Research article Special Issues

A Schwarz lemma of harmonic maps into metric spaces

  • Received: 01 September 2024 Revised: 17 October 2024 Accepted: 29 October 2024 Published: 06 November 2024
  • We established a Schwarz lemma for harmonic maps from Riemannian manifolds to metric spaces of curvature bounded above in the sense of Alexandrov. We adopted the gradient estimate technique which was based on Zhang-Zhu's maximum principle. In particular, when the domain manifold was a hyperbolic surface, the energy of any conformal harmonic maps into $ \operatorname{CAT}(-1) $ spaces were bounded from above uniformly.

    Citation: Jie Wang. A Schwarz lemma of harmonic maps into metric spaces[J]. Electronic Research Archive, 2024, 32(11): 5966-5974. doi: 10.3934/era.2024276

    Related Papers:

  • We established a Schwarz lemma for harmonic maps from Riemannian manifolds to metric spaces of curvature bounded above in the sense of Alexandrov. We adopted the gradient estimate technique which was based on Zhang-Zhu's maximum principle. In particular, when the domain manifold was a hyperbolic surface, the energy of any conformal harmonic maps into $ \operatorname{CAT}(-1) $ spaces were bounded from above uniformly.



    加载中


    [1] L. V. Ahlfors, An extension of Schwarz's lemma, Trans. Am. Math. Soc., 43 (1938), 359–364. https://doi.org/10.2307/1990065 doi: 10.2307/1990065
    [2] S. Chern, J. Korevaar, L. Ehrenpreis, W. Fuchs, L. Rubel, On holomorphic mappings of Hermitian manifolds of the same dimension, in Proceedings of Symposia in Pure Mathematics, 11 (1968), 157–170.
    [3] Y. Lu, Holomorphic mappings of complex manifolds, J. Differ. Geom., 2 (1968), 299–312. https://doi.org/10.4310/jdg/1214428442 doi: 10.4310/jdg/1214428442
    [4] S. Yau, A general Schwarz lemma for kahler manifolds, Am. J. Math., 100 (1978), 197–203. https://doi.org/10.2307/2373880 doi: 10.2307/2373880
    [5] S. I. Goldberg, Z. Har'El, A general Schwarz lemma for Riemannian manifolds, Bull. Greek Math. Soc., 18 (1977), 141–148.
    [6] C. Shen, A generalization of the Schwarz-Ahlfors lemma to the theory of harmonic maps, J. Reine Angew. Math., 1984 (1984), 23–33. https://doi.org/10.1515/crll.1984.348.23 doi: 10.1515/crll.1984.348.23
    [7] Q. Chen, K. Li, H. Qiu, A Schwarz lemma and a Liouville theorem for generalized harmonic maps, Nonlinear Anal., 214 (2022), 112556. https://doi.org/10.1016/j.na.2021.112556 doi: 10.1016/j.na.2021.112556
    [8] Q. Chen, G. Zhao, A Schwarz lemma for $V$-harmonic maps and their applications, Bull. Aust. Math. Soc., 96 (2017), 504–512. https://doi.org/10.1017/S000497271700051X doi: 10.1017/S000497271700051X
    [9] T. Chong, Y. Dong, Y. Ren, W. Yu, Schwarz type lemmas for generalized holomorphic maps between pseudo-Hermitian manifolds and Hermitian manifolds, Bull. Lond. Math. Soc., 53 (2021), 26–41. https://doi.org/10.1112/blms.12394 doi: 10.1112/blms.12394
    [10] Y. Dong, Y. Ren, W. Yu, Schwarz type lemmas for pseudo-Hermitian manifolds, J. Geom. Anal., 31 (2021), 3161–3195. https://doi.org/10.1007/s12220-020-00389-z doi: 10.1007/s12220-020-00389-z
    [11] X. Huang, W. Yu, A generalization of the Schwarz lemma for transversally harmonic maps, J. Geom. Anal., 34 (2024), 50. https://doi.org/10.1007/s12220-023-01492-7 doi: 10.1007/s12220-023-01492-7
    [12] M. Gromov, R. Schoen, Harmonic maps into singular spaces and $p$-adic superrigidity for lattices in groups of rank one, Publ. Math. Inst. Hautes Sci., 76 (1992), 165–246. https://doi.org/10.1007/BF02699433 doi: 10.1007/BF02699433
    [13] N. J. Korevaar, R. M. Schoen, Sobolev spaces and harmonic maps for metric space targets, Commun. Anal. Geom., 1 (1993), 561–659.
    [14] J. Jost, Equilibrium maps between metric spaces, Calculus Var. Partial Differ. Equations, 2 (1994), 173–204. https://doi.org/10.1007/BF01191341 doi: 10.1007/BF01191341
    [15] J. Jost, Convex functionals and generalized harmonic maps into spaces of nonpositive curvature, Comment. Math. Helvetici, 70 (1995), 659–673. https://doi.org/10.1007/BF02566027 doi: 10.1007/BF02566027
    [16] J. Jost, Generalized Dirichlet forms and harmonic maps, Calculus Var. Partial Differ. Equations, 5 (1997), 1–19. https://doi.org/10.1007/s005260050056 doi: 10.1007/s005260050056
    [17] B. Freidin, A Bochner formula for harmonic maps into non-positively curved metric spaces, Calculus Var. Partial Differ. Equations, 58 (2019), 121. https://doi.org/10.1007/s00526-019-1562-8 doi: 10.1007/s00526-019-1562-8
    [18] H. Zhang, X. Zhu, Local Li-Yau's estimates on $RCD^{\ast}(K, N)$ metric measure spaces, Calculus Var. Partial Differ. Equations, 55 (2016), 93. https://doi.org/10.1007/s00526-016-1040-5 doi: 10.1007/s00526-016-1040-5
    [19] H. Zhang, X. Zhong, X. Zhu, Quantitative gradient estimates for harmonic maps into singular spaces, Sci. China Math., 62 (2019), 2371–2400. https://doi.org/10.1007/s11425-018-9493-1 doi: 10.1007/s11425-018-9493-1
    [20] M. R. Bridson, A. Haefliger, Metric Spaces of Non-Positive Curvature, 1$^{st}$ edition, Springer Berlin, Heidelberg, 1999. https://doi.org/10.1007/978-3-662-12494-9
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(251) PDF downloads(43) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog