Research article

Automatic detection method of abnormal vibration of engineering electric drive construction machinery

  • Received: 04 August 2023 Revised: 09 September 2023 Accepted: 11 September 2023 Published: 22 September 2023
  • Aiming at the problem that the extraction effect of abnormal vibration characteristics of current engineering electric drive construction machinery is poor, an automatic detection method of abnormal vibration of engineering electric drive construction machinery is proposed. Firstly, the abnormal data of mechanical abnormal vibration are collected and identified, and based on the identification results, the dynamic characteristic model of engineering electric drive construction machinery is constructed. The empirical mode decomposition and Hilbert spectrum are used to decompose the abnormal vibration of machinery, calculate the response amplitude and time lag value generated by the operation of the engineering electric drive construction machinery to simplify the diagnosis steps of the abnormal vibration of the engineering electric drive construction machinery and realize the positioning and detection of the transverse and torsional vibration characteristics. Finally, through experiments, it was confirmed that the automatic detection method of the abnormal vibration of the engineering electric drive construction machinery has high accuracy, which can better ensure the healthy operation of mechanical equipment. This endeavor aims to establish scientific methodologies and standards for fault detection techniques in construction machinery, ultimately forging a versatile solution better suited for detecting and resolving issues across various categories of construction equipment.

    Citation: Jian Yuan, Hao Liu, Yang Zhang. Automatic detection method of abnormal vibration of engineering electric drive construction machinery[J]. Electronic Research Archive, 2023, 31(10): 6327-6346. doi: 10.3934/era.2023320

    Related Papers:

  • Aiming at the problem that the extraction effect of abnormal vibration characteristics of current engineering electric drive construction machinery is poor, an automatic detection method of abnormal vibration of engineering electric drive construction machinery is proposed. Firstly, the abnormal data of mechanical abnormal vibration are collected and identified, and based on the identification results, the dynamic characteristic model of engineering electric drive construction machinery is constructed. The empirical mode decomposition and Hilbert spectrum are used to decompose the abnormal vibration of machinery, calculate the response amplitude and time lag value generated by the operation of the engineering electric drive construction machinery to simplify the diagnosis steps of the abnormal vibration of the engineering electric drive construction machinery and realize the positioning and detection of the transverse and torsional vibration characteristics. Finally, through experiments, it was confirmed that the automatic detection method of the abnormal vibration of the engineering electric drive construction machinery has high accuracy, which can better ensure the healthy operation of mechanical equipment. This endeavor aims to establish scientific methodologies and standards for fault detection techniques in construction machinery, ultimately forging a versatile solution better suited for detecting and resolving issues across various categories of construction equipment.



