This study focused on investigating the global well-posedness of a coupled Navier-Stokes-Darcy model with the Beavers-Joseph-Saffman-Jones interface boundary condition in the three-dimensional Euclidean space. By utilizing this approach, we successfully obtained the global strong solution of the system in the three-dimensional space. Furthermore, we demonstrated the exponential stability of this strong solution. The significance of such coupled systems lies in their pivotal role in the analysis of subsurface flow problems, particularly in the context of karst aquifers.
Citation: Linlin Tan, Meiying Cui, Bianru Cheng. An approach to the global well-posedness of a coupled 3-dimensional Navier-Stokes-Darcy model with Beavers-Joseph-Saffman-Jones interface boundary condition[J]. AIMS Mathematics, 2024, 9(3): 6993-7016. doi: 10.3934/math.2024341
This study focused on investigating the global well-posedness of a coupled Navier-Stokes-Darcy model with the Beavers-Joseph-Saffman-Jones interface boundary condition in the three-dimensional Euclidean space. By utilizing this approach, we successfully obtained the global strong solution of the system in the three-dimensional space. Furthermore, we demonstrated the exponential stability of this strong solution. The significance of such coupled systems lies in their pivotal role in the analysis of subsurface flow problems, particularly in the context of karst aquifers.
[1] | J. R. Fanchi, Principles of applied reservoir simulation, Elsevier, 2005. http://dx.doi.org/10.1016/B978-075067933-6/50014-3 |
[2] | J. Bear, Dynamics of fluids in porous media, Courier Corporation, 1972. http://dx.doi.org/10.1097/00010694-197508000-00022 |
[3] | M. Discacciati, A. Quarteroni, Navier-Stokes/Darcy coupling: Modeling, analysis, and numerical approximation, Rev. Mat. Comput., 2 (2009), 315–426. http://dx.doi.org/10.5209/rev_REMA.2009.v22.n2.16263 doi: 10.5209/rev_REMA.2009.v22.n2.16263 |
[4] | D. Han, D. Sun, X. Wang, Two-phase flows in karstic geometry, Math. Method. Appl. Sci., 37 (2014), 3048–3063. http://dx.doi.org/10.1002/mma.3043 doi: 10.1002/mma.3043 |
[5] | M. Alam, H. M. Byrne, G. P. R. Sekhar, Existence and uniqueness results on biphasic mixture model for an in-vivo tumor, Appl. Anal., 101 (2022), 5442–5468. http://dx.doi.org/10.1080/00036811.2021.1895122 doi: 10.1080/00036811.2021.1895122 |
[6] | W. Layton, F. Schieweck, I. Yotov, Coupling fluid flow with porous media flow, SIAM J. Numer. Anal., 40 (2003), 2195–2218. http://dx.doi.org/10.1137/S0036142901392766 doi: 10.1137/S0036142901392766 |
[7] | M. Discacciati, E. Miglio, A. Quarteroni, Mathematical and numerical models for coupling surface and groundwater flows, Appl. Numer. Math., 43 (2001), 57–74. http://dx.doi.org/10.1016/S0168-9274(02)00125-3 doi: 10.1016/S0168-9274(02)00125-3 |
[8] | H. W. Alt, S. Luckhaus, Quasilinear elliptic-parabolic differential equation, Math. Z., 3 (1983), 311–341. http://dx.doi.org/10.1070/SM1968v006n03ABEH001065 doi: 10.1070/SM1968v006n03ABEH001065 |
[9] | P. Fabrie, M. Langlais, Modelling wells in porous media flows, SIAM J. Math. Anal., 23 (1992), 1375–1392. http://dx.doi.org/10.1142/S0218202500000367 doi: 10.1142/S0218202500000367 |
[10] | P. Fabrie, T. Gallouët, Modelling wells in porous media flows, Math. Mod. Method. Appl. Sci., 10 (2000), 673–709. http://dx.doi.org/10.1142/S0218202500000367 doi: 10.1142/S0218202500000367 |
[11] | F. Marpeau, M. Saad, Mathematical analysis of radionuclides displacement in porous media with nonlinear adsorption, J. Differ. Equations, 228 (2006), 412–439. http://dx.doi.org/10.1016/j.jde.2006.03.023 doi: 10.1016/j.jde.2006.03.023 |
[12] | K. Hans, N. Masmoudi, Well-posedness and uniform bounds for a nonlocal third order evolution operator on an infinite wedge, Commun. Math. Phys., 320 (2013), 395–424. http://dx.doi.org/10.1007/s00220-013-1708-z doi: 10.1007/s00220-013-1708-z |
[13] | D. A. Nield, A. Bejan, Convection in porous media, 1 Eds., New York: Springer, 1992. http://dx.doi.org/10.1007/978-3-319-49562-0 |
