In the present study, we commenced by presenting a new class of maps, termed noncyclic $ (\varphi, \mathcal{R}^t) $-enriched quasi-contractions within metric spaces equipped with a transitive relation $ \mathcal{R}^t $. Subsequently, we identified the conditions for the existence of an optimal pair of fixed points pertaining to these mappings, thereby extending and refining a selection of contemporary findings documented in some articles. Specifically, our analysis will encompass the outcomes pertinent to reflexive and strictly convex Banach spaces.
Citation: A. Safari-Hafshejani, M. Gabeleh, M. De la Sen. Optimal pair of fixed points for a new class of noncyclic mappings under a $ (\varphi, \mathcal{R}^t) $-enriched contraction condition[J]. Electronic Research Archive, 2024, 32(4): 2251-2266. doi: 10.3934/era.2024102
In the present study, we commenced by presenting a new class of maps, termed noncyclic $ (\varphi, \mathcal{R}^t) $-enriched quasi-contractions within metric spaces equipped with a transitive relation $ \mathcal{R}^t $. Subsequently, we identified the conditions for the existence of an optimal pair of fixed points pertaining to these mappings, thereby extending and refining a selection of contemporary findings documented in some articles. Specifically, our analysis will encompass the outcomes pertinent to reflexive and strictly convex Banach spaces.
[1] | R. Espínola, M. Gabeleh, On the structure of minimal sets of relatively nonexpansive mappings, Numer. Funct. Anal. Optim., 34 (2013), 845–860. https://doi.org/10.1080/01630563.2013.763824 doi: 10.1080/01630563.2013.763824 |
[2] | M. Gabeleh, Convergence of Picard's iteration using projection algorithm for noncyclic contractions, Indagationes Math., 30 (2019), 227–239. https://doi.org/10.1016/j.indag.2018.11.001 doi: 10.1016/j.indag.2018.11.001 |
[3] | A. Abkar, M. Gabeleh, Global optimal solutions of noncyclic mappings in metric space, J. Optim. Theory Appl., 153 (2012), 298–305. https://doi.org/10.1007/s10957-011-9966-4 doi: 10.1007/s10957-011-9966-4 |
[4] | L. B. Ćirić, A generalization of Banach's contraction principle, Proc. Amer.Math. Soc., 45 (1974), 267–273. https://doi.org/10.1090/s0002-9939-1974-0356011-2 doi: 10.1090/s0002-9939-1974-0356011-2 |
[5] | A. Fernández-León, M. Gabeleh, Best proximity pair theorems for noncyclic mappings in Banach and metric spaces, Fixed Point Theory, 17 (2016), 63–84. |
[6] | B. Fisher, Quasicontractions on metric spaces, Proc. Amer. Math. Soc., 75 (1979), 321–325. https://doi.org/10.1090/s0002-9939-1979-0532159-9 doi: 10.1090/s0002-9939-1979-0532159-9 |
[7] | M. Gabeleh, C. Vetro, A new extension of Darbo's fixed point theorem using relatively Meir-Keeler condensing operators, Bull. Aust. Math. Soc., 98 (2018), 286–297. https://doi.org/10.1017/s000497271800045x doi: 10.1017/s000497271800045x |
[8] | A. Safari-Hafshejani, Existence and convergence of fixed point results for noncyclic $\varphi$-contractions, AUT J. Math. Comput., Amirkabir University of Technology, in press. https://doi.org/10.22060/AJMC.2023.21992.1127 |
[9] | A. Safari-Hafshejani, The existence of best proximi points for generalized cyclic quasi-contractions in metric spaces with the $ {\rm UC} $ and ultrametric properties, Fixed Point Theory, 23 (2022), 507–518. https://doi.org/10.24193/fpt-ro.2022.2.06 doi: 10.24193/fpt-ro.2022.2.06 |
[10] | A. Safari-Hafshejani, A. Amini-Harandi, M. Fakhar, Best proximity points and fixed points results for noncyclic and cyclic Fisher quasi-contractions, Numer. Funct. Anal. Optim., 40 (2019), 603–619. https://doi.org/10.1080/01630563.2019.1566246 doi: 10.1080/01630563.2019.1566246 |
[11] | V. M. Sehgal, A fixed point theorem for mappings with a contractive iterate, Proc. Amer. Math. Soc., 23 (1969), 631–634. https://doi.org/10.1090/S0002-9939-1969-0250292-X doi: 10.1090/S0002-9939-1969-0250292-X |
[12] | S. Karaibyamov, B. Zlatanov, Fixed points for mappings with a contractive iterate at each point, Math. Slovaca, 64 (2014), 455–468. https://doi.org/10.2478/s12175-014-0218-6 doi: 10.2478/s12175-014-0218-6 |
[13] | L. Guseman, Fixed point theorems for mappings with a contractive iterate at a point, Proc. Amer. Math. Soc., 26 (1970), 615–618. https://doi.org/10.1090/S0002-9939-1970-0266010-3 doi: 10.1090/S0002-9939-1970-0266010-3 |
[14] | B. Samet, C. Vetro, Coupled fixed point, F-invariant set and fixed point of N-order, Ann. Funct. Anal., 1 (2010), 46–56. https://doi.org/10.15352/afa/1399900586 doi: 10.15352/afa/1399900586 |
[15] | A. Petrusel, Fixed points vs. coupled fixed points, J. Fixed Point Theory Appl., 20 (2018), 150. https://doi.org/10.1007/s11784-018-0630-6 doi: 10.1007/s11784-018-0630-6 |
[16] | A. Petrusel, G. Petrusel, B. Samet, J. C. Yao, Coupled fixed point theorems for symmetric contractions in b-metric spaces with applications to a system of integral equations and a periodic boundary value problem, Fixed Point Theory, 17 (2016), 459–478. |
[17] | A. Petrusel, G. Petrusel, Y. B. Xiao, J. C. Yao, Fixed point theorems for generalized contractions with applications to coupled fixed point theory, J. Nonlinear Convex Anal., 19 (2018), 71–88. |
[18] | K. Goebel, W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, 1990. https://doi.org/10.1017/CBO9780511526152 |
[19] | V. Zizler, On Some Rotundity and Smoothness Properties of Banach Spaces, Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1971. |
[20] | R. Espínola, A. Fernández-León, On best proximity points in metric and Banach space, preprint, arXiv: 0911.5263. |
[21] | T. Suzuki, M. Kikawa, C. Vetro, The existence of best proximity points in metric spaces with the property UC, Nonlinear Anal. Theory Methods Appl., 71 (2009), 2918–2926. https://doi.org/10.1016/j.na.2009.01.173 doi: 10.1016/j.na.2009.01.173 |
[22] | A. A. Eldred, P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl., 323 (2006), 1001–1006. https://doi.org/10.1016/j.jmaa.2005.10.081 doi: 10.1016/j.jmaa.2005.10.081 |
[23] | W. Sintunavarat, P. Kumam, Coupled best proximity point theorem in metric spaces, Fixed Point Theory Appl., 2012 (2012), 93. https://doi.org/10.1186/1687-1812-2012-93 doi: 10.1186/1687-1812-2012-93 |
[24] | V. Zhelinski, B. Zlatanov, On the $ {\rm UC} $ and $ {\rm UC} ^*$ properties and the existence of best proximity points in metric spaces, preprint, arXiv: 2303.05850. |
[25] | M. A. Al-Thagafi, N. Shahzad, Convergence and existence results for best proximity points, Nonlinear Anal. Theory Methods Appl., 70 (2009), 3665–3671. https://doi.org/10.1016/j.na.2008.07.022 doi: 10.1016/j.na.2008.07.022 |
[26] | M. Petric, B. Zlatanov, Best proximity points for $p$-cyclic summing iterated contractions, Filomat, 32 (2018), 3275–3287. https://doi.org/10.2298/fil1809275p doi: 10.2298/fil1809275p |
[27] | L. Ajeti, A. Ilchev, B. Zlatanov, On coupled best proximity points in reflexive Banach spaces, Mathematics, 10 (2022), 1304. https://doi.org/10.3390/math10081304 doi: 10.3390/math10081304 |
[28] | S. Kabaivanov, V. Zhelinski, B. Zlatanov, Coupled fixed points for Hardy-Rogers type of maps and their applications in the investigations of market equilibrium in duopoly markets for non-differentiable, Symmetry, 14 (2022), 605. https://doi.org/10.3390/sym14030605 doi: 10.3390/sym14030605 |
[29] | Y. Dzhabarova, S. Kabaivanov, M. Ruseva, B. Zlatanov, Existence, uniqueness and stability of market equilibrium in oligopoly markets, Adm. Sci., 10 (2020), 70. https://doi.org/10.3390/admsci10030070 doi: 10.3390/admsci10030070 |