Research article

Flag-transitive non-symmetric 2-designs with $ \lambda $ prime and exceptional groups of Lie type

  • Received: 11 July 2024 Revised: 23 August 2024 Accepted: 26 August 2024 Published: 04 September 2024
  • MSC : 05B05, 05B25, 20B25

  • This paper contributes to the classification of flag-transitive 2-$ (v, k, \lambda) $ designs. Let $ \mathcal{D} $ be a non-trivial and non-symmetric $ 2 $-$ (v, k, \lambda) $ design with $ \lambda $ prime and $ G $ be a flag-transitive point-primitive automorphism group of $ \mathcal{D} $. A recent work by the first author and Chen has proven that the socle of $G$ is either a nonabelian simple group or an elementary abelian $ p $-group for some prime $ p $. In this paper, we focus on the case where the socle of $G$ is an exceptional group of Lie type and give all possible parameters of such 2-designs.

    Citation: Yongli Zhang, Jiaxin Shen. Flag-transitive non-symmetric 2-designs with $ \lambda $ prime and exceptional groups of Lie type[J]. AIMS Mathematics, 2024, 9(9): 25636-25645. doi: 10.3934/math.20241252

    Related Papers:

  • This paper contributes to the classification of flag-transitive 2-$ (v, k, \lambda) $ designs. Let $ \mathcal{D} $ be a non-trivial and non-symmetric $ 2 $-$ (v, k, \lambda) $ design with $ \lambda $ prime and $ G $ be a flag-transitive point-primitive automorphism group of $ \mathcal{D} $. A recent work by the first author and Chen has proven that the socle of $G$ is either a nonabelian simple group or an elementary abelian $ p $-group for some prime $ p $. In this paper, we focus on the case where the socle of $G$ is an exceptional group of Lie type and give all possible parameters of such 2-designs.



    加载中


    [1] S. H. Alavi, M. Bayat, A. Daneshkhah, Finite exceptional groups of Lie type and symmetric designs, Discrete Math., 345 (2022), 112894. https://doi.org/10.1016/j.disc.2022.112894 doi: 10.1016/j.disc.2022.112894
    [2] S. H. Alavi, Almost simple groups as flag-transitive automorphism groups of 2-designs with ${\lambda} = 2$, arXiv preprint, 2023. https://doi.org/10.48550/arXiv.2307.05195
    [3] M. Biliotti, A. Montinaro, Nonsymmetric 2-$(v, k, \lambda)$ designs, with $(r, \lambda) = 1$, admitting a solvable flag-transitive automorphism group of affine type, J. Comb. Des., 27 (2019), 784–800. https://doi.org/10.1002/jcd.21677 doi: 10.1002/jcd.21677
    [4] J. N. Bray, D. F. Holt, C. M. Roney-Dougal, The maximal subgroups of the low-dimensional finite classical groups, Cambridge University Press, 2013. https://doi.org/10.1017/cbo9781139192576
    [5] F. Buekenhout, A. Delandtsheer, J. Doyen, Finite linear spaces with flag-transitive groups, J. Comb. Theory A, 49 (1988), 268–293. https://doi.org/10.1016/0097-3165(88)90056-8 doi: 10.1016/0097-3165(88)90056-8
    [6] F. Buekenhout, A. Delandtsheer, J. Doyen, P. B. Kleidman, M. W. Liebeck, J. Saxl, Linear spaces with flag-transitive automorphism groups, Geometriae Dedicata, 36 (1990), 89–94. https://doi.org/10.1007/BF00181466 doi: 10.1007/BF00181466
    [7] H. Davies, Flag-transitivity and primitivity, Discrete Math., 63 (1987), 91–93. https://doi.org/10.1016/0012-365X(87)90154-3 doi: 10.1016/0012-365X(87)90154-3
    [8] P. Dembowski, Finite geometries, Springer-Verlag, New York, 1968. https://doi.org/10.1007/978-3-642-62012-6
    [9] B. Huppert, N. Blackburn, Finite groups III, Spring-Verlag, New York, 1982. https://doi.org/10.1007/978-3-642-67997-1
    [10] P. B. Kleidman, The finite flag-transitive linear spaces with an exceptional automorphism group, Finite Geometries and Combinatorial Designs (Lincoln, NE, 1987), 111 (1990), 117–136. https://doi.org/10.1090/conm/111/1079743
    [11] P. B. Kleidman, The maximal subgroups of the Chevalley groups $G_2(q)$ with $q$ odd, the Ree groups ${^2G_2(q)}$, and their automorphism groups, J. Algebra, 117 (1988), 30–71. https://doi.org/10.1016/0021-8693(88)90239-6 doi: 10.1016/0021-8693(88)90239-6
    [12] H. Li, Z. Zhang, S. Zhou, Flag-transitive automorphism groups of 2-designs with $\lambda>(r, \lambda)^2$ are not product type, J. Comb. Theory A, 208 (2024), 105923. https://doi.org/10.1016/j.jcta.2024.105923 doi: 10.1016/j.jcta.2024.105923
    [13] M. W. Liebeck, J. Saxl, The finite primitive permutation groups of rank three, B. Lond. Math. Soc., 18 (1986), 165–172. https://doi.org/10.1112/blms/18.2.165 doi: 10.1112/blms/18.2.165
    [14] M. W. Liebeck, J. Saxl, G. M. Seitz, On the overgroups of irreducible subgroups of the finite classical groups, P. Lond. Math. Soc., 3 (1987), 507–537. https://doi.org/10.1112/plms/s3-55.3.507 doi: 10.1112/plms/s3-55.3.507
    [15] H. L$\ddot{\mathrm{u}}$neburg, Some remarks concerning the Ree groups of type $(G2)$, J. Algebra, 3 (1966), 256–259. https://doi.org/10.1016/0021-8693(66)90014-7 doi: 10.1016/0021-8693(66)90014-7
    [16] A. Montinaro, M. Biliotti, E. Francot, Classification of the non-trivial 2-$(v, k, \lambda)$ designs, with $(r, \lambda) = 1$ and $\lambda>1$, admitting a non-solvable flag-transitive automorphism group of affine type, J. Algebr. Comb., 55 (2022), 853–889. https://doi.org/10.1007/s10801-021-01075-1 doi: 10.1007/s10801-021-01075-1
    [17] J. Saxl, On finite linear spaces with almost simple flag-transitive automorphism groups, J. Comb. Theory A, 100 (2002), 322–348. https://doi.org/10.1006/jcta.2002.3305 doi: 10.1006/jcta.2002.3305
    [18] G. M. Seitz, Flag-transitive subgroups of Chevalley groups, North-Holland Math. Stud., 7 (1973), 122–125. https://doi.org/10.1016/S0304-0208(08)71838-3 doi: 10.1016/S0304-0208(08)71838-3
    [19] M. Suzuki, On a class of doubly transitive groups, Ann. Math., 75 (1962), 105–145. https://doi.org/10.2307/1970423 doi: 10.2307/1970423
    [20] Y. Wang, S. Zhou, Symmetric designs admitting flag-transitive and point-primitive almost simple automorphism groups of Lie type, J. Algebra Appl., 16 (2017), 1750192. https://doi.org/10.1142/S0219498817501924 doi: 10.1142/S0219498817501924
    [21] X. Zhan, T, Zhou, S. Bai, S. Peng, L. Gan, Block-transitive automorphism groups on 2-designs with block size 4, Discrete Math., 343 (2020), 111726. https://doi.org/10.1016/j.disc.2019.111726 doi: 10.1016/j.disc.2019.111726
    [22] X. Zhan, S. Ding, A reduction for block-transitive triple systems, Discrete Math., 341 (2018), 2442–2447. https://doi.org/10.1016/j.disc.2018.05.021 doi: 10.1016/j.disc.2018.05.021
    [23] X. Zhang, S. Zhou, Block-transitive symmetric designs and alternating groups, Results Math., 78 (2023), 185. https://doi.org/10.1007/s00025-023-01964-w doi: 10.1007/s00025-023-01964-w
    [24] X. Zhang, S. Zhou, Block-transitive and point-primitive 2-designs with sporadic socle, J. Comb. Des., 25 (2017), 231–238. https://doi.org/10.1002/jcd.21528 doi: 10.1002/jcd.21528
    [25] Y. Zhang, J. Chen, Reduction for flag-transitive point-primitive 2-$(v, k, \lambda)$ designs with $\lambda$ prime, J. Comb. Des., 32 (2024), 88–101. https://doi.org/10.1002/jcd.21927 doi: 10.1002/jcd.21927
    [26] Y. Zhang, S. Zhou, Flag-transitive non-symmetric 2-designs with $(r, \lambda) = 1$ and exceptional groups of lie type, Electron. J. Comb., 27 (2020), P2.9. https://doi.org/10.37236/8832 doi: 10.37236/8832
    [27] Y. Zhao, S. Zhou, Flag-transitive 2-$(v, k, \lambda)$ designs with $r>\lambda(k-3)$, Design. Code. Cryptogr., 90 (2022), 863–869. https://doi.org/10.1007/s10623-022-01010-w doi: 10.1007/s10623-022-01010-w
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(324) PDF downloads(29) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog