In this paper, for a bounded linear operator defined on a complex Banach space of infinite dimension, we consider the set of isolated points in its approximate point spectrum, which are eigenvalues of finite multiplicity; this set can be equal to the spectrum of the operator but without its upper semi-Fredholm spectrum, and this relation or equality defines in the literature a new spectral property called the property $ (\omega{ \pi }) $ and is a generalization of the classical a-Weyl theorem. We establish some characterizations and consequences about the property $ (\omega{ \pi }) $, some with topological aspects. Furthermore, we study this property through the Riesz functional calculus. Part of the spectral structure of a linear operator verifying property $ (\omega{ \pi }) $ is described, obtaining some associated properties.
Citation: Wei Xu, Elvis Aponte, Ponraj Vasanthakumar. The property $ (\omega{ \pi }) $ as a generalization of the a-Weyl theorem[J]. AIMS Mathematics, 2024, 9(9): 25646-25658. doi: 10.3934/math.20241253
In this paper, for a bounded linear operator defined on a complex Banach space of infinite dimension, we consider the set of isolated points in its approximate point spectrum, which are eigenvalues of finite multiplicity; this set can be equal to the spectrum of the operator but without its upper semi-Fredholm spectrum, and this relation or equality defines in the literature a new spectral property called the property $ (\omega{ \pi }) $ and is a generalization of the classical a-Weyl theorem. We establish some characterizations and consequences about the property $ (\omega{ \pi }) $, some with topological aspects. Furthermore, we study this property through the Riesz functional calculus. Part of the spectral structure of a linear operator verifying property $ (\omega{ \pi }) $ is described, obtaining some associated properties.
[1] | P. Aiena, Fredholm and local spectral theory, Springer, 2004. |
[2] | P. Aiena, Fredholm and local spectral theory Ⅱ: With application to weyl-type theorems, Springer, 2235 (2018). |
[3] | P. Aiena, Quasi-Fredholm operators and localized SVEP, 2007. |
[4] | P. Aiena, E. Aponte, E. Balzan, Weyl type theorems for left and right polaroid operators, Integr. Equat. Oper. Th., 66 (2010), 1–20. https://doi.org/10.1007/s00020-009-1738-2 doi: 10.1007/s00020-009-1738-2 |
[5] | P. Aiena, F. Burderi, S. Triolo, Local spectral properties under conjugations, Mediterr. J. Math., 18 (2021), 1–20. https://doi.org/10.1007/s00009-021-01731-7 doi: 10.1007/s00009-021-01731-7 |
[6] | E. Aponte, J. Sanabria, L. Vásquez, Perturbation theory for property (VE) and tensor product, Mathematics, 9 (2021), 2275. https://doi.org/10.3390/math9212775 doi: 10.3390/math9212775 |
[7] | E. Aponte, Property $(az)$ through topological notions and some applications, T. A Razmadze Math. In., 176 (2022), 417–425. |
[8] | E. Aponte, J. Soto, E. Rosas, Study of the property (bz) using local spectral theory methods, Arab J. Basic Appl. Sci., 30 (2023), 665–674. https://doi.org/10.1080/25765299.2023.2278217 doi: 10.1080/25765299.2023.2278217 |
[9] | E. Aponte, J. Macías, J. Sanabria, J. Soto, Further characterizations of property (VΠ) and some applications, Proyecciones (Antofagasta), 39 (2020), 1435–1456. https://doi.org/10.22199/issn.0717-6279-2020-06-0088 doi: 10.22199/issn.0717-6279-2020-06-0088 |
[10] | E. Aponte, N. Jayanthi, D. Quiroz, P. Vasanthakumar, Tensor product of operators satisfying Zariouh's property (gaz), and stability under perturbations, Axioms, 11 (2022), 225. https://doi.org/10.3390/axioms11050225 doi: 10.3390/axioms11050225 |
[11] | M. Berkani, J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci. Math.(Szeged), 69 (2003), 359–376. |
[12] | Y. X. Chen, Y. J. Chi, J. Q. Fan, C. Ma, Spectral methods for data science: A statistical perspective, Found. Tre. Mach. Learn., 14 (2021), 566–806. https://doi.org/10.1561/2200000079 doi: 10.1561/2200000079 |
[13] | L. A. Coburn, Weyl's theorem for nonnormal operators, Mich. Math. J., 13 (1966), 285–288. https://doi.org/10.1307/mmj/1031732778 doi: 10.1307/mmj/1031732778 |
[14] | B. P. Duggal, Tensor products and property (w), Rend. Circ. Mat. Palerm., 60 (2011), 23–30. https://doi.org/10.1007/s12215-011-0023-9 doi: 10.1007/s12215-011-0023-9 |
[15] | J. Finch, The single valued extension property on a Banach space, Pac. J. Math., 58 (1975), 61–69. https://doi.org/10.1016/0009-8981(75)90485-4 doi: 10.1016/0009-8981(75)90485-4 |
[16] | G. W. Hanson, A. B. Yakovlev, Operator theory for electromagnetics: An introduction, Springer Science & Business Media, 2013. |
[17] | H. Heuser, Functional analysis, A Wiley-Interscience publication, Wiley, 1982. |
[18] | A. Jeribi, Spectral theory and applications of linear operators and block operator matrices, Springer, 2015. https://doi.org/10.1007/978-3-319-17566-9 |
[19] | P. S. Johnson, S. Balaji, On linear operators with closed range, J. Appl. Math. Bioinform., 1 (2011), 175. |
[20] | C. S. Kubrusly, B. P. Duggal, On Weyl's theorem for tensor products, Glasgow Math. J., 55 (2013), 139–144. https://doi.org/10.1017/S0017089512000407 doi: 10.1017/S0017089512000407 |
[21] | C. S. Kubrusly, B. P. Duggal, On Weyl and Browder spectra of tensor products, Glasgow Math. J., 50 (2008), 289–302. https://doi.org/10.1017/S0017089508004205 doi: 10.1017/S0017089508004205 |
[22] | V. Müller, Spectral theory of linear operators and spectral systems in Banach algebras, Springer Science & Business Media, 139 (2007). |
[23] | M. Oudghiri, Weyl's and Browder's theorems for operators satisfying the SVEP, Stud. Math., 1 (2004), 85–101. https://doi.org/10.4064/sm163-1-5 doi: 10.4064/sm163-1-5 |
[24] | K. B. Ouidren, A. Ouahab, H. Zariouh, On a class of (bz)-operators, Rend. Circ. Mat. Palerm. Ser. 2, 72 (2023), 4169–4177. https://doi.org/10.1007/s12215-023-00884-6 doi: 10.1007/s12215-023-00884-6 |
[25] | B. Ouidren, H. Zariouh, New approach to a-Weyl's theorem through localized SVEP and Riesz-type perturbations, Linear Multilinear A., 70 (2022), 3231–3247. https://doi.org/10.1080/03081087.2020.1833823 doi: 10.1080/03081087.2020.1833823 |
[26] | B. Ouidren, H. Zariouh, New approach to a-Weyl's theorem and some preservation results, Rend. Circ. Mat. Palerm. Ser. 2, 70 (2021), 819–833. https://doi.org/10.1007/s12215-020-00525-2 doi: 10.1007/s12215-020-00525-2 |
[27] | J. Sanabria, L. Vasquez, C. Carpintero, E. Rosas, O. Garcia, On strong variations of Weyl type theorems, Acta Math. Univ. Comen., 86 (2017), 345–356. |
[28] | L. K. Saul, K. Q. Weinberger, F. Sha, J. Ham, D. D. Lee, Spectral methods for dimensionality reduction, The MIT Press, 2006. https://doi.org/10.7551/mitpress/6173.003.0022 |
[29] | S. V. Djordjević, Y. M. Han, Browder's theorem and spectral continuity, Glasgow Math. J., 42 (2000), 479–486. https://doi.org/10.1017/S0017089500030147 doi: 10.1017/S0017089500030147 |