[14] | G. S. Beavers, D. D. Joseph, Boundary conditions at a naturally permeable wall, J. Fluid Mech., 30 (1967), 197–207. http://dx.doi.org/10.1017/s0022112067001375 doi: 10.1017/s0022112067001375 |
[15] | H. K. Versteeg, W. Malalasekera, An introduction to computational fluid dynamics: The finite volume method, Pearson Education, 2007. |
[16] | S. Whitaker, Flow in porous media I: A theoretical derivation of Darcy's law, Transport Porous Med., 1 (1986), 3–25. http://dx.doi.org/10.1007/BF01036523 doi: 10.1007/BF01036523 |
[17] | I. P. Jones, Low Reynolds number flow past a porous spherical shell, Math. Proc. Cambridge, 73 (1973), 231–238. http://dx.doi.org/10.1017/S0305004100047642 doi: 10.1017/S0305004100047642 |
[18] | P. G. Saffman, On the boundary condition at the surface of a porous medium, Stud. Appl. Math., 50 (1971), 93–101. http://dx.doi.org/10.1002/sapm197150293 doi: 10.1002/sapm197150293 |
[19] | M. McCurdy, N. Moore, X. Wang, Convection in a coupled free flow-porous media system, SIAM J. Appl. Math., 6 (2019), 2313–2339. http://dx.doi.org/10.1137/19M1238095 doi: 10.1137/19M1238095 |
[20] | D. Han, X. He, Q. Wang, Y. Wu, Existence and weak-strong uniqueness of solutions to the Cahn-Hilliard-Navier-Stokes-Darcy system in superposed free flow and porous media, Nonlinear Anal., 211 (2021), 112411. http://dx.doi.org/10.1016/j.na.2021.112411 doi: 10.1016/j.na.2021.112411 |
[21] | A. Çeşmelioğlu, B. Rivière, Primal discontinuous Galerkin methods for time-dependent coupled surface and subsurface flow, J. Sci. Comput., 40 (2009), 115–140. http://dx.doi.org/10.1007/s10915-009-9274-4 doi: 10.1007/s10915-009-9274-4 |
[22] | V. Girault, B. Rivière, DG Approximation of coupled Navier-Stokes and Darcy equations by Beaver-Joseph-Saffman Interface condition, SIAM J. Numer. Anal., 47 (2009), 2052–2089. http://dx.doi.org/10.1137/070686081 doi: 10.1137/070686081 |
[23] | Y. Cao, Y. Chu, X. He, M. Wei, Decoupling the stationary Navier-Stokes-Darcy system with the Beavers-Joseph-Saffman interface condition, Abstr. Appl. Anal., 2013. http://dx.doi.org/10.1155/2013/136483 doi: 10.1155/2013/136483 |
[24] | M. Cai, M. Mu, J. Xu, Numerical solution to a mixed Navier-Stokes/Darcy model by the two-grid approach, SIAM J. Numer. Anal., 47 (2009), 3325–3338. http://dx.doi.org/10.1137/080721868 doi: 10.1137/080721868 |
[25] | G. Du, L. Zuo, Local and parallel finite element method for the mixed Navier-Stokes/Darcy model with Beavers-Joseph interface conditions, Acta Math. Sci., 37 (2017), 1331–1347. http://dx.doi.org/10.1016/S0252-9602(17)30076-0 doi: 10.1016/S0252-9602(17)30076-0 |
[26] | C. Qiu, X. He, J. Li, Y. Lin, A domain decomposition method for the time-dependent Navier-Stokes-Darcy model with Beavers-Joseph interface condition and defective boundary condition, J. Comput. Phys., 411 (2020). http://dx.doi.org/10.1016/j.jcp.2020.109400 doi: 10.1016/j.jcp.2020.109400 |
[27] | Y, Qin, Y. Hou, Optimal error estimates of a decoupled scheme based on two-grid finite element for mixed Navier-Stokes/Darcy model, Acta Math. Sci., 38 (2018), 1361–1369. |
[28] | X. He, J. Li, Y. Lin, J. Ming, A domain decomposition method for the steady-state Navier-Stokes-Darcy model with Beavers-Joseph interface condition, SIAM J. Sci. Comput., 37 (2015), S264–S290. http://dx.doi.org/10.1137/140965776 doi: 10.1137/140965776 |
[29] | L. Zuo, G. Du, A parallel two-grid linearized method for the coupled Navier-Stokes-Darcy problem, Numer. Algorithms, 77 (2018), 151–165, http://dx.doi.org/10.1007/s11075-017-0308-y doi: 10.1007/s11075-017-0308-y |
[30] | M. Discacciati, A. Quarteroni, Analysis of a domain decomposition method for the coupling of Stokes and Darcy equations, In: F. Brezzi, A. Buffa, S. Corsaro, A. Murli, Numerical mathematics and advanced applications, Milan: Springer, 2003. http://dx.doi.org/10.1007/978-88-470-2089-4-1 |
[31] | B. Rivière, I. Yotov, Locally conservative coupling of Stokes and Darcy flows, SIAM J. Numer. Anal., 42 (2004), 1959–1977. http://dx.doi.org/10.1137/S0036142903427640 doi: 10.1137/S0036142903427640 |
[32] | B. Rivière, Analysis of a discontinuous finite element method for the coupled Stokes and Darcy problems, J. Sci. Comput., 22 (2005), 479–500. http://dx.doi.org/10.1007/s10915-004-4147-3 doi: 10.1007/s10915-004-4147-3 |
[33] | B. Rivière, Analysis of a multi-numerics/multi-physics problem, In: M. Feistauer, V. Doleší, P. Knobloch, K. Najzar, Numerical Mathematics and Advanced Applications, Berlin: Springer, 2004,726–735. http://dx.doi.org/10.1007/978-3-642-18775-9_71 |
[34] | M. Discacciati, A. Quarteroni, A. Valli, Robin-Robin domain decomposition methods for the Stokes-Darcy coupling, SIAM J. Numer. Anal., 45 (2007), 1246–1268. http://dx.doi.org/10.1137/06065091X doi: 10.1137/06065091X |
[35] | D. Han, Q. Wang, X. Wang, Dynamic transitions and bifurcations for thermal convection in the superposed free flow and porous media, Physica D, 414 (2020). http://dx.doi.org/10.1016/j.physd.2020.132687 doi: 10.1016/j.physd.2020.132687 |
[36] | X. Wang, H. Wu, Global weak solutions to the Navier-Stokes-Darcy-Boussinesq system for thermal convection in coupled free and porous media flows, Adv. Differ. Equations, 2021. http://dx.doi.org/10.57262/ade/1610420433 doi: 10.57262/ade/1610420433 |
[37] | Y. Gao, D. Han, X. He, U. Rüde, Unconditionally stable numerical methods for Cahn-Hilliard-Navier-Stokes-Darcy system with different densities and viscosities, J. Comput. Phys., 454 (2022). http://dx.doi.org/10.1016/j.jcp.2022.110968 doi: 10.1016/j.jcp.2022.110968 |
[38] | W. Chen, D. Han, X. Wang, Y. Zhang, Uniquely solvable and energy stable decoupled numerical schemes for the Cahn-Hilliard-Navier-Stokes-Darcy-Boussinesq system, J. Sci. Comput., 85 (2020). http://dx.doi.org/10.1007/s00211-017-0870-1 doi: 10.1007/s00211-017-0870-1 |
[39] | Y. Gao, X. He, L. Mei, X. Yang, Decoupled, linear, and energy stable finite element method for the Cahn-Hilliard-Navier-Stokes-Darcy phase field model, SIAM J. Sci. Comput., 40 (2018), B110–B137. http://dx.doi.org/10.1137/16M1100885 doi: 10.1137/16M1100885 |
[40] | D. Han, X. Wang, H. Wu, Existence and uniqueness of global weak solutions to a Cahn-Hilliard-Stokes-Darcy system for two phase incompressible flows in karstic geometry, J. Differ. Equations, 257 (2014), 3887–3933. http://dx.doi.org/10.1016/j.jde.2014.07.013 doi: 10.1016/j.jde.2014.07.013 |
[41] | M. Cui, W. Dong, Z. Guo, Global well-posedness of coupled Navier-Stokes and Darcy equations, J. Differ. Equations, 388 (2024), 82–111. http://dx.doi.org/10.1016/j.jde.2023.12.044 doi: 10.1016/j.jde.2023.12.044 |
[42] | P. Liu, W. Liu, Global well-posedness of an initial-boundary value problem of the 2-D incompressible Navier-Stokes-Darcy system, Netherland: Springer, 1 (2019). http://dx.doi.org/10.1007/s10440-018-0197-7 |
[43] | C. Foias, O. Manley, R. Temam, Attractors for the Bénard problem: Existence and physical bounds on their fractal dimension, Nonlinear Anal., 11 (1987), 939–967. http://dx.doi.org/10.1016/0362-546X(87)90061-7 doi: 10.1016/0362-546X(87)90061-7 |
[44] | P. Fabrie, Solutions fortes et comportment asymtotique pour un modèle de convection naturelle en milieu poreux, Acta Appl. Math., 7 (1986), 49–77. http://dx.doi.org/10.1007/BF00046977 doi: 10.1007/BF00046977 |
[45] | H. V. Ly, E. S. Titi, Global Gevrey regularity for the Bénard convection in a porous medium with zero Darcy-Prandtl number, J. Nonlinear Sci., 9 (1999), 333–362. http://dx.doi.org/10.1007/s003329900073 doi: 10.1007/s003329900073 |
[46] | A. Çeşmelioğlu, B. Rivière, Existence of a weak solution for the fully coupled Navier-Stokes/Darcy-transport problem, J. Differ. Equations, 252 (2012), 4138–4175. http://dx.doi.org/10.1016/j.jde.2011.12.001 doi: 10.1016/j.jde.2011.12.001 |
[47] | A. Çeşmelioğlu, V. Girault, B. Rivière, Time-dependent coupling of Navier-Stokes and Darcy flows, ESAIM Math. Model. Num., 47 (2013), 540–555. http://dx.doi.org/10.1051/m2an/2012034 doi: 10.1051/m2an/2012034 |
[48] | Y. Hou, D. Xue, Y. Jiang, On the weak solutions to steady-state mixed Navier-Stokes/Darcy model, Acta Math. Sin., 39 (2023), 939–951. http://dx.doi.org/10.1007/s10114-022-9134-9 doi: 10.1007/s10114-022-9134-9 |