \partial_l\textbf{u}](t,y)\phi\Big((x-y)N_m(t)\Big)\mathrm{Im}[\overline{\textbf{u}} \partial_l\textbf{u}](t,x)dxdy \end{align} | (6.34) |
\begin{align} &+2\iint_{\mathbb{R}^4\times\mathbb{R}^4}|\textbf{u}(t,y)|^2\Big(\partial_k\phi((x-y)N_m(t))\Big)(x-y)_l \Big[\mathrm{Re}(\partial_l\overline{\textbf{u}}\partial_k \textbf{u})(t,x)-\frac{1}{4}\delta_{lk}|\textbf{u}(t,x)|^4\Big]dxdy \end{align} | (6.35) |
\begin{align} &-2\iint_{\mathbb{R}^4\times\mathbb{R}^4}\mathrm{Im}[\overline{\textbf{u}} \partial_k\textbf{u}](t,y)\Big(\partial_k\phi((x-y)N_m(t))\Big)(x-y)_l\mathrm{Im}[\overline{\textbf{u}} \partial_l\textbf{u}](t,x)dxdy \end{align} | (6.36) |
\begin{align} &-\frac{1}{2}\iint_{\mathbb{R}^4\times\mathbb{R}^4}|\textbf{u}(t,x)|^2\Big(\partial_l\Delta(\phi(x-y)N_m(t))(x-y)_l\Big) |\textbf{u}(t,y)|^2dxdy \end{align} | (6.37) |
\begin{align} &+\iint_{\mathbb{R}^4\times\mathbb{R}^4}\phi'\Big((x-y)N_m(t)\Big)(x-y)_l|x-y||\textbf{u}(t,y)|^2N_m'(t)\mathrm{Im}[\overline{\textbf{u}}\partial_l \textbf{u}](t,x)dxdy. \end{align} | (6.38) |
By (4.2), Theorem 5.1, Hölder's inequality, Young's inequality, and N_m(t)\gtrsim1 ,
\begin{equation} \begin{split} \int_I(6.38)dt &\lesssim\frac{1}{J}\int_I\iint_{|x-y|\leq\frac{4e^J}{N_m(t)}}|\textbf{u}(t,y)|^2 |x-y|\frac{|N_m'(t)|}{N_m(t)}|\nabla \textbf{u}(t,x)||\textbf{u}(t,x)|dxdydt\\ &\lesssim\frac{e^{3J}}{J}\int_I\frac{|N_m'(t)|}{{N_m(t)}^4}\|\textbf{u}_h(t)\|^3_{(L^3(\mathbb{R}^4))^2} \|\nabla \textbf{u}(t)\|_{(L^2(\mathbb{R}^4))^2}dt\\ &\quad+\frac{e^{5J}}{J}\int_I\frac{|N_m'(t)|}{{N_m(t)}^6}\|\textbf{u}_l(t)\|^3_{(L^6(\mathbb{R}^4))^2} \|\nabla \textbf{u}(t)\|_{(L^2(\mathbb{R}^4))^2}dt\\ &\lesssim\frac{e^{3J}}{J}\int_I\frac{|N_m'(t)|}{{N_m(t)}^5}dt+\frac{e^{5J}}{J}\|\textbf{u}_l(t)\|^3_{(L^6_{t,x}(I\times\mathbb{R}^4))^2} \|\nabla \textbf{u}(t)\|_{(L^\infty_tL^2_x(I\times\mathbb{R}^4))^2}(\int_IN_m(t)^{-6}dt)^{1/2}\\ &\lesssim2^{-4m+4}K\frac{e^{3J}}{J}+4\frac{e^{3J}}{J}+K^{1/2}\frac{e^{5J}}{J}. \end{split} \end{equation} | (6.39) |
Next, by using the argument in the case that N(t)\equiv1 to estimate the other terms,
\begin{equation} \begin{split} (6.33)+(6.34) &\gtrsim\frac{\overline{\delta}}{2}\iint_{\mathbb{R}^4\times\mathbb{R}^4} \psi\Big(\frac{4(x-y)N_m(t)}{e^{11J/12}}\Big)|\textbf{u}(t,x)|^2|\textbf{u}(t,y)|^4dxdy\\ &\quad-\frac{1}{J}\iint_{|x-y|\leq\frac{4e^J}{N_m(t)}}\frac{1}{|x-y|^2}|\textbf{u}(t,x)|^2|\textbf{u}(t,y)|^2dxdy. \end{split} \end{equation} | (6.40) |
\begin{equation} \begin{split} \int_I(6.35)+(6.36)dt &\lesssim\frac{1}{J}\int_I\int_{|x-y|\leq\frac{4e^J}{N_m(t)}}\int_{|x-x(t)|\geq\frac{C(\eta)}{N(t)}} |\textbf{u}(t,y)|^2\Big[|\nabla \textbf{u}(t,x)|^2+|\textbf{u}(t,x)|^4\Big]dxdydt\\ &\quad+\frac{1}{J}\int_I\int_{|x-y|\leq\frac{4e^J}{N_m(t)}}\int_{|x-x(t)|\leq\frac{C(\eta)}{N(t)}} |\textbf{u}(t,y)|^2\Big[|\nabla \textbf{u}(t,x)|^2+|\textbf{u}(t,x)|^4\Big]dxdydt\\ &\lesssim\frac{\eta}{J}\Big(\int_I\sup\int_{|x-y|\leq\frac{4e^J}{N_m(t)}}|\textbf{u}(t,y)|^2dydt\Big) +\frac{1}{J}\int_I\int_{|x-x(t)|\leq\frac{8e^J}{N_m(t)}}|\textbf{u}(t,x)|^2dxdt\\ &\lesssim\eta K+\frac{1}{J}\int_I\int_{|x-x(t)|\leq\frac{8e^J}{N_m(t)}}|\textbf{u}(t,x)|^2dxdt. \end{split} \end{equation} | (6.41) |
Moreover,
\begin{equation} \nonumber \begin{split} &\frac{1}{J}\int_I\iint_{|x-y|\leq4e^J}|\textbf{u}(t,x)|^2\frac{1}{|x-y|^2}|\textbf{u}(t,y)|^2dxdydt\\ &\lesssim\frac{1}{J}\int_I\iint_{|x-y|\leq\frac{4e^J}{N_m(t)}}\Big|P_h \textbf{u}_{\geq c(\eta)N(t)}(t,x)\Big|^2\frac{1}{|x-y|^2}|\textbf{u}_h(t,y)|^2dxdydt\\ &\quad+\frac{1}{J}\int_I\iint_{|x-y|\leq\frac{4e^J}{N_m(t)}}\Big|P_h \textbf{u}_{\leq c(\eta)N(t)}(t,x)\Big|^2\frac{1}{|x-y|^2}|\textbf{u}_h(t,y)|^2dxdydt\\ &\quad+\frac{1}{J}\int_I\iint_{|x-y|\leq\frac{4e^J}{N_m(t)}}|\textbf{u}_m(t,x)|^2\frac{1}{|x-y|^2}|\textbf{u}_m(t,y)|^2dxdydt. \end{split} \end{equation} |
By Bernstein's inequality and Hardy's inequality,
\begin{equation} \nonumber \begin{split} &\frac{1}{J}\int_I\iint_{|x-y|\leq\frac{4e^J}{N_m(t)}}\Big|P_h \textbf{u}_{\geq c(\eta)N(t)}(t,x)\Big|^2\frac{1}{|x-y|^2}|\textbf{u}_h(t,y)|^2dxdydt\\ &\lesssim\frac{1}{J}\int_I\|\textbf{u}_{\geq c(\eta)N(t)}(t)\|^2_{(L^2(\mathbb{R}^4))^2} \Big(\sup\int_{\mathbb{R}^4}\frac{1}{|x-y|^2}|\textbf{u}_h(t,y)|^2dy\Big)dt\\ &\lesssim\frac{1}{J}\frac{1}{c(\eta)^2}\int_IN(t)^{-2}dt = \frac{K}{J}\frac{1}{c(\eta)^2}. \end{split} \end{equation} |
It follows from Hölder's inequality and Young's inequality that
\begin{equation} \nonumber \begin{split} &\frac{1}{J}\int_I\iint_{|x-y|\leq\frac{4e^J}{N_m(t)}}\Big|P_h \textbf{u}_{\leq c(\eta)N(t)}(t,x)\Big|^2\frac{1}{|x-y|^2}|\textbf{u}_h(t,y)|^2dxdydt\\ &\lesssim\frac{1}{J}\int_I\sum\limits_{2^l\leq\frac{4e^J}{N_m(t)}}2^{-2l}\iint_{2^l\leq|x-y|\leq2^{l+1}} \Big|P_{ > -l}P_h \textbf{u}_{\leq c(\eta)N(t)}(t,x)|^2|\textbf{u}_h(t,y)|^2dxdydt\\ &\quad+\frac{1}{J}\int_I\sum\limits_{2^l\leq\frac{4e^J}{N_m(t)}}2^{-2l}\iint_{2^l\leq|x-y|\leq2^{l+1}} \Big|P_{\leq-l}P_h \textbf{u}_{\leq c(\eta)N(t)}(t,x)|^2|\textbf{u}_h(t,y)|^2dxdydt\\ &\lesssim\frac{1}{J}\int_I\Big(\sum\limits_{l}2^{-2l}\|P_{ > -l}P_h \textbf{u}_{\leq c(\eta)N(t)}(t,x)\|^2_{(L^2_x(\mathbb{R}^4))^2}\Big)\Big(\sup\int_{|x-y|\leq4e^J}|\textbf{u}_h(t,x)|^2dx\Big)dt\\ &\quad+\frac{1}{J}\int_I\sum\limits_{\frac{1}{N_0(t)}\leq2^l\leq\frac{4e^J}{N_m(t)}}2^{2l}\|P_{\leq-l}P_h \textbf{u}_{\leq c(\eta)N(t)}(t,x)\|^2_{(L^6_x(\mathbb{R}^4))^2}\|\textbf{u}_h\|^2_{(L^3_x(\mathbb{R}^4))^2}dt\\ &\quad+\frac{1}{J}\int_I\sum\limits_{2^l\leq\frac{1}{N_0(t)}}2^{2l}\|P_{\leq c(\eta)N(t)}\textbf{u}_h\|^2_{(L^4_x(\mathbb{R}^4))^2}\|\textbf{u}_h\|^2_{(L^4_x(\mathbb{R}^4))^2}dt. \end{split} \end{equation} |
Now, for any fixed t , by Bernstein's inequality and rearranging the order of summation,
\begin{equation} \nonumber \begin{split} &\sum\limits_l2^{-2l}\|P_{ > -l}\textbf{u}_{\leq c(\eta )N(t)}(t)\|^2_{(L^2(\mathbb{R}^4))^2}\\ &\lesssim\sum\limits_l\sum\limits_{-l < k_1\leq k_2}\|P_{k_1}\textbf{u}_{\leq c(\eta)N(t)}(t)\|_{(L^2(\mathbb{R}^4))^2}\|P_{k_2}\textbf{u}_{\leq c(\eta)N(t)}(t)\|_{(L^2(\mathbb{R}^4))^2}\\ &\lesssim\sum\limits_l\sum\limits_{-l < k_1\leq k_2}2^{-2l-k_1-k_2}\Big(2^{k_1}2^{k_2}\|P_{k_1}\textbf{u}_{\leq c(\eta)N(t)}(t)\|_{(L^2(\mathbb{R}^4))^2}\|P_{k_2}\textbf{u}_{\leq c(\eta)N(t)}(t)\|_{(L^2(\mathbb{R}^4))^2}\Big)\\ &\lesssim\sum\limits_{k_1\leq k_2}2^{k_1-k_2}\|\nabla P_{k_1}\textbf{u}_{\leq c(\eta)N(t)}(t)\|_{(L^2(\mathbb{R}^4))^2}\|\nabla P_{k_2}\textbf{u}_{\leq c(\eta)N(t)}(t)\|_{(L^2(\mathbb{R}^4))^2}\lesssim\eta^2. \end{split} \end{equation} |
By (6.12), we see that
\frac{1}{J}\displaystyle{\int}_I\Big(\sum\limits_l2^{-2l}\|P_{ > -l}\textbf{u}_{\leq c(\eta)N(t)}(t)\|^2_{(L^2(\mathbb{R}^4))^2}\Big)\Big(\sup\displaystyle{\int}_{|x-y|\leq4e^J}|\textbf{u}_h(t)|^2dx\Big)dt \lesssim\eta^2K |
Since N(t) is variable, we have
\begin{equation} \nonumber \begin{split} &\frac{1}{J}\int_I\sum\limits_{\frac{1}{N_0(t)}\leq2^l\leq\frac{4e^J}{N_m(t)}}2^{2l}\|P_{\leq-l}P_h \textbf{u}_{\leq c(\eta)N(t)}(t,x)\|^2_{(L^6_x(\mathbb{R}^4))^2}\|\textbf{u}_h\|^2_{(L^3_x(\mathbb{R}^4))^2}dt\\ &\lesssim\frac{1}{J}\int_I\sum\limits_{\frac{1}{N_0(t)}\leq2^l\leq\frac{4e^J}{N_m(t)}}2^{-2l/3} \Big(2^{4l/3}\|P_{\leq-l}P_h \textbf{u}_{\leq c(\eta)N(t)}(t,x)\|_{(L^6_x(\mathbb{R}^4))^2}\Big)^2\|\textbf{u}_h\|^2_{(L^3_x(\mathbb{R}^4))^2}dt\\ &\lesssim\int_I\Big(\sup\limits_{2^l\geq K^{-1/4}}2^{4l/3}\|P_l \textbf{u}\|_{(L^6_x(\mathbb{R}^4))^2}\Big)^2\Big(\sup\sum\limits_{2^l\geq\frac{1}{N_0(t)}}2^{-2l/3} \|\textbf{u}_h\|^2_{(L^3_x(\mathbb{R}^4))^2}\Big)dt\lesssim\frac{K}{J}. \end{split} \end{equation} |
By (4.1) and \textbf{u}\in{(L^\infty_tL^4_x(I\times\mathbb{R}^4))^2} ,
\frac{1}{J}\displaystyle{\int}_I\sum\limits_{2^l\leq\frac{1}{N_0(t)}}2^{2l}\|P_{\leq c(\eta)N(t)} \textbf{u}_h\|^2_{(L^4_x(\mathbb{R}^4))^2}\|\textbf{u}_h\|^2_{(L^4_x(\mathbb{R}^4))^2}dt\lesssim\frac{\eta}{J} \displaystyle{\int}_IN_0(t)^{-2}dt\lesssim\frac{\eta}{J}K. |
Finally, by (6.26) and N_m(t)\gtrsim1 ,
\displaystyle{\int}_I\displaystyle{\iint}_{|x-y|\leq\frac{4e^J}{N_m(t)}}|\textbf{u}_m(t,x)|^2\frac{1}{|x-y|^2}|\textbf{u}_m(t,y)|^2dxdydt\lesssim e^{2J}K^{1/2}. |
Therefore,
\begin{equation} \frac{1}{J}\displaystyle{\int}_I\displaystyle{\iint}_{|x-y|\leq{4e^J}}|\textbf{u}(t,x)|^2\frac{1}{|x-y|^2}|\textbf{u}(t,y)|^2dxdydt \lesssim\frac{K}{J}\frac{1}{c(\eta)^2}+\eta^2K+e^{2J}K^{1/2}. \end{equation} | (6.42) |
We choose m such that 2^{4m} = e^{10J/3} , since e^J is large and N(t)\gtrsim N_0(t)\sim N_1(t) ,
\begin{equation} \frac{\overline{\delta}}{2}\displaystyle{\int}_I\displaystyle{\iint}_{\mathbb{R}^4\times\mathbb{R}^4}\psi\Big(\frac{4(x-y)N_m(t)}{e^{11J/12}}\Big) |\textbf{u}(t,y)|^2|\textbf{u}(t,x)|^4dxdydt \gtrsim\frac{\overline{\delta}}{2}\displaystyle{\int}_I\displaystyle{\int}_{|x-x(t)|\geq\frac{e^{11J/12}}{8N_m(t)}}|\textbf{u}(t,x)|^2dxdt. \end{equation} | (6.43) |
Combining (6.43) with (6.39)–(6.42), \sup_{t\in I}|M(t)|\lesssim e^{4J} , we see that
\begin{equation} \nonumber \begin{split} &\overline{\delta}\int_I\int_{|x-x(t)|\leq\frac{e^{11J/12}}{8N_m(t)}}|\textbf{u}(t,x)|^2dxdt\\ &\lesssim\frac{1}{J}\int_I\int_{|x-x(t)|\leq\frac{8e^J}{N_m(t)}}|\textbf{u}(t,x)|^2dxdt +\eta K+2^{-4m}K\frac{e^{3J}}{J}+\frac{e^{3J}}{J}+K^{1/2}\frac{e^{5J}}{J}+e^{4J} +\frac{K}{J}\frac{1}{c(\eta)^2}, \end{split} \end{equation} |
therefore,
\begin{equation} \nonumber \begin{split} &\overline{\delta}^2\int_I\int_{|x-x(t)|\leq\frac{e^{11J/12}}{8N_m(t)}}|\textbf{u}(t,x)|^2dxdt\\ &\lesssim\frac{\overline{\delta}}{J}\int_I\int_{|x-x(t)|\leq\frac{8e^J}{N_m(t)}}|\textbf{u}(t,x)|^2dxdt +\overline{\delta}\Big(\eta K+2^{-4m}K\frac{e^{3J}}{J}+\frac{e^{3J}}{J}+K^{1/2}\frac{e^{5J}}{J}+e^{4J} +\frac{K}{J}\frac{1}{c(\eta)^2}\Big)\\ &\lesssim\frac{1}{J^2}\int_I\int_{|x-x(t)|\leq\frac{512e^{12J/11}}{N_m(t)}}|\textbf{u}(t,x)|^2dxdt +\eta K+2^{-4m}K\frac{e^{36J/11}}{J}+\frac{e^{36J/11}}{J}\\ &\qquad+K^{1/2}\frac{e^{60J/11}}{J}+e^{48J/11} +\frac{K}{J}\frac{1}{c(\eta)^2}. \end{split} \end{equation} |
Let us choose J and m such that 2^{4m} = e^{10J/3} and K = e^{12J} ,
\begin{equation} \begin{split} &\overline{\delta}^2\int_I\int_{|x-x(t)|\leq\frac{e^{11J/12}}{8N_m(t)}}|\textbf{u}(t,x)|^2dxdt\\ &\lesssim\frac{1}{J^2}\int_I\int_{|x-x(t)|\leq\frac{512e^{12J/11}}{N_m(t)}}|\textbf{u}(t,x)|^2dxdt +\eta K+K\frac{e^{-2J/33}}{J}+K^{21/22}+\frac{K}{J}\frac{1}{c(\eta)^2}. \end{split} \end{equation} | (6.44) |
Now, we are able to complete the proof of Theorem 6.2.
Proof of Theorem 6.2. Let us prove by contradiction. Assume \textbf{u} is a non-zero, almost periodic solution for system (1.1). Set I be an interval satisfying
K = \displaystyle{\int}_IN(t)^{-2}dt. |
Combining (6.44) with Lemma 6.4, we deduce that
\overline{\delta}^2\displaystyle{\int}_I\displaystyle{\int}_{|x-x(t)|\leq\frac{e^{11J/12}}{8N_m(t)}}|\textbf{u}(t,x)|^2dxdt \lesssim\eta K+\frac{1}{c(\eta)^2}\frac{K}{\ln K}. |
Since any \eta > 0 and \int_\mathbb{R}N(t)^{-2}dt = \infty , let us choose an increasing sequence of interval I whose union makes up \mathbb{R} , combining N_m(t)\lesssim2^mN(t) with 2^{4m} = e^{10J/3}, K = e^{12J}, there exists a sequence t_n\in\mathbb{R} and R_n\rightarrow \infty such that
N(t_n)^2\displaystyle{\int}_{|x-x(t)|\leq\frac{R_n}{N(t_n)}}|\textbf{u}(t_n,x)|^2dx\rightarrow0. |
However, by (4.1) we see that \|\textbf{u}(t_n)\|_{(\dot{H}^1(\mathbb{R}^4))^2}\rightarrow0 , then the conservation of energy (1.3) implies \textbf{u}\equiv0 .
In summary, we prove the global well-posedness and scattering of the four-dimensional cubic focusing energy-critical nonlinear Schrödinger (NLS) system below threshold in the non-radial case. Despite \mathbf{W} being a stationary solution of system (1.1), and \mathbf{W} giving an example of an almost periodic solution that does not lie in (L^2(\mathbb{R}^4))^2 , we are able to combine this logarithmically divergent result with the long-time Strichartz estimate to establish an interaction Morawetz estimate, proving Theorem 1.7. First, we establish the variational characterization of the ground state and derive the threshold of the global well-posedness and scattering, which is a crucial step. Then, we adapt the strategy of Kenig and Merle [17], using a concentration-compactness/rigidity method to reduce the global well-posedness and scattering to the exclusion of almost periodic solution, that is, we need to preclude the almost periodic solution to system (1.1) satisfying K = \int_\mathbb{R}N(t)^{-2}dt < \infty and K = \int_\mathbb{R}N(t)^{-2}dt = \infty . In the future, we plan to study the Schrödinger-Hirota equation, see [23,24].
Yonghang Chang: writing–original draft, writing–review & editing, Menglan Liao: supervision, writing–original draft, writing–review & editing. All authors have read and approved the final version of the manuscript for publication.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This work was supported by the Fundamental Research Funds for the Central Universities (B230201057). The authors are grateful to the anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper.
The authors declare that they have no competing interests.
[1] | T. Aubin, Probl\grave{e}mes isopérimétriques et espaces de Sobolev, J. Differential Geometry, 11 (1976), 573–598. |
[2] |
N. Akhmediev, A. Ankiewicz, Paritially coherent solitons on a finite background, Phys. Rev. Lett., 82 (1999), 2661–2664. https://doi.org/10.1103/PhysRevLett.82.2661 doi: 10.1103/PhysRevLett.82.2661
![]() |
[3] |
J. Bourgain, Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case, J. Amer. Math. Soc., 12 (1999), 145–171. https://doi.org/10.1090/S0894-0347-99-00283-0 doi: 10.1090/S0894-0347-99-00283-0
![]() |
[4] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on \mathbb{R}^3, Commun. Pur. Appl. Math., 57 (2004), 987–1014. https://doi.org/10.1002/cpa.20029 doi: 10.1002/cpa.20029
![]() |
[5] |
J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrodinger equation in \mathbb{R}^3, Ann. Math., 167 (2008), 767–865. https://doi.org/10.4007/annals.2008.167.767 doi: 10.4007/annals.2008.167.767
![]() |
[6] | T. Cazenave, F. B. Weissler, Some remarks on the nonlinear Schrödinger equation in the critical case, In: Nonlinear semigroups, partial differential equations and attractors, Heidelberg: Springer, 1989, 18–29. https://doi.org/10.1007/BFb0086749 |
[7] |
T. Cazenave, F. B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in H^s, Nonlinear Anal. Theor., 14 (1990), 807–836. https://doi.org/10.1016/0362-546X(90)90023-A doi: 10.1016/0362-546X(90)90023-A
![]() |
[8] |
X. Cheng, Y. F. Gao, J. Q. Zheng, Remark on energy-critical NLS in 5D, Math. Method. Appl. Sci., 39 (2016), 2100–2117. https://doi.org/10.1002/mma.3627 doi: 10.1002/mma.3627
![]() |
[9] | X. Cheng, Z. H. Guo, G. Hwang, H. Yoon, Global well-posedness and scattering of the two dimensional cubic focusing nonlinear Schrödinger system, 2022, arXiv: 2202.10757. |
[10] |
B. Dodson, Global well-posedness and scattering for the defocusing, L^2-critical nonlinear Schrödinger equation when d\geq3, J. Amer. Math. Soc., 25 (2012), 429–463. https://doi.org/10.1090/S0894-0347-2011-00727-3 doi: 10.1090/S0894-0347-2011-00727-3
![]() |
[11] |
B. Dodson, Global well-posedness and scattering for the focusing, cubic Schrödinger equation in dimension d = 4, Ann. Sci. Ecole Norm. S., 52 (2019), 139–180. https://doi.org/10.24033/asens.2385 doi: 10.24033/asens.2385
![]() |
[12] |
J. Ginibre, G. Velo, Smoothing properties and retarded estimates for some dispersive evolution equations, Commun. Math. Phys., 144 (1992), 163–188. https://doi.org/10.1007/bf02099195 doi: 10.1007/bf02099195
![]() |
[13] |
M. G. Grillakis, On nonlinear Schrödinger equations: nonlinear Schr?dinger equations, Commun. Part. Diff. Eq., 25 (2000), 1827–1844. https://doi.org/10.1080/03605300008821569 doi: 10.1080/03605300008821569
![]() |
[14] |
Y. F. Gao, Z. Y. Wang, Concentration of blow-up solutions for the coupled Schrödinger equations in $R^2$, J. Math. Anal. Appl., 429 (2015), 591–601. https://doi.org/10.1016/j.jmaa.2015.04.034 doi: 10.1016/j.jmaa.2015.04.034
![]() |
[15] |
S. Keraani, On the blow-up phenomenon of the critical nonlinear Schrödinger equation, J. Funct. Anal., 235 (2006), 171–192. https://doi.org/10.1016/j.jfa.2005.10.005 doi: 10.1016/j.jfa.2005.10.005
![]() |
[16] |
M. Keel, T. Tao, Endpoint Strichartz estimates, Am. J. Math., 120 (1998), 955–980. https://doi.org/ 10.1353/ajm.1998.0039 doi: 10.1353/ajm.1998.0039
![]() |
[17] |
C. E. Kenig, F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645–675. https://doi.org/ 10.1007/s00222-006-0011-4 doi: 10.1007/s00222-006-0011-4
![]() |
[18] |
R. Killip, M. Visan, The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher, Am. J. Math., 132 (2010), 361–424. https://doi.org/10.1353/ajm.0.0107 doi: 10.1353/ajm.0.0107
![]() |
[19] |
R. Killip, M. Visan, Global well-posedness and scattering for the defocusing quintic NLS in three dimensions, Anal. PDE, 5 (2012), 855–885. https://doi.org/10.2140/apde.2012.5.855 doi: 10.2140/apde.2012.5.855
![]() |
[20] | R. Killip, M. Visan, Nonlinear Schrödinger equations at critical regularity, Clay Mathematics Proceedings, 17 (2013), 325–437. |
[21] |
T. C. Lin, J. C. Wei, Ground state of N coupled nonlinear Schrödinger equations in \mathbb{R}^n, n\leq3, Commun. Math. Phys., 255 (2005), 629–653. https://doi.org/10.1007/s00220-005-1313-x doi: 10.1007/s00220-005-1313-x
![]() |
[22] |
C. M. Li, L. Ma, Uniqueness of positive bound states to Schrödinger systems with critical exponents, SIAM J. Math. Anal., 40 (2008), 1049–1057. https://doi.org/10.1137/080712301 doi: 10.1137/080712301
![]() |
[23] |
L. Tang, Dynamical behavior and multiple optical solitons for the fractional Ginzburg-Landau equation with \beta-derivative in optical fibers, Opt. Quant. Electron., 56 (2024), 175. https://doi.org/10.1007/s11082-023-05761-1 doi: 10.1007/s11082-023-05761-1
![]() |
[24] |
L. Tang, Optical solitons perturbation and traveling wave solutions in magneto-optic waveguides with the generalized stochastic Schrödinger-Hirota equation, Opt. Quant. Electron., 56 (2024), 773. https://doi.org/10.1007/s11082-024-06669-0 doi: 10.1007/s11082-024-06669-0
![]() |
[25] |
C. X. Miao, G. X. Xu, L. F. Zhao, Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equations of fourth order in dimensions d\geq9, J. Differ. Equations, 251 (2011), 3381–3402. https://doi.org/10.1016/j.jde.2011.08.009 doi: 10.1016/j.jde.2011.08.009
![]() |
[26] |
C. X. Miao, G. X. Xu, L. F. Zhao, Global well-posedness and scattering for the focusing energy-critical nonlinear Schrödinger equations of fourth order in the radial case, J. Differ. Equations, 246 (2009), 3715–3749. https://doi.org/10.1016/j.jde.2008.11.011 doi: 10.1016/j.jde.2008.11.011
![]() |
[27] |
S. J. Montgomery-Smith, Time decay for the bounded mean oscillation of solutions of the Schrödinger and wave equation, Duke Math. J., 91 (1998), 393–408. https://doi.org/10.1215/S0012-7094-98-09117-7 doi: 10.1215/S0012-7094-98-09117-7
![]() |
[28] |
E. Ryckman, M. Visan, Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in \mathbb{R}^{1+4}, Am. J. Math., 129 (2007), 1–60. https://doi.org/10.1353/ajm.2007.0004 doi: 10.1353/ajm.2007.0004
![]() |
[29] |
R. S. Strichartz, Restriction of Fourier transform to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44 (1977), 705–714. https://doi.org/10.1215/s0012-7094-77-04430-1 doi: 10.1215/s0012-7094-77-04430-1
![]() |
[30] |
J. Shatah, W. Strauss, Instability of nonlinear bound states, Commun. Math. Phys., 100 (1985), 173–190. https://doi.org/10.1007/BF01212446 doi: 10.1007/BF01212446
![]() |
[31] |
G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pur. Appl., 110 (1976), 353–372. https://doi.org/10.1007/BF02418013 doi: 10.1007/BF02418013
![]() |
[32] | T. Tao, Global well-posedness and scattering for the higher-dimensional energy-critical nonlinear Schrödinger equation for radial data, New York J. Math., 11 (2005), 57–80. |
[33] | M. E. Taylor, Partial differential equations, Vols. 1–3, 2 Eds., Cham: Springer, 2011. |
[34] |
M. Visan, The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions, Duke Math. J., 138 (2007), 281–374. https://doi.org/10.1215/S0012-7094-07-13825-0 doi: 10.1215/S0012-7094-07-13825-0
![]() |
[35] |
M. Visan, Global well-posedness and scattering for the defocusing cubic nonlinear Schrödinger equation in four dimensions, Int. Math. Res. Notices, 2012 (2012), 1037–1067. https://doi.org/10.1093/imrn/rnr051 doi: 10.1093/imrn/rnr051
![]() |
[36] |
J. C. Wei, W. Yao, Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations, Commun. Pur. Appl. Anal., 11 (2012), 1003–1011. https://doi.org/10.3934/cpaa.2012.11.1003 doi: 10.3934/cpaa.2012.11.1003
![]() |
[37] |
G. X. Xu, Dynamics of some coupled nonlinear Schrödinger systems in \mathbb{R}^3, Math. Method. Appl. Sci., 37 (2014), 2746–2771. https://doi.org/10.1002/mma.3015 doi: 10.1002/mma.3015
![]() |