We established a Schwarz lemma for harmonic maps from Riemannian manifolds to metric spaces of curvature bounded above in the sense of Alexandrov. We adopted the gradient estimate technique which was based on Zhang-Zhu's maximum principle. In particular, when the domain manifold was a hyperbolic surface, the energy of any conformal harmonic maps into $ \operatorname{CAT}(-1) $ spaces were bounded from above uniformly.
Citation: Jie Wang. A Schwarz lemma of harmonic maps into metric spaces[J]. Electronic Research Archive, 2024, 32(11): 5966-5974. doi: 10.3934/era.2024276
We established a Schwarz lemma for harmonic maps from Riemannian manifolds to metric spaces of curvature bounded above in the sense of Alexandrov. We adopted the gradient estimate technique which was based on Zhang-Zhu's maximum principle. In particular, when the domain manifold was a hyperbolic surface, the energy of any conformal harmonic maps into $ \operatorname{CAT}(-1) $ spaces were bounded from above uniformly.
[1] | L. V. Ahlfors, An extension of Schwarz's lemma, Trans. Am. Math. Soc., 43 (1938), 359–364. https://doi.org/10.2307/1990065 doi: 10.2307/1990065 |
[2] | S. Chern, J. Korevaar, L. Ehrenpreis, W. Fuchs, L. Rubel, On holomorphic mappings of Hermitian manifolds of the same dimension, in Proceedings of Symposia in Pure Mathematics, 11 (1968), 157–170. |
[3] | Y. Lu, Holomorphic mappings of complex manifolds, J. Differ. Geom., 2 (1968), 299–312. https://doi.org/10.4310/jdg/1214428442 doi: 10.4310/jdg/1214428442 |
[4] | S. Yau, A general Schwarz lemma for kahler manifolds, Am. J. Math., 100 (1978), 197–203. https://doi.org/10.2307/2373880 doi: 10.2307/2373880 |
[5] | S. I. Goldberg, Z. Har'El, A general Schwarz lemma for Riemannian manifolds, Bull. Greek Math. Soc., 18 (1977), 141–148. |
[6] | C. Shen, A generalization of the Schwarz-Ahlfors lemma to the theory of harmonic maps, J. Reine Angew. Math., 1984 (1984), 23–33. https://doi.org/10.1515/crll.1984.348.23 doi: 10.1515/crll.1984.348.23 |
[7] | Q. Chen, K. Li, H. Qiu, A Schwarz lemma and a Liouville theorem for generalized harmonic maps, Nonlinear Anal., 214 (2022), 112556. https://doi.org/10.1016/j.na.2021.112556 doi: 10.1016/j.na.2021.112556 |
[8] | Q. Chen, G. Zhao, A Schwarz lemma for $V$-harmonic maps and their applications, Bull. Aust. Math. Soc., 96 (2017), 504–512. https://doi.org/10.1017/S000497271700051X doi: 10.1017/S000497271700051X |
[9] | T. Chong, Y. Dong, Y. Ren, W. Yu, Schwarz type lemmas for generalized holomorphic maps between pseudo-Hermitian manifolds and Hermitian manifolds, Bull. Lond. Math. Soc., 53 (2021), 26–41. https://doi.org/10.1112/blms.12394 doi: 10.1112/blms.12394 |
[10] | Y. Dong, Y. Ren, W. Yu, Schwarz type lemmas for pseudo-Hermitian manifolds, J. Geom. Anal., 31 (2021), 3161–3195. https://doi.org/10.1007/s12220-020-00389-z doi: 10.1007/s12220-020-00389-z |
[11] | X. Huang, W. Yu, A generalization of the Schwarz lemma for transversally harmonic maps, J. Geom. Anal., 34 (2024), 50. https://doi.org/10.1007/s12220-023-01492-7 doi: 10.1007/s12220-023-01492-7 |
[12] | M. Gromov, R. Schoen, Harmonic maps into singular spaces and $p$-adic superrigidity for lattices in groups of rank one, Publ. Math. Inst. Hautes Sci., 76 (1992), 165–246. https://doi.org/10.1007/BF02699433 doi: 10.1007/BF02699433 |
[13] | N. J. Korevaar, R. M. Schoen, Sobolev spaces and harmonic maps for metric space targets, Commun. Anal. Geom., 1 (1993), 561–659. |
[14] | J. Jost, Equilibrium maps between metric spaces, Calculus Var. Partial Differ. Equations, 2 (1994), 173–204. https://doi.org/10.1007/BF01191341 doi: 10.1007/BF01191341 |
[15] | J. Jost, Convex functionals and generalized harmonic maps into spaces of nonpositive curvature, Comment. Math. Helvetici, 70 (1995), 659–673. https://doi.org/10.1007/BF02566027 doi: 10.1007/BF02566027 |
[16] | J. Jost, Generalized Dirichlet forms and harmonic maps, Calculus Var. Partial Differ. Equations, 5 (1997), 1–19. https://doi.org/10.1007/s005260050056 doi: 10.1007/s005260050056 |
[17] | B. Freidin, A Bochner formula for harmonic maps into non-positively curved metric spaces, Calculus Var. Partial Differ. Equations, 58 (2019), 121. https://doi.org/10.1007/s00526-019-1562-8 doi: 10.1007/s00526-019-1562-8 |
[18] | H. Zhang, X. Zhu, Local Li-Yau's estimates on $RCD^{\ast}(K, N)$ metric measure spaces, Calculus Var. Partial Differ. Equations, 55 (2016), 93. https://doi.org/10.1007/s00526-016-1040-5 doi: 10.1007/s00526-016-1040-5 |
[19] | H. Zhang, X. Zhong, X. Zhu, Quantitative gradient estimates for harmonic maps into singular spaces, Sci. China Math., 62 (2019), 2371–2400. https://doi.org/10.1007/s11425-018-9493-1 doi: 10.1007/s11425-018-9493-1 |
[20] | M. R. Bridson, A. Haefliger, Metric Spaces of Non-Positive Curvature, 1$^{st}$ edition, Springer Berlin, Heidelberg, 1999. https://doi.org/10.1007/978-3-662-12494-9 |