    加载中


    [1] J. Lian, S. Fang, Y. Zhou, Model predictive control of the fuel cell cathode system based on state quantity estimation, Comput. Simul., 37 (2020), 119-122.
    [2] H. M. Numanoğlu, H. Ersoy, B. Akgöz, O. Civalek, A new eigenvalue problem solver for thermos-mechanical vibration of Timoshenko nanobeams by an innovative nonlocal finite element method, Math. Methods Appl. Sci., 45 (2022), 2592-2614. https://doi.org/10.1002/mma.7942 doi: 10.1002/mma.7942
    [3] V. Chaturvedi, T. Talapaneni, Effect of mechanical vibration and grain refiner on microstructure and mechanical properties of AZ91Mg alloy during solidification, J. Mater. Eng. Perform., 30 (2021), 3187-3202. https://doi.org/10.1007/s11665-021-05471-3 doi: 10.1007/s11665-021-05471-3
    [4] W. Booyse, D. N. Wilke, S. Heyns, Deep digital twins for detection, diagnostics and prognostics, Mech. Syst. Signal Process., 140 (2020), 106612. https://doi.org/10.1016/j.ymssp.2019.106612 doi: 10.1016/j.ymssp.2019.106612
    [5] F. Tao, X. Sun, J. Cheng, Y. Zhu, W. Liu, Y. Wang, et al., 2023, MakeTwin: a reference architecture for digital twin software platform, Chin. J. Aeronaut., in press, 2023. https://doi.org/10.1016/j.cja.2023.05.002
    [6] Q. Qi, F. Tao, T. Hu, N. Anwer, A. Liu, Y. Wei, et al., Enabling technologies and tools for digital twin, J. Manuf. Syst., 58 (2021), 3-21. https://doi.org/10.1016/j.jmsy.2019.10.001 doi: 10.1016/j.jmsy.2019.10.001
    [7] S. Liu, Y. Lu, P. Zheng, H. Shen, J. Bao, Adaptive reconstruction of digital twins for machining systems: a transfer learning approach, Rob. Comput. Integr. Manuf., 78 (2022), 102390. https://doi.org/10.1016/j.rcim.2022.102390 doi: 10.1016/j.rcim.2022.102390
    [8] C. Gao, H. Park, A. Easwaran, An anomaly detection framework for digital twin driven cyber-physical systems, in ICCPS '21: Proceedings of the ACM/IEEE 12th International Conference on Cyber-Physical Systems, (2021), 44-54. https://doi.org/10.1145/3450267.3450533
    [9] X. Wang, Y. Wang, F. Tao, A. Liu, New paradigm of data-driven smart customisation through digital twin, J. Manuf. Syst., 58 (2021), 270-280. https://doi.org/10.1016/j.jmsy.2020.07.023 doi: 10.1016/j.jmsy.2020.07.023
    [10] V. S. Vishnu, K. G. Varghese, B. Gurumoorthy, A data-driven digital twin of CNC machining processes for predicting surface roughness, Procedia CIRP, 104 (2021), 1065-1070. https://doi.org/10.1016/j.procir.2021.11.179 doi: 10.1016/j.procir.2021.11.179
    [11] C. Zhang, G. Zhou, J. He, Z. Li, W. Cheng, A data- and knowledge-driven framework for digital twin manufacturing cell, Procedia CIRP, 83 (2019), 345-350. https://doi.org/10.1016/j.procir.2019.04.084 doi: 10.1016/j.procir.2019.04.084
    [12] Y. Sun, Y. Lu, J. Bao, F. Tao, Prognostics and health management via long short-term digital twins, J. Manuf. Syst., 68 (2023), 560-575. https://doi.org/10.1016/j.jmsy.2023.05.023 doi: 10.1016/j.jmsy.2023.05.023
    [13] K. Feng, J. C. Ji, Q. Ni, Y. Li, W. Mao, L. Liu, A novel vibration-based prognostic scheme for gear health management in surface wear progression of the intelligent manufacturing system, Wear, 522 (2023), 204697. https://doi.org/10.1016/j.wear.2023.204697 doi: 10.1016/j.wear.2023.204697
    [14] L. Ma, B. Jiang, L. Xiao, N. Lu, Digital twin-assisted enhanced meta-transfer learning for rolling bearing fault diagnosis, Mech. Syst. Signal Process., 200 (2023), 110490. https://doi.org/10.1016/j.ymssp.2023.110490 doi: 10.1016/j.ymssp.2023.110490
    [15] L. Li, Y. Ren, Q. Jin, Electro-mechanical vibration and stress field of piezoelectric nanobeam with symmetrical FGM core under the low-velocity impact, Eur. Phys. J. Plus, 137 (2022), 1-20. https://doi.org/10.1140/epjp/s13360-022-02934-x doi: 10.1140/epjp/s13360-022-02934-x
    [16] M. Rigacci, R. Sato, K. Shirase, Power consumption simulation of servo motors focusing on the influence of mechanical vibration on motor efficiency, Int. J. Autom. Technol., 16 (2022), 104-116. https://doi.org/10.20965/ijat.2022.p0104 doi: 10.20965/ijat.2022.p0104
    [17] P. Ewert, C. T. Kowalski, M. Jaworski, Comparison of the effectiveness of selected vibration signal analysis methods in the rotor unbalance detection of PMSM drive system, Electronics, 11 (2022), 1748. https://doi.org/10.3390/electronics11111748 doi: 10.3390/electronics11111748
    [18] Y. W. Zhang, G. L. She, Wave propagation and vibration of FG pipes conveying hot fluid, Steel Compos. Struct., 42 (2022), 397-405.
    [19] Y. Kumar, A. Gupta, A. Tounsi, Size-dependent vibration response of porous graded nanostructure with FEM and nonlocal continuum model, Adv. Nano Res., 11 (2021), 1-17. https://doi.org/10.12989/anr.2021.11.1.001 doi: 10.12989/anr.2021.11.1.001
    [20] S. K. Barman, M. Mishra, D. K. Maiti, D. Maity, Vibration-based damage detection of structures employing Bayesian data fusion coupled with TLBO optimization algorithm, Struct. Multidiscip. Optim., 64 (2021), 2243-2266. https://doi.org/10.1007/s00158-021-02980-6 doi: 10.1007/s00158-021-02980-6
    [21] F. L. Zhang, C. W. Kim, Y. Goi, Efficient Bayesian FFT method for damage detection using ambient vibration data with consideration of uncertainty, Struct. Control Health Monit., 28 (2021), e2659. https://doi.org/10.1002/stc.2659 doi: 10.1002/stc.2659
    [22] A. Turnbull, J. Carroll, A. McDonald, Combining SCADA and vibration data into a single anomaly detection model to predict wind turbine component failure, Wind Energy, 24 (2021), 197-211. https://doi.org/10.1002/we.2567 doi: 10.1002/we.2567
    [23] S. K. Barman, D. K. Maiti, D. Maity, Vibration-based delamination detection in composite structures employing mixed unified particle swarm optimization, AIAA J., 59 (2021), 386-399. https://doi.org/10.2514/1.J059176 doi: 10.2514/1.J059176
    [24] C. Tarawneh, J. Montalvo, B. Wilson, Defect detection in freight railcar tapered-roller bearings using vibration techniques, Railway Eng. Sci., 29 (2021), 42-58. https://doi.org/10.1007/s40534-020-00230-x doi: 10.1007/s40534-020-00230-x
    [25] Z. Mousavi, S. Varahram, M. M. Ettefagh, H. M. Sadeghi, N. S. Razavi, Deep neural networks-based damage detection using vibration signals of finite element model and real intact state: An evaluation via a lab-scale offshore jacket structure, Struct. Health Monit., 20 (2021), 379-405. https://doi.org/10.1177/1475921720932614 doi: 10.1177/1475921720932614
    [26] N. Wu, S. Haruyama, The 20k samples-per-second real time detection of acoustic vibration based on displacement estimation of one-dimensional laser speckle images, Sensors, 21 (2021), 2938. https://doi.org/10.3390/s21092938 doi: 10.3390/s21092938
    [27] M. H. M. Ghazali, W. Rahiman, Vibration-based fault detection in drone using artificial intelligence, IEEE Sensors J., 22 (2022), 8439-8448. https://doi.org/10.1109/JSEN.2022.3163401 doi: 10.1109/JSEN.2022.3163401
    [28] B. R. F. Rende, A. A. Cavalini, I. F. Santos, Fault detection using vibration data-driven models—a simple and well-controlled experimental example, J. Braz. Soc. Mech. Sci. Eng., 44 (2022), 1-11. https://doi.org/10.1007/s40430-022-03462-6 doi: 10.1007/s40430-022-03462-6
    [29] X. Huang, Q. Huang, H. Cao, W. Yan, L. Cao, Q. Zhang, Optimal design for improving operation performance of electric construction machinery collaborative system: Method and application, Energy, 263 (2023), 125629. https://doi.org/10.1016/j.energy.2022.125629 doi: 10.1016/j.energy.2022.125629
    [30] J. L. Conradi Hoffmann, L. P. Horstmann, M. Martínez Lucena, M. G. de Araujo, A. A. Fröhlich, H. M. Napoli Nishioka, Anomaly detection on wind turbines based on a deep learning analysis of vibration signals, Appl. Artif. Intell., 35 (2021), 893-913. https://doi.org/10.1080/08839514.2021.1966879
    [31] Y. Zhu, F. Li, W. Bao, Fatigue crack detection under the vibration condition based on ultrasonic guided waves, Struct. Health Monit., 20 (2021), 931-941. https://doi.org/10.1177/1475921719860772 doi: 10.1177/1475921719860772
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1022) PDF downloads(64) Cited by(0)

Article outline

Figures and Tables

Figures(14)  /  Tables(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog