Research article Special Issues

Sequential adaptive switching time optimization technique for maximum hands-off control problems

  • Received: 11 January 2024 Revised: 01 March 2024 Accepted: 13 March 2024 Published: 19 March 2024
  • In this paper, we consider maximum hands-off control problem governed by a nonlinear dynamical system, where the maximum hands-off control constraint is characterized by an $ L^{0} $ norm. For this problem, we first approximate the $ L^{0} $ norm constraint by a $ L^{1} $ norm constraint. Then, the control parameterization together with sequential adaptive switching time optimization technique is proposed to approximate the optimal control problem by a sequence of finite-dimensional optimization problems. Furthermore, a smoothing technique is exploited to approximate the non-smooth maximum operator and an error analysis is investigated for this approximation. The gradients of the cost functional with respect to the decision variables in the approximate problem are derived. On the basis of these results, we develop a gradient-based optimization algorithm to solve the resulting optimization problem. Finally, an example is solved to demonstrate the effectiveness of the proposed algorithm.

    Citation: Sida Lin, Lixia Meng, Jinlong Yuan, Changzhi Wu, An Li, Chongyang Liu, Jun Xie. Sequential adaptive switching time optimization technique for maximum hands-off control problems[J]. Electronic Research Archive, 2024, 32(4): 2229-2250. doi: 10.3934/era.2024101

    Related Papers:

  • In this paper, we consider maximum hands-off control problem governed by a nonlinear dynamical system, where the maximum hands-off control constraint is characterized by an $ L^{0} $ norm. For this problem, we first approximate the $ L^{0} $ norm constraint by a $ L^{1} $ norm constraint. Then, the control parameterization together with sequential adaptive switching time optimization technique is proposed to approximate the optimal control problem by a sequence of finite-dimensional optimization problems. Furthermore, a smoothing technique is exploited to approximate the non-smooth maximum operator and an error analysis is investigated for this approximation. The gradients of the cost functional with respect to the decision variables in the approximate problem are derived. On the basis of these results, we develop a gradient-based optimization algorithm to solve the resulting optimization problem. Finally, an example is solved to demonstrate the effectiveness of the proposed algorithm.



    加载中


    [1] M. Nagahara, D. E. Quevedo, D. Nesic, Maximum hands-off control: a paradigm of control effort minimization, IEEE Trans. Autom. Control, 61 (2016), 735–747. https://doi.org/10.1109/TAC.2015.2452831 doi: 10.1109/TAC.2015.2452831
    [2] J. Huang, Y. Shi, Guaranteed cost control for multi-sensor networkedcontrol systems using historical data, in 2012 American Control Conference (ACC), (2012), 4927–4932. https://doi.org/10.1109/ACC.2012.6315279
    [3] D. L. Donoho, Compressed sensing, IEEE Trans. Inf. Theory, 52 (2006), 1289–1306. https://doi.org/10.1109/TIT.2006.871582 doi: 10.1109/TIT.2006.871582
    [4] J. Wu, F. Liu, L. C. Jiao, X. Wang, Compressive sensing SAR image reconstruction based on Bayesian framework and evolutionary computation, IEEE Trans. Image Process., 20 (2011), 1904–1911. https://doi.org/10.1109/TIP.2010.2104159 doi: 10.1109/TIP.2010.2104159
    [5] L. Wang, Q. Wang, J. Wang, X. Zhang, Fast band-limited sparse signal reconstruction algorithms for big data processing, IEEE Sens. J., 23 (2023), 13084–13099. https://doi.org/10.1109/JSEN.2023.3268295 doi: 10.1109/JSEN.2023.3268295
    [6] Y. Shi, Y. Gao, S. Liao, D. Zhang, Y. Gao, D. Shen, A learning based CT prostate segmentation method via joint transductive feature selection and regression, Neurocomputing, 173 (2016), 317–331. https://doi.org/10.1016/j.neucom.2014.11.098 doi: 10.1016/j.neucom.2014.11.098
    [7] S. Weng, Editorial: spectroscopy, imaging and machine learning for crop stress, Front. Plant Sci., 14 (2023). https://doi.org/10.3389/fpls.2023.1240738 doi: 10.3389/fpls.2023.1240738
    [8] S. Wang, H. Chen, W. Kong, X. Wu, Y. Qian, K. Wei, A modified FGL sparse canonical correlation analysis for the identification of Alzheimer's disease biomarkers, Electron. Res. Arch., 31 (2023), 882–903. https://doi.org/10.3934/era.2023044 doi: 10.3934/era.2023044
    [9] F. Xu, Z. Lu, Z. Xu, An efficient optimization approach for a cardinality-constrained index tracking problem, Optim. Methods Software, 31 (2016), 258–271. https://doi.org/10.1080/10556788.2015.1062891 doi: 10.1080/10556788.2015.1062891
    [10] S. Bahmani, P. T. Boufounos, B. Raj, Learning model-based sparsity via projected gradient descent, IEEE Trans. Inf. Theory, 62 (2016), 2092–2099. https://doi.org/10.1109/TIT.2016.2515078 doi: 10.1109/TIT.2016.2515078
    [11] S. N. Negahban, P. Ravikumar, M. J. Wainwright, B. Yu, A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers, Stat. Sci., 27 (2012), 538–557. https://doi.org/10.1214/12-STS400 doi: 10.1214/12-STS400
    [12] E. J. Candes, T. Tao, Decoding by linear programming, IEEE Trans. Inf. Theory, 51 (2005), 4203-4215. https://doi.org/10.1109/TIT.2005.858979 doi: 10.1109/TIT.2005.858979
    [13] S. Foucart, M. J. Lai, Sparsest solutions of underdetermined linear systems via $l_{q}$ minimization for $0 \le q \le 1$, Appl. Comput. Harmon. Anal., 26 (2009), 395–407. https://doi.org/10.1016/j.acha.2008.09.001 doi: 10.1016/j.acha.2008.09.001
    [14] R. Chartrand, V. Staneva, Restricted isometry properties and nonconvex compressive sensing, Inverse Probl., 24 (2008), 035020. https://doi.org/10.1088/0266-5611/24/3/035020 doi: 10.1088/0266-5611/24/3/035020
    [15] G. Gasso, A. Rakotomamonjy, S. Canu, Recovering sparse signals with a certain family of nonconvex penalties and DC programming, IEEE Trans. Signal Process., 57 (2009), 4686–4698. https://doi.org/10.1109/TSP.2009.2026004 doi: 10.1109/TSP.2009.2026004
    [16] H. A. L. Thi, H. M. Le, P. D. Tao, Feature selection in machine learning: an exact penalty approach using a difference of convex function algorithm, Mach. Learn., 101 (2015), 163–186. https://doi.org/10.1007/s10994-014-5455-y doi: 10.1007/s10994-014-5455-y
    [17] W. Peng, T. Gu, Y. Zhuang, Z. He, C. Han, Pattern synthesis with minimum mainlobe width via sparse optimization, Digital Signal Process., 128 (2022), 103632. https://doi.org/10.1016/j.dsp.2022.103632 doi: 10.1016/j.dsp.2022.103632
    [18] J. Liang, X. Zhu, C. Yue, Z. Li, B. Qu, Performance analysis on knee point selection methods for multi-objective sparse optimization problems, in 2018 IEEE Congress on Evolutionary Computation (CEC), (2018), 1–8. https://doi.org/10.1109/CEC.2018.8477915
    [19] X. Xiu, Z. Miao, W. Liu, A sparsity-aware fault diagnosis framework focusing on accurate isolation, IEEE Trans. Ind. Inf., 19 (2022), 1356–1365. https://doi.org/10.1109/TII.2022.3180070 doi: 10.1109/TII.2022.3180070
    [20] C. V. Rao, Sparsity of linear discrete-Time optimal control problems with $L^{1}$ objectives, IEEE Trans. Autom. Control, 63 (2017), 513–517. https://doi.org/10.1109/TAC.2017.2732286 doi: 10.1109/TAC.2017.2732286
    [21] M. Babazadeh, Regularization for optimal sparse control structures: a primal-dual framework, in 2021 American Control Conference (ACC), (2021), 3850–3855. https://doi.org/10.23919/ACC50511.2021.9482729
    [22] P. Benner, H. $Faßbender$, On the numerical solution of large-scale sparse discrete-time Riccati equations, Adv. Comput. Math., 35 (2011), 119–147. https://doi.org/10.1007/s10444-011-9174-7 doi: 10.1007/s10444-011-9174-7
    [23] F. S. Aktacs, O. Ekmekcioglu, M. C. Pinar, Provably optimal sparse solutions to overdetermined linear systems with non-negativity constraints in a least-squares sense by implicit enumeration, Optim. Eng., 22 (2021), 2505–2535. https://doi.org/10.1007/s11081-021-09676-2 doi: 10.1007/s11081-021-09676-2
    [24] B. Polyak, A. Tremba, Sparse solutions of optimal control via Newton method for under-determined systems, J. Global Optim., 76 (2020), 613–623. https://doi.org/10.1007/s10898-019-00784-z doi: 10.1007/s10898-019-00784-z
    [25] D. Kalise, K. Kunisch, Z. Rao, Infinite horizon sparse optimal control, J. Optim. Theory Appl., 172 (2017), 481–517. https://doi.org/10.1007/s10957-016-1016-9 doi: 10.1007/s10957-016-1016-9
    [26] P. Budhraja, A. S. A. Dilip, Maximum hands-off control for a class of nonlinear systems, in 2021 29th Mediterranean Conference on Control and Automation (MED), (2021), 1003–1006. https://doi.org/10.1109/MED51440.2021.9480171
    [27] W. Ji, Optimal control problems with time inconsistency, Electron. Res. Arch., 31 (2023), 492–508. https://doi.org/10.3934/era.2023024 doi: 10.3934/era.2023024
    [28] P. Yu, S. Tan, J. Guo, Y. Song, Data-driven optimal controller design for sub-satellite deployment of tethered satellite system, Electron. Res. Arch., 32 (2024), 505–522. https://doi.org/10.3934/era.2024025 doi: 10.3934/era.2024025
    [29] K. L. Teo, B. Li, C. Yu, V. Rehbock, Applied and Computational Optimal Control: A Control Parametrization Approach, Springer: Optimization and Its Applications, 2021. https://doi.org/10.1007/978-3-030-69913-0
    [30] S. Su, M. Shao, C. Yu, K. L. Teo, On the correlation of local collocation and control parameterization methods, J. Ind. Manage. Optim., 2024. https://doi.org/10.3934/jimo.2024004 doi: 10.3934/jimo.2024004
    [31] Q. Lin, R. Loxton, K. L. Teo, The control parameterization method for nonlinear optimal control: a survey, J. Ind. Manage. Optim., 10 (2014), 275–309. https://doi.org/10.3934/jimo.2014.10.275 doi: 10.3934/jimo.2014.10.275
    [32] C. Xu, H. Li, Two-grid methods of finite element approximation for parabolic integro-differential optimal control problems, Electron. Res. Arch., 31 (2023), 4818–4842. https://doi.org/10.3934/era.2023247 doi: 10.3934/era.2023247
    [33] Y. Yuan, C. Liu, Optimal control for the coupled chemotaxis-fluid models in two space dimensions, Electron. Res. Arch., 29 (2021), 4269–4296. https://doi.org/10.3934/era.2021085 doi: 10.3934/era.2021085
    [34] Z. Z. Tao, B. Sun, A feedback design for numerical solution to optimal control problems based on Hamilton-Jacobi-Bellman equation, Electron. Res. Arch., 29 (2021), 3429–3447. https://doi.org/10.3934/era.2021046 doi: 10.3934/era.2021046
    [35] X. Pang, H. Song, X. Wang, J. Zhang, Efficient numerical methods for elliptic optimal control problems with random coefficient, Electron. Res. Arch., 28 (2020), 1001–1022. https://doi.org/10.3934/era.2020053 doi: 10.3934/era.2020053
    [36] H. W. J. Lee, K. L. Teo, X. Q. Cai, An optimal control approach to nonlinear mixed integer programming problems, Comput. Math. Appl., 36 (1998), 87–105. https://doi.org/10.1016/S0898-1221(98)00131-X doi: 10.1016/S0898-1221(98)00131-X
    [37] A. Siburian, V. Rehbock, Numerical procedure for solving a class of singular optimal control problems, Optim. Methods Software, 19 (2004), 413–426. https://doi.org/10.1080/10556780310001656637 doi: 10.1080/10556780310001656637
    [38] G. Vossen, Switching time optimization for bang-bang and singular controls, J. Optim. Theory Appl., 144 (2010), 409–429. https://doi.org/10.1007/s10957-009-9594-4 doi: 10.1007/s10957-009-9594-4
    [39] X. Zhu, C. Yu, K. L. Teo, Sequential adaptive switching time optimization technique for optimal control problems, Automatica, 146 (2022), 110565. https://doi.org/10.1016/j.automatica.2022.110565 doi: 10.1016/j.automatica.2022.110565
    [40] C. Liu, R. Loxton, K. L. Teo, S. Wang, Optimal state-delay control in nonlinear dynamic systems, Automatica, 135 (2022), 109981. https://doi.org/10.1016/j.automatica.2021.109981 doi: 10.1016/j.automatica.2021.109981
    [41] C. Liu, Z. Gong, C. Yu, S. Wang, K. L. Teo, Optimal control computation for nonlinear fractional time-delay systems with state inequality constraints, J. Optim. Theory Appl., 191 (2021), 83–117. https://doi.org/10.1007/s10957-021-01926-8 doi: 10.1007/s10957-021-01926-8
    [42] C. Liu, C. Yu, Z. Gong, H. T. Cheong, K. L. Teo, Numerical computation of optimal control problems with Atangana CBaleanu fractional derivatives, J. Optim. Theory Appl., 197 (2023), 798–816. https://doi.org/10.1007/s10957-023-02212-5 doi: 10.1007/s10957-023-02212-5
    [43] C. Yu, K. H. Wong, An enhanced control parameterization technique with variable switching times for constrained optimal control problems with control-dependent time-delayed arguments and discrete time-delayed arguments, J. Comput. Appl. Math., 427 (2023), 115106. https://doi.org/10.1016/j.cam.2023.115106 doi: 10.1016/j.cam.2023.115106
    [44] D. Wu, Y. Chen, C. Yu, Y. Bai, K. L. Teo, Control parameterization approach to time-delay optimal control problems: a survey, J. Ind. Manage. Optim., 19 (2023), 3750–3783. https://doi.org/10.3934/jimo.2022108 doi: 10.3934/jimo.2022108
    [45] D. Wu, Y. Bai, F. Xie, Time-scaling transformation for optimal control problem with time-varying delay, Discrete Contin. Dyn. Syst. - Ser. S, 13 (2020), 1683–1695. https://doi.org/10.3934/dcdss.2020098 doi: 10.3934/dcdss.2020098
    [46] P. Liu, X. Li, X. Liu, Y. Hu, An improved smoothing technique-based control vector parameterization method for optimal control problems with inequality path constraints, Optim. Control. Appl. Methods, 38 (2017), 586–600. https://doi.org/10.1002/oca.2273 doi: 10.1002/oca.2273
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(946) PDF downloads(97) Cited by(0)

Article outline

Figures and Tables

Figures(2)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog