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Abstract: In this paper, we consider maximum hands-off control problem governed by a nonlinear dy-
namical system, where the maximum hands-off control constraint is characterized by an L0 norm. For
this problem, we first approximate the L0 norm constraint by a L1 norm constraint. Then, the control
parameterization together with sequential adaptive switching time optimization technique is proposed
to approximate the optimal control problem by a sequence of finite-dimensional optimization problems.
Furthermore, a smoothing technique is exploited to approximate the non-smooth maximum operator
and an error analysis is investigated for this approximation. The gradients of the cost functional with
respect to the decision variables in the approximate problem are derived. On the basis of these re-
sults, we develop a gradient-based optimization algorithm to solve the resulting optimization problem.
Finally, an example is solved to demonstrate the effectiveness of the proposed algorithm.
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1. Introduction

Within numerous control systems, various measures are implemented to mitigate costs or curtail en-
ergy consumption. For some special cases, specific control values are deliberately maintained at zero
for designated durations using handoff control strategies, thereby effectively minimizing the associated
control costs. In [1], a novel control methodology was introduced to solve the maximum hands-off
control problem characterized by L0 norm, which is to find the sparsest control among all permissible
controls. This control methodology holds significant utility in minimizing electricity or fuel consump-
tion, showcasing its practical relevance and applicability. In [1], within the car’s start-stop system, the
engine is automatically deactivated when the vehicle comes to a halt or operates at speeds below a pre-
determined threshold. This deliberate shutdown serves to diminish CO2 emissions and decrease fuel
consumption as part of the system’s efficiency measures. Handoff control demonstrates effectiveness
within networked control systems as well [2].

Sparse optimization has emerged as a prominent subject of interest among scholars in recent years.
The technology of sparse optimization has garnered extensive attention and exploration across various
domains, including compressed sensing [3], image and signal processing [4,5], machine learning [6,7],
Alzheimer’s disease biomarkers [8], and other fields. Maximum hands-off control shares a relationship
with sparsity, a characteristic pertinent to numerous optimization problems. In the realm of sparse
optimization, sparsity refers to a condition where a substantial portion of elements within a matrix or
vector assumes zero values. Leveraging sparsity offers the potential to economize on both time and
compression expenses. Moreover, it serves as a mechanism to sift through extensive datasets, extract-
ing pertinent information and thereby streamlining the complexity of the problem [9]. Within various
optimization problems, the L0 norm of a vector commonly serves as a means to quantify and define
sparsity [10, 11]. Due to its non-convex and non-continuous nature, the L0 norm presents inherent
complexity in analysis. Consequently, numerous scholars resort to exploring the variational property
of the L0 norm and employing subdifferentiation techniques to address its intricacies. In [12], a tech-
nique known as convex relaxation was introduced as a substitute for the L0 norm, employing the more
tractable L1 norm. This transformation enables the formulation of the problem in a linear program-
ming paradigm, amenable to resolution using methods such as the interior point method or the simplex
method. In [13, 14], the approach revolves around the non-convex relaxation method, leveraging the
Lp relaxation technique, where 0 ≤ p ≤ 1, to yield solutions with increased sparsity. In [15, 16], a
focus is directed toward the Difference of Convex functions (DC) algorithm. This method entails the
representation of the L0 norm as a difference between two convex functions. Subsequently, leveraging
the DC algorithm facilitates the resolution of the resultant relaxation model. In [17], by addressing the
non-convex nature of the logarithmic function, a proposal was made to substitute the logarithm func-
tion for the L0 norm. In [18], the resolution involves addressing a sparse optimization problem that
encapsulates two competing objectives: measurement error minimization and sparsity maximization.
This problem is approached and solved through the utilization of a multi-objective evolutionary algo-
rithm. In [19], an effective fault diagnosis framework was constructed by integrating L0 norm sparse
constraint optimization with principal component analysis, aimed at mitigating the extent of sparsity.
However, in [12–19], the sparse optimization problems do not take into account the constraints of the
dynamical system. The focus of the study presented in [20] revolves around the L1 objective opti-
mal control problem specifically tailored for linear discrete systems. This formulation leads to diverse

Electronic Research Archive Volume 32, Issue 4, 2229–2250.



2231

sparse solutions based on the selection of distinct problem parameters. The study detailed in [21] in-
troduces a methodical approach for synthesizing sparse optimal control structures governed by linear
discrete systems. This method guarantees sparsity within solutions, enabling the specification of a
predetermined count of zero elements within the control structure. In [22], the utilization of the Smith
iteration and Altering-Direction-Implicit (ADI) iteration methods was explored for obtaining numerical
solutions in a large sparse optimal control problem governed by linear discrete-time Riccati equations,
leveraging Newton’s method. In [23], provably optimal sparse solutions to overdetermined linear sys-
tems with non-negativity constraints were researched in a least-squares sense by implicit enumeration.
Nevertheless, in [20–23], the sparse optimal control problem governed by the linear dynamical sys-
tem failed to incorporate the constraints associated with the nonlinear dynamical system. The work
presented in [24] delved into the examination of the Newton-like method of undetermined equations.
This exploration led to the discovery of sparse solutions pertaining to sparse optimal control problems
governed by an affine nonlinear system. The analysis of optimal control using the value function was
conducted employing the dynamic programming method. In [25], a dynamic programming approach
was introduced to effectively approximate the sparse optimal control problem governed by an affine
nonlinear system in a numerical context. The maximum hands off control problem governed by the
class of affine nonlinear systems was studied in [26]. Nonetheless, in [24–26], the nonlinear dynamical
systems involved in the sparse optimal control problem are affine nonlinear systems, where the state
variables and control inputs are separable. This paper delves into the investigation of the sparse opti-
mal control problem governed by a general nonlinear dynamical system where the state variables and
control inputs are inseparable.

The conventional approach to optimal control involves determining the most effective control strat-
egy within specified constraints [27]. This strategy aims to either maximize or minimize the perfor-
mance index. Typically, deriving an analytical solution for the optimal control problem governed by
a nonlinear dynamic system proves challenging. Therefore, the resolution of such problems often ne-
cessitates numerical methods to obtain an effective solution [28]. The numerical solutions to optimal
control problems can be divided into two solution strategies: first optimize then discretize (indirect
methods), and first discretize then optimize (direct methods) [29]. For problems that do not contain in-
equality constraints, indirect methods derive the first-order necessary conditions for the optimal control
problem, namely, the Euler-Lagrange equations that include the initial and boundary value conditions.
The solution to this initial-boundary value problem mainly involves two types of methods: the control
vector iteration method and methods such as multiple shooting and collocation [30]. The direct method
encompasses techniques such as the direct collocation method and control parameterization [31, 32].
Control parameterization involves discretizing solely the control function, approximating it using fixed
basis functions within specific subintervals [33]. The coefficients within this linear combination of
basis functions serve as the optimal decision variables. Typically, predetermined switching times gov-
ern the transitions between values for each control component, often evenly divided within specified
intervals [34]. To enhance solution accuracy, the time range of the control function is frequently sub-
divided more finely, leading to a greater number of decision variables. However, this denser division
amplifies computational costs. Simultaneously, to mitigate the need for extensive time range subdivi-
sions, one must consider incorporating the switching times as additional decision variables [35]. The
traditional time-scaling transformation operates by mapping variable switching times with fixed points
within a redefined time horizon. This process yields an optimization problem wherein the revised
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switching times remain constant. The application of the time-scaling transformation finds extensive
utility across diverse domains, including mixed integer programming [36] and singular optimal con-
trol [37]. Yet, in practical scenarios, simultaneous switching of time poses notable challenges [38].
The sequential adaptive switching time optimization technique (SASTOT) presented by [39], suggests
that the interval for control switching times can vary, affording the flexibility to freely select the num-
ber of segments for each approximate control component. The method initiates by applying control
parameterization and the time-scaling transformation to a single control component initially, leaving
the remaining components untouched. Subsequently, within the newly introduced time range, the time-
scaling transformation introduces a subsequent new time range. This iterative process continues until
the final control component undergoes processing in a similar manner. This modification introduces
a significant level of flexibility into the control strategy. Compared with the traditional time-scale
transformation techniques, the SASTOT can accurately identify sparse positions for each control.

In this study, our focus lies on the maximum hands-off control problem governed by a nonlinear
dynamical system (MHCPNDS) with a maximum hands-off control constraint characterized by the L0

norm. The optimization variables encompass the count of segments for each control component and
the respective switching times for each of these components. The examination of the MHCPNDS poses
challenges in obtaining an analytical solution. Hence, the adoption of a numerical solution becomes
imperative. In practical scenarios, simultaneous switching of all control components is not optimal.
Addressing this, this paper introduces the SASTOT, which allows for a flexible selection of the number
of segments and switching times for each individual control element. The integration of control param-
eterization with the SASTOT serves as a transformative approach to addressing the MHCPNDS. The
non-smooth term that involves the maximum operator is approximated through a smoothing function,
and we further illustrate the convergence of this approximation technique. The attainment of a sparse
solution for the MHCPNDS involves the utilization of a gradient-based algorithm. Empirical assess-
ments through numerical experiments substantiate the efficacy of the algorithm put forth in the study.

The contributions of the paper are three-fold:
1) Distinguished from the above-mentioned sparse optimization problem, which is amenable to

analytical solutions, we consider the sparse optimal control problem within a nonlinear dynamic sys-
tem. Given the intrinsic complexity of the nonlinear dynamic system, pinpointing an analytical solu-
tion poses a significant challenge. Taking these into consideration, we propose a numerical solution
method, based on the gradient formulae of the cost function (Theorems 5–8) and the gradient-based
algorithm, without requiring the linearization of the nonlinear dynamical systems.

2) A smoothing function has been introduced to mitigate the roughness of the non-smooth term
involving the maximum operator. Several significant theorems (Theorems 1–4) have been established,
illustrating that the smoothing function effectively addresses the shortcomings associated with con-
straint qualification noncompliance.

3) Setting itself apart from the time-scaling transformation technique, this paper introduces the SAS-
TOT method that enables flexible determination of the number of segments and the specific switching
times for each control element individually.

The rest of the paper is organized as follows. In Section 2, we present the MHCPNDS. In Section 3,
the MHCPNDS is transformed by using control parameterization and the SASTOT. In Section 4, we
deal with the nonsmoothness of the objective function by using the smoothing technique. In Section 5,
the gradient-based algorithm is used to solve the resulting smooth problem. In Section 6, numeri-
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cal results are presented. In Section 7, we draw some conclusions and suggest some future research
directions.

2. Maximum hands-off control problem

Let In be the set of {1, 2, ..., n}. For a continuous time control v : [0,T ] → R, the Lp norm is
defined by

∥v∥p ≜
( ∫ T

0
|v|pdt

) 1
p

, p ∈ [1,+∞). (2.1)

The L0 norm is defined by

∥v∥0 ≜ qM(supp(v)), (2.2)

where qM is the Lebesgue measure and the set supp(v) is called a support set of v defined by

supp(v) =
{
t ∈ [0,T ] : v(t) , 0

}
. (2.3)

In some cases, it is possible to significantly reduce the control effort by keeping the control value
at exactly zero over a time interval. Maximum hands-off control can be called sparse control, which
means that the more zeros the control value is in unit time, the more sparse it is. It makes the time
interval of the control completely zero.

In order to obtain the sparse solution of maximum hands-off control, we consider a nonlinear dy-
namical system defined by 

dx(t)
dt
= f (t, x(t),u(t)), t ∈ [0,T ],

x(0) = ξ,
x(T ) = 0,

(2.4)

where x(t) := (x1(t), ..., xn(t))T ∈ Rn denotes the state vector at time t, u(t) := (u1(t), ..., um(t))T ∈ Rm

denotes control input vector at time t, ξ denotes the initial state value, T ≥ 0 denotes a given terminal
time, and f (t, x(t),u(t)) denotes a nonlinear function vector defined on Rn.

Let x(·|u) denote the solution of system (2.4) satisfying

x(t|u) ≥ 0, t ∈ [0,T ]. (2.5)

For all t on [0,T ], there is also the following constraint on each component of the control input
vector u(t)

max
i∈Im
|ui(t)| ≤ 1. (2.6)

A control input vector u(t) ∈ Rm that satisfies constraint (2.6) is called a candidate control input
vector. Let L[T, ξ] be the set consisting of all candidate control input vectors.
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Definition 1. The maximum hands-off control constraint characterized by the L0 norm is defined by

A0(u) ≜
1
T

m∑
i=1

λi∥ui∥0 ≤ µ, (2.7)

where λi ≥ 0, i ∈ Im, are given weights, u ∈ L[T, ξ] denotes the admissible control, and µ is a small
positive number.

Definition 1 is used to characterize the sparsity of maximum hands-off control. The cost functional
is defined by

J(u) = π0

(
x(T |u)

)
+

∫ T

0
ϑ
(
x(t|u)

)
dt, (2.8)

where π0 : Rm → R and ϑ : Rm → R are continuously differentiable functions.
Then, our maximum hands-off control problem can be formulated as follows.

Problem A: Given system (2.4), choose an admissible control u ∈ L[T, ξ] to minimize the cost
functional defined in (2.8) subject to boundary condition (2.6) and maximum hands-off control con-
straint (2.7).

3. Solution to maximum hands-off control problem

The L0 norm, owing to its non-convex and discontinuous characteristics, inherently introduces com-
plexity into analytical procedures. The L0 norm can be well approximated by the L1 norm [20]. The
maximum hands-off control constraint characterized by the L0 norm is approximated by Definition 2.

Definition 2. The maximum hands-off control constraint characterized by the L1 norm is defined by

A1(u) ≜
1
T

m∑
i=1

λi∥ui∥1 =
1
T

m∑
i=1

λi

∫ T

0
|ui|dt ≤ µ, (3.1)

where λi ≥ 0, i ∈ Im, are given weights, u ∈ L[T, ξ] denotes the admissible control, and µ is a small
positive number.

Definition 2 serves to delineate the computationally efficient sparsity of maximum hands-off control.
By Definition 2, Problem A can be well approximated by the following Problem B.
Problem B: Given system (2.4), choose the control u ∈ L[T, ξ] to minimize the objective functional
defined in (2.8) subject to boundary condition (2.6) and maximum hands-off control constraint (3.1).

Control parameterization stands as an effective methodology for resolving the optimal control prob-
lem, commonly approached through approximation via piecewise constant functions [29, 40–42]. In-
creasing the level of detail in the time level partition leads to greater accuracy as it allows for a more
intricate and nuanced representation of the time-dependent processes or phenomena under considera-
tion [43]. Employing control parameterization enables the derivation of a finite-dimensional approx-
imation for Problem B. Ultimately, the gradient-based algorithm is employed to resolve the resultant
approximation problem.

The conventional time-scaling transformation necessitates simultaneous switching of all control
components, a condition challenging to attain in practical applications [44]. Hence, the introduction of
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SASTOT emerges as a solution, combining both time-scaling transformation and control parameteri-
zation methodologies [39]. Within this methodology, each control component possesses the capability
to adaptively adjust and independently select its switching time, allowing for diverse switching points
across components. Empirical validation showcases a notable reduction in computational complexity
alongside an improvement in the accuracy of calculations. For a clearer exposition of this approach,
this article examines two distinct control inputs. Let ũ(t) = [ũ1(t), ũ2(t)]T. Then, the dynamical sys-
tem is

f̃ (t, x̃(t), ũ1(t), ũ2(t)) = f̃ (t, x̃(t), ũ(t)). (3.2)

3.1. Control parameterization and time-scale transformation for ũ1(t).

The interval [0,T ] is divided into q1 subintervals [δl1−1
1 , δ

l1
1 ], l1 ∈ Iq1 , where σ1 := [δ1

1, δ
2
1, . . . , δ

q1
1 ]T

are variable switching time vector, and

0 = δ1
1 ≤ δ

2
1 ≤ . . . ≤ δ

q1
1 = T. (3.3)

The control component ũ1(t) can be approximated by

ũ1(t) ≈ ũq1
1 (t|δ1, σ1) =

q1∑
l1=1

ηl1
1 χ[δl1−1

1 ,δ
l1
1 )(t), t ∈ [0,T ], l1 ∈ Iq1 , (3.4)

where ηl1
1 is the piecewise constant function value on the l1th subinterval of the control component

u1(t) satisfying

a1 ≤ η
l1
1 ≤ b1, l1 ∈ Iq1 , (3.5)

and χ[δl1−1
1 ,δ

l1
1 )(t) is an indicator function defined by

χ[δl1−1
1 ,δ

l1
1 )(t) =

{
1, if t ∈ [δl1−1

1 , δ
l1
1 )),

0, if t < [δl1−1
1 , δ

l1
1 )).

(3.6)

Then, we obtain the following system:
d x̃(t)

dt
=

q1∑
l1=1

f̃ (t, x̃(t), ηl1
1 , ũ2(t)), t ∈ [0,T ],

x̃(0) = ξ,
x̃(T ) = 0.

(3.7)

Let x̃(·|η1, u2) denote the solution of system (3.7).
After applying the time-scaling transformation [45] to ũ1(t) and mapping the variable switching

times
{
δ0

1, δ
1
1, . . . , δ

q1
1

}
to a fixed number of switching times {0, 1, . . . , q1} in the new time horizon, we

define the vector ϕ1 := [ϕ1
1, . . . , ϕ

q1
1 ]T ∈ Rq1 , where ϕl1

1 = δ
l1
1 −δ

l1−1
1 ≥ ρ, ρ is an extremely small positive

number, l1 ∈ Iq1 , and ϕ1
1 + ϕ

2
1 + · · · + ϕ

q1
1 = T .

Then, we introduce a new time variable p and define a time scaling function ν1(p, ϕ1)

t(p) ≜ ν1(p,ϕ1) =
⌊p⌋∑

l1=1

ϕl1
1 + ϕ

(⌊p⌋+1)
1 (p − ⌊p⌋), p ∈ [0, q1], (3.8)
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where θ(p) = ũ2(ν1(p,ϕ1)) = ũ2(t) and ⌊p⌋ is a floor function of the time variable p. With the new time
variable p, the dynamical system is redefined on the subinterval [l1 − 1, l1), l1 ∈ Iq1 ,

d x̂(p)
dp

= ϕl1
1 f̂ (p, x̂(p), ηl1

1 , θ(p)),

x̂(0) = ξ,
x̂(T ) = 0.

(3.9)

Let x̂(·|η1, θ) denote the solution of system (3.9).

3.2. Control parameterization and time-scaling transformation for ũ2(t).

The interval [0, q1] is divided into q2 subintervals [pl2−1
2 , p

l2
2 ], l1 ∈ Iq2 , where σ2 = [p0

2, p
1
2, . . . , p

q2
2 ]T

is the variable switching time vector, and

0 = p0
2 ≤ p1

2 ≤ . . . ≤ pq2
2 = T. (3.10)

The control component ũ2(t) can be approximated by

ũ2(t) ≈ θ(p) :=
q2∑

l2=1

ηl2
2 χ[pl2−1

2 ,pl2
2 )(p), p ∈ [0, q1], (3.11)

where ηl2
2 is the piecewise constant function value on the l2th subinterval of the control component

θ(p) satisfying

a2 ≤ η
l2
2 ≤ b2, l2 ∈ Iq2 . (3.12)

With the new time variable p, system (3.9) is redefined on the subinterval [pl2−1
2 , p

l2
2 ), l2 ∈ Iq2 ,

d x̌(p)
dp

= ϕ
⌊p⌋
1 f̌ (p, x̌(p), η⌊p⌋1 , η

l2
2 ),

x̌(0) = ξ,
x̌(0) = 0.

(3.13)

After applying a time-scaling transformation to ǔ2(t) and mapping the variable switching times{
δ0

2, δ
1
2, . . . , δ

q2
2

}
to a fixed number of switching times {0, 1, . . . , q2} in the new time horizon, we define

the vector ϕ2 := [ϕ1
2, . . . , ϕ

q2
2 ]T ∈ Rq2 , where ϕl2

2 = δ
l2
2 − δ

l2−1
2 ≥ ρ, ρ is an extremely small positive

number, l2 ∈ Iq2 , and ϕ1
2 + ϕ

2
2 + · · · + ϕ

q2
2 = T .

Then, we introduce a new time variable w and define a time scaling function ν2(w, ϕ2)

p(w) ≜ ν2(w,ϕ2) =
⌊w⌋∑
l2=1

ϕl2
2 + ϕ

(⌊w⌋+1)
2 (w − ⌊w⌋), w ∈ [0, q2], (3.14)

where ⌊w⌋ is the floor function of the time variable w. System (3.13) is redefined on the subinterval
[l2 − 1, l2), l2 ∈ Iq2 , 

d x̌(w)
dw

= ϕl2
2 ϕ
⌊ν2(w)⌋
1 f̌ (w, x̌(w), η⌊ν2(w)⌋

1 , ηl2
2 ),

x̌(0) = ξ,
x̌(0) = 0.

(3.15)
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Let x̌(·|η1, η2,ϕ1,ϕ2) be the solution of system (3.15). Then the continuous state constraint (2.5)
becomes

x̌(w|η1, η2,ϕ1,ϕ2) ≥ 0,∀w ∈ [l2 − 1, l2), l2 ∈ Iq2 . (3.16)

The cost function (2.8) and the maximum hands-off control constraint (3.1) become

J(η1, η2, ϕ1, ϕ2) = π0

(
x̃(q2|η1, η2,ϕ1,ϕ2)

)
+

q2∑
l2=1

∫ l2

l2−1
ϕl2

2 ϕ
⌊ν2(w)⌋
1 ϑ(x̃(w|η1, η2,ϕ1,ϕ2))dw,(3.17)

A2(η1, η2, ϕ1, ϕ2) =
1
q2

q2∑
l2=1

∫ l2

l2−1
ϕl2

2 ϕ
⌊ν2(w)⌋
1

[
λ1|η

⌊ν2(w)⌋
1 | + λ2|η

l2
2 |
]
dw ≤ µ. (3.18)

With these in mind, Problem B can be approximated by the following Problem C.
Problem C: Given system (3.15), choose the quadruple (η1, η2, ϕ1, ϕ2) ∈ Rq1 × Rq1 × Rq2 × Rq2 to
minimize the objective function defined by (3.17) subject to continuous inequality constraints (3.16),
boundary conditions (3.5) and (3.12), and maximum hands-off control constraint (3.18).

Because of |η⌊ν2(w)⌋
1 | = 2max

{
η⌊ν2(w)⌋

1 , 0
}
− η⌊ν2(w)⌋

1 , |ηl2
2 | = 2max

{
ηl2

2 , 0
}
− ηl2

2 , the maximum hands-off
control constraint (3.18) can be equivalently transformed as A3(η1, η2, ϕ1, ϕ2) defined in (3.19).

A3(η1, η2, ϕ1, ϕ2) =
1
q2

q2∑
l2=1

∫ l2

l2−1
ϕl2

2 ϕ
⌊ν2(w)⌋
1

[
λ1(2max

{
η⌊ν2(w)⌋

1 , 0
}
− η⌊ν2(w)⌋

1 )

+ λ2(2max
{
ηl2

2 , 0
}
− ηl2

2 )
]
dw ≤ µ

(3.19)

Define

J1(η1, η2, ϕ1, ϕ2, ρ) = J(η1, η2, ϕ1, ϕ2) + ρH(η1, η2, ϕ1, ϕ2), (3.20)

where ρ is the penalty parameter and

H(η1, η2, ϕ1, ϕ2) =
q2∑

l2=1

∫ l2

l2−1
max

{
−x̃(w|η1, η2,ϕ1,ϕ2), 0

}
dw +

q1∑
l1=1

[
max

{
a1 − η

l1
1 , 0

}
+max

{
ηl1

1 − b1, 0
} ]

+

q2∑
l2=1

[
max

{
a2 − η

l2
1 , 0

}
+max

{
ηl2

2 − b2, 0
} ]
+ A3(η1, η2, ϕ1, ϕ2).

Thus, Problem C can be equivalently transformed into Problem D.
Problem D: Given system (3.15), choose the quadruple (η1, η2, ϕ1, ϕ2) ∈ Rq1 × Rq1 × Rq2 × Rq2 to
minimize the objective function defined in (3.20).

Remark 1. According to [29], it has been established that when the penalty parameter ρ exceeds its
threshold value ρ∗, the solution derived for Problem D represents an exact solution for Problem C.
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4. Smoothing process

4.1. Smoothing technique

The fundamental concept underlying the smooth technique involves the approximation of the non-
smooth maximum operator through the utilization of a smoothing function [46], which is defined by

P {G, ρ, q, ε} =


0, if G < −

ε

ρq
,

ρq
2ε

G2 +G +
ε

2ρq
, if −

ε

ρq
≤ G < 0,

G +
ε

2ρq
, if G ≥ 0,

(4.1)

where ρ is a penalty factor, q is the number of continuous inequality constraints, and ε > 0 is the
smoothing parameter.

Theorem 1. ( [46]) For ε > 0, we have

0 ≤ P {G, ρ, q, ε} −max {G, 0} ≤
ε

2ρq
. (4.2)

By the smoothing process, the maximum hands-off control constraint A3(η1, η2, ϕ1, ϕ2) defined in
(3.19) can be approximated by

Ã3(η1, η2, ϕ1, ϕ2, ρ, q2, ε)

=
1
q2

q2∑
l2=1

∫ l2

l2−1
ϕl2

2 ϕ
⌊ν2(w)⌋
1

[
λ1

(
2P{η⌊ν2(w)⌋

1 , ρ, q2, ε} − η
⌊ν2(w)⌋
1

)
+ λ2

(
2P{ηl2

2 , ρ, q2, ε} − η
l2
2

)]
dw.

(4.3)

Based on the smoothing function (4.1), the cost function (3.20) can be approximated by

J2(η1, η2, ϕ1, ϕ2, ρ, q1, q2, ε) = J(η1, η2, ϕ1, ϕ2) + ρH̃(η1, η2, ϕ1, ϕ2, ρ, q1, q2, ε), (4.4)

where

H̃(η1, η2, ϕ1, ϕ2, ρ, q1, q2, ε) =
q2∑

l2=1

∫ l2

l2−1
P{−x̃(w|η1, η2, ϕ1, ϕ2), ρ, q2, ε}dw + Ã3(η1, η2, ϕ1, ϕ2, ρ, q2, ε)

+

q2∑
l2=1

[
P{a2 − η

l2
2 , ρ, q2, ε} + P{ηl2

2 − b2, ρ, q2, ε}
]
+

q1∑
l1=1

[
P{a1 − η

l1
1 , ρ, q1, ε} + P{ηl1

1 − b1, ρ, q1, ε}
]
.

(4.5)

Based on the smoothing function (3.20), Problem D can be approximated by Problem E.
Problem E: Given system (3.15), choose the quadruple (η1, η2, ϕ1, ϕ2) ∈ Rq1 × Rq1 × Rq2 × Rq2 to
minimize the cost function defined in (4.4).

4.2. Error analysis

The application of smoothing techniques may introduce discrepancies between Problems D and E.
This section entails the derivation of errors between Problems D and E concerning the smoothing func-
tion (3.20). It has been demonstrated that for a sufficiently small smoothing parameter ε, the solution
to Problem D can be acquired by sequentially solving a series of Problem E while incrementing the
values of the penalty factor ρ.
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Theorem 2. If ρ > 0, q > 0, and ε > 0, then

0 ≤ J2(η1, η2, ϕ1, ϕ2, ρ, q1, q2, ε) − J1(η1, η2, ϕ1, ϕ2, ρ) ≤
5ε
2
+

(λ1 + λ2)T 2ε

q2
. (4.6)

Proof. Based on Theorem 1, we have for ρ > 0, q1, q2 > 0, and ε > 0,

0 ≤ P {G, ρ, q, ε} −max {G, 0} ≤
ε

2ρq
.

Then,

0 ≤ J2(η1, η2, ϕ1, ϕ2, ρ, q1, q2, ε) − J1(η1, η2, ϕ1, ϕ2, ρ)

= ρ

{ q2∑
l2=1

∫ l2

l2−1

(
P
{
x̃(w|η1, η2,ϕ1,ϕ2), ρ, q2, ε

}
−max

{
x̃(w|η1, η2,ϕ1,ϕ2), 0

})
dw

+

q1∑
l1=1

[(
P{ηl1

1 − a1, ρ, q1, ε} −max{ηl1
1 − a1, 0}

)
+

(
P{b1 − η

l1
1 , ρ, q1, ε} −max{b1 − η

l1
1 , 0}

)]
+

q2∑
l2=1

[(
P{ηl2

2 − a2, ρ, q2, ε} −max{ηl2
1 − a2, 0}

)
+

(
P{b2 − η

l2
2 , ρ, q2, ε} −max{b2 − η

l2
2 , 0}

)]
+

1
q2

q2∑
l2=1

∫ l2

l2−1
ϕl2

2 ϕ
⌊ν2(w)⌋
1

[
2λ1

(
P{η⌊ν2(w)⌋

1 , ρ, q2, ε} −max{η⌊ν2(w)⌋
1 , 0}

)
+ 2λ2

(
P{ηl2

2 , ρ, q2, ε} −max{ηl2
2 , 0}

)]
dw

}
≤ ρ

[5ε
2ρ
+

2(λ1 + λ2)T 2ε

2ρq2

]
=

5ε
2
+

(λ1 + λ2)T 2ε

q2
,

which completes the proof.

Theorem 3. Let (η∗
1
, η∗

2
,ϕ∗

1
,ϕ∗

2
) be the solution of Problem D, and let (η∗∗

1
, η∗∗

2
,ϕ∗∗

1
,ϕ∗∗

2
) be the solution

of Problem E. Then,

0 ≤ J2(η∗∗1 , η
∗∗

2 ,ϕ
∗∗

1 ,ϕ
∗∗

2 , ρ, q1, q2, ε) − J1(η∗1, η
∗

2,ϕ
∗

1,ϕ
∗

2, ρ) ≤
5ε
2
+

(λ1 + λ2)T 2ε

q2
.

Proof. Based on Theorem 2, we have

0 ≤ J2(η∗1, η
∗

2,ϕ
∗

1,ϕ
∗

2, ρ, q1, q2, ε) − J1(η∗1, η
∗

2,ϕ
∗

1,ϕ
∗

2, ρ) ≤
5ε
2
+

(λ1 + λ2)T 2ε

q2
,

0 ≤ J2(η∗∗1 , η
∗∗

2 ,ϕ
∗∗

1 ,ϕ
∗∗

2 , ρ, q1, q2, ε) − J1(η∗∗1 , η
∗∗

2 ,ϕ
∗∗

1 ,ϕ
∗∗

2 , ρ) ≤
5ε
2
+

(λ1 + λ2)T 2ε

q2
.

Since (η∗
1
, η∗

2
,ϕ∗

1
,ϕ∗

2
) is the solution of Problem D, we have

J1(η∗∗1 , η
∗∗

2 ,ϕ
∗∗

1 ,ϕ
∗∗

2 , ρ) > J1(η∗1, η
∗

2,ϕ
∗

1,ϕ
∗

2, ρ),

which yields
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J2(η∗∗1 , η
∗∗

2 ,ϕ
∗∗

1 ,ϕ
∗∗

2 , ρ, q1, q2, ε) − J1(η∗∗1 , η
∗∗

2 ,ϕ
∗∗

1 ,ϕ
∗∗

2 , ρ)
≤ J2(η∗∗1 , η

∗∗

2 ,ϕ
∗∗

1 ,ϕ
∗∗

2 , ρ, q1, q2, ε) − J1(η∗1, η
∗

2,ϕ
∗

1,ϕ
∗

2, ρ). (4.7)

Since (η∗∗
1
, η∗∗

2
,ϕ∗∗

1
,ϕ∗∗

2
) is the solution of Problem D, we obtain

J2(η∗∗1 , η
∗∗

2 ,ϕ
∗∗

1 ,ϕ
∗∗

2 , ρ, q1, q2, ε) < J2(η∗1, η
∗

2,ϕ
∗

1,ϕ
∗

2, ρ, q1, q2, ε),

which yields

J2(η∗∗1 , η
∗∗

2 ,ϕ
∗∗

1 ,ϕ
∗∗

2 , ρ, q1, q2, ε) − J1(η∗1, η
∗

2,ϕ
∗

1,ϕ
∗

2, ρ)
≤ J2(η∗1, η

∗

2,ϕ
∗

1,ϕ
∗

2, ρ, q1, q2, ε) − J1(η∗1, η
∗

2,ϕ
∗

1,ϕ
∗

2, ρ). (4.8)

Based on (4.7) and (4.8), we have

0 ≤ J2(η∗∗1 , η
∗∗

2 ,ϕ
∗∗

1 ,ϕ
∗∗

2 , ρ, q, ε) − J1(η∗∗1 , η
∗∗

2 ,ϕ
∗∗

1 ,ϕ
∗∗

2 , ρ)

≤ J2(η∗∗1 , η
∗∗

2 ,ϕ
∗∗

1 ,ϕ
∗∗

2 , ρ, q, ε) − J1(η∗1, η
∗

2,ϕ
∗

1,ϕ
∗

2, ρ)

≤ J2(η∗1, η
∗

2,ϕ
∗

1,ϕ
∗

2, ρ, q, ε) − J1(η∗1, η
∗

2,ϕ
∗

1,ϕ
∗

2, ρ) ≤
5ε
2
+

(λ1 + λ2)T 2ε

q2
,

which completes this proof.

Remark 2. Theorem 3 states that when the smoothing parameter ε assumes a sufficiently small value,
the solution of Problem E tends to approximate the solution of Problem D.

To obtain an error estimation between the solutions of Problems E and C outlined in Theorem 4,
the definition of ε-feasibility to Problem D is given in Definition 3.

Definition 3. A vector (ηε
1
, ηε

2
, ϕε

1
, ϕε

2
) ∈ Rq1 × Rq1 × Rq2 × Rq2 is called ε-feasible to Problem D if

P{(ηl2
2 )ε − a2, ρ, q2, ε} ≤ ε, P{b2 − (ηl2

2 )ε, ρ, q2, ε} ≤ ε, P{(ηl1
1 )ε − a1, ρ, q1, ε} ≤ ε,

P{b1 − (ηl1
1 )ε, ρ, q1, ε} ≤ ε, P{−x̃(w|ηε1, η

ε
2,ϕ

ε
1,ϕ

ε
2), ρ, q2, ε} ≤ ε,

P{(η⌊ν2(w)⌋
1 )ε, ρ, q2, ε} ≤ ε, P{(ηl2

2 )ε, ρ, q2, ε} ≤ ε.

Theorem 4. Let (η∗
1
, η∗

2
,ϕ∗

1
,ϕ∗

2
) and (η∗∗

1
, η∗∗

2
,ϕ∗∗

1
,ϕ∗∗

2
) be the solution of Problems D and E, respec-

tively. Furthermore, let (η∗
1
, η∗

2
,ϕ∗

1
,ϕ∗

2
) be feasible to Problem D and (η∗∗

1
, η∗∗

2
,ϕ∗∗

1
,ϕ∗∗

2
) be ε-feasible to

Problem D. Then

−
5ε
2
−

(λ1 + λ2)T 2ε

q2
≤ J(η∗∗1 , η

∗∗

2 ,ϕ
∗∗

1 ,ϕ
∗∗

2 ) − J(η∗1, η
∗

2,ϕ
∗

1,ϕ
∗

2) ≤
5ε
2
+

(λ1 + λ2)T 2ε

q2
. (4.9)

Proof. Since (η∗
1
, η∗

2
,ϕ∗

1
,ϕ∗

2
) is the solution of Problem D, we have

H(η∗1, η
∗

2,ϕ
∗

1,ϕ
∗

2) =
q2∑

l2=1

∫ l2

l2−1
max

{
−x̃(w|η∗1, η

∗

2,ϕ
∗

1,ϕ
∗

2, 0
}

dw

+

q1∑
l1=1

[
max

{
a1 − (ηl1

1 )∗, 0
}
+max

{
(ηl1

1 )∗ − b1, 0
} ]

+

q2∑
l2=1

[
max

{
a2 − (ηl2

1 )∗, 0
}
+max

{
(ηl2

2 )∗ − b2, 0
} ]
+ A3(η∗1, η

∗

2,ϕ
∗

1,ϕ
∗

2) = 0,

Electronic Research Archive Volume 32, Issue 4, 2229–2250.



2241

where

A3(η∗1, η
∗

2,ϕ
∗

1,ϕ
∗

2)

=
1
q2

q2∑
l2=1

∫ l2

l2−1
(ϕl2

2 )∗(ϕ⌊ν2(w)⌋
1 )∗

[
λ1(2max

{
(η⌊ν2(w)⌋

1 )∗, 0
}
− (η⌊ν2(w)⌋

1 )∗) + λ2(2max
{
(ηl2

2 )∗, 0
}
− (ηl2

2 )∗)
]
dw

= 0.

Since (η∗∗
1
, η∗∗

2
,ϕ∗∗

1
,ϕ∗∗

2
) is ε-feasible to Problem D, we obtain

0 ≤ ρH̃(η∗∗1 , η
∗∗

2 ,ϕ
∗∗

1 ,ϕ
∗∗

2 , ρ, q1, q2, ε) ≤
5ε
2
+

(λ1 + λ2)T 2ε

q2
.

Based on Theorem 3, we get

0 ≤ J(η∗∗1 , η
∗∗

2 ,ϕ
∗∗

1 ,ϕ
∗∗

2 ) + ρH̃(η∗∗1 , η
∗∗

2 ,ϕ
∗∗

1 ,ϕ
∗∗

2 , ρ, q1, q2, ε) − J(η∗1, η
∗

2,ϕ
∗

1,ϕ
∗

2) − ρH(η∗1, η
∗

1,ϕ
∗

1,ϕ
∗

2)

≤
5ε
2
+

(λ1 + λ2)T 2ε

q2
,

which completes this proof.

Remark 3. In this scenario, as outlined in Theorem 4, an error estimation between the solutions of
Problems E and C is provided, specifically under the condition of ρ > ρ∗. Consequently, the solution for
SOP (Sum of Optimization Problems) can be approximately obtained by iteratively solving a sequence
of Problem E.

5. Gradient computation

In this section, we will derive the gradient formulae of the cost function J2(η1, η2, ϕ1, ϕ2, ρ, q1, q2, ε)
with respect to the quadruple (η1, η2, ϕ1, ϕ2) ∈ Rq1 × Rq1 × Rq2 × Rq2 based on Theorems 5–8, whose
proofs are similar to the proofs of Theorems 1 and 2 in [39].

Theorem 5. For each (η1, η2,ϕ1,ϕ2), we have

∂x̃(w|η1, η2,ϕ1,ϕ2)
∂η1

= M1(w|η1, η2,ϕ1,ϕ2), w ∈ [0, q2], (5.1)

where M1(·|η1, η2,ϕ1,ϕ2) is the solution to the following system on w ∈ [l2 − 1, l2], l2 ∈ Iq2 :

 Ṁ1(w) = ϕl2
2 ϕ
⌊ν2(w)⌋
1

{∂ f (w, x̂(w), η⌊ν2(w)⌋
1 , ηl2

2 )
∂x̃

M1(w) +
∂ f (w, x̂(w), η⌊ν2(w)⌋

1 , ηl2
2 )

∂η1

}
.

M1(0) = 0.
(5.2)
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On the basis of Theorem 5, the gradient of J2 with respect to η1 is given as follows:

∂J2

∂η1
=
π0(x̃(q2|η1, η2))

∂x̃
M1(q2) +

q2∑
l2=1

∫ l2

l2−1
ϕl2

2 ϕ
⌊ν2(w)⌋
1

ϑ(x̃(w|η1, η2))
∂x̃

M1(w)dw

+ ρ
[ q2∑

l2=1

∫ l2

l2−1

P
{
−x̃(w|η1, η2,ϕ1,ϕ2), ρ, q2, ε

}
∂x̃

M1(w)dw

+

q1∑
l1=1

(P
{
a1 − η

l1
1 , ρ, q1, ε

}
+ P

{
ηl1

1 − b1, ρ, q1, ε
}
)

∂η1

+

q2∑
l2=1

∫ l2

l2−1

ϕl2
2 ϕ
⌊ν2(w)⌋
1

q2

{∂[λ1(2P
{
η⌊ν2(w)⌋

1 , c, q2, ε
}
− η⌊ν2(w)⌋

1 )]

∂η1

}
dw

]
.

(5.3)

Theorem 6. For each (η1, η2,ϕ1,ϕ2),

∂x̃(w|η1, η2,ϕ1,ϕ2)
∂η2

= M2(w|η1, η2,ϕ1,ϕ2), w ∈ [0, q2],

where M2(·|η1, η2,ϕ1,ϕ2) is the solution to the following system on w ∈ [l2 − 1, l2], l2 ∈ Iq2 : Ṁ2(w) = ϕl2
2 ϕ
⌊ν2(w)⌋
1

{∂ f (w, x̂(w), η⌊ν2(w)⌋
1 , ηl2

2 )
∂x̃

M2(w) +
∂ f (w, x̂(w), η⌊ν2(w)⌋

1 , ηl2
2 )

∂η2

}
.

M2(0) = 0.
(5.4)

On the basis of Theorem 6, the gradient of J2 with respect to η2 is given as follows:

∂J2

∂η2
=
π0(x̃(q2|η1, η2))

∂x̃
M2(q2) +

q2∑
l2=1

∫ l2

l2−1
ϕl2

2 ϕ
⌊ν2(w)⌋
1

ϑ(x̃(w|η1, η2))
∂x̃

M2(w)dw

+ ρ
[ q2∑

l2=1

∫ l2

l2−1

P
{
−x̃(w|η1, η2,ϕ1,ϕ2), ρ, q2, ε

}
∂x̃

M2(w)dw

+

q1∑
l1=1

(P
{
a2 − η

l2
2 , ρ, q2, ε

}
+ P

{
ηl2

2 − b2, ρ, q2, ε
}
)

∂η2

+

q2∑
l2=1

∫ l2

l2−1

ϕl2
2 ϕ
⌊ν2(w)⌋
1

q2

{∂[λ2(2P
{
ηl2

2 , ρ, q2, ε
}
− ηl2

2 )]

∂η2

}
dw

]
.

Theorem 7. For each (η1, η2,ϕ1,ϕ2), we have

∂x̃(w|η1, η2,ϕ1,ϕ2)
∂ϕ1

= N1(w|η1, η2,ϕ1,ϕ2), w ∈ [0, q2],

where N1(·|η1, η2,ϕ1,ϕ2) is the solution to the following system on w ∈ [l2 − 1, l2], l2 ∈ Iq2 : Ṅ1(w) = ϕl2
2

{ϕ⌊ν2(w)⌋
1 ∂ f (w, x̂(w), η⌊ν2(w)⌋

1 , ηl2
2 )

∂x̃
N1(w) +

ϕ⌊ν2(w)⌋
1 ∂ f (w, x̂(w), η⌊ν2(w)⌋

1 , ηl2
2 )

∂ϕ1

}
.

N1(0) = 0.
(5.5)
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Based on Theorem 7, the gradient of J2 with respect to ϕ1 is given as follows:

∂J2

∂ϕ1
=
π0(x̃(q2|η1, η2,ϕ1,ϕ2))

∂ϕ1
N1(q2) +

q2∑
l2=1

∫ l2

l2−1
ϕl2

2

ϕ⌊ν2(w)⌋
1 ϑ(x̃(w|η1, η2,ϕ1,ϕ2))

∂ϕ1
N1(w)dw

+ ρ
[ q2∑

l2=1

∫ l2

l2−1

P
{
−x̃(w|η1, η2,ϕ1,ϕ2), ρ, q2, ε

}
∂ϕ1

N1(w)dw

+

q2∑
l2=1

∫ l2

l2−1

ϕl2
2

q2

{ϕ⌊ν2(w)⌋
1 ∂[λ1(2P

{
η⌊ν2(w)⌋

1 , ρ, q2, ε
}
− η⌊ν2(w)⌋

1 ) + λ2(2P
{
ηl2

2 , ρ, q2, ε
}
− ηl2

2 )

∂ϕ1

}
dw

]
.

Remark 4. For this, we introduce the inverse of ν2(w). The gradient of J2 with respect to ϕ2 is compli-
cated to derive because the switching time is in the time range of w. ν−1

2 (p) is a function of ϕ2, and at
every connection point, this inverse function is not differentiable. ν−1

2 (r), r ∈ Iq1 is represented by wr,
and the gradient of wr with respect to ϕl2

2 , l2 ∈ Iq2 at r ∈ Iq1−1 is given in Remark 5 as follows.

Remark 5. If point wr coincide with w ∈ Iq2−1, then we have

∂w−r
∂ϕl2

2

:=


0 if l2 > e,

(−p +
e−1∑
j=1
ϕ

j
2)/(ϕe

2)2, if l2 = e,

−
1
ϕe+1

2

, if l2 < e,

(5.6)

and

∂w+r
∂ϕl2

2

:=


0 if l2 > e + 1,

(−p +
e∑

j=1
ϕ

j
2)/(ϕe+1

2 )2, if l2 = e + 1,

−
1
ϕe+1

2

if l2 < e + 1.

(5.7)

Remark 6. If point wh does not coincide with w ∈ Iq2−1, then we have
∂w+r
∂ϕ2
=
∂w−r
∂ϕ2

.

With the above discussion, the gradient of states with respect to ϕ2 is given below.

Theorem 8. For each (η1, η2,ϕ1,ϕ2), we have

∂x̃(w|η1, η2,ϕ1,ϕ2)
∂ϕ2

= N2(w|η1, η2,ϕ1,ϕ2), w ∈ [0, q2],

where N2(·|η1, η2,ϕ1,ϕ2) is the solution to the following system on w ∈ [l2 − 1, l2], l2 ∈ Iq2 :
Ṅ2(w) = ϕ⌊ν2(w)⌋

1

{ϕl2
2 ∂ f (w, x̂(w), η⌊ν2(w)⌋

1 , ηl2
2 )

∂x̃
N2(w) +

ϕl2
2 ∂ f (w, x̂(w), η⌊ν2(w)⌋

1 , ηl2
2 )

∂ϕ2

}
,

N2(w+r ) = N2(w−r ) − H+r, f ,h + H−r, f ,h,
N2(0) = 0,

(5.8)
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with
H−r, f ,h = ϕ

⌊ν2(w−h )⌋
1 ϕ

⌊w−h ⌋
2

[
f (x̃(w−h )) + h1(x̃(w−h ))η⌊ν2(w−h )⌋

1 + h2(x̃(w−h ))η⌊w
−
h ⌋

2

]∂w−r
∂ϕ2

and

H+r, f ,h = ϕ
⌊ν2(w+h )⌋
1 ϕ

⌊w+h ⌋
2

[
f (x̃(w+h )) + h1(x̃(w+h ))η⌊ν2(w+h )⌋

1 + h2(x̃(w+h ))η⌊w
+
h ⌋

2

]∂w+r
∂ϕ2

.

Based on Theorem 8, the gradient of J2 with respect to ϕ2 is given as follows:

∂J2

∂ϕ2
=
π0(x̃(q2|η1, η2,ϕ1,ϕ2))

∂ϕ2
N2(q2) +

q2∑
l2=1

∫ l2

l2−1
ϕl2

2

ϕ⌊ν2(w)⌋
1 ϑ(x̃(w|η1, η2,ϕ1,ϕ2))

∂ϕ2
N2(w)dw

+ ρ
[ q2∑

l2=1

∫ l2

l2−1

P
{
−x̃(w|η1, η2,ϕ1,ϕ2), ρ, q2, ε

}
∂ϕ2

N2(w)dw

+

q2∑
l2=1

∫ l2

l2−1

ϕ⌊ν2(w)⌋
1

q2

{ϕl2
2 ∂[λ1(2P

{
η⌊ν2(w)⌋

1 , ρ, q2, ε
}
− η⌊ν2(w)⌋

1 ) + λ2(2P
{
ηl2

2 , ρ, q2, ε
}
− ηl2

2 )

∂ϕ2

}
dw

− H+r, f ,h + H−r, f ,h
]
.

where H+r,λi
and H−r,λi

are defined as H+r, f ,h and H−r, f ,h, respectively.

Remark 7. The gradient formulae of the cost function J2(η1, η2, ϕ1, ϕ2, ρ, q1, q2, ε) with respect to the
quadruple (η1, η2, ϕ1, ϕ2) ∈ Rq1×Rq1×Rq2×Rq2 is calculated by the variational method (Theorems 5–8).
Therefore, the gradient-based algorithm easily obtains the optimal solution for Problem E.

6. Numerical results

We consider a nonlinear maximum hands-off control problem with the cost functional defined by

min
i

h0 =

∫ 1

0

{
−6x2

1(t) − 12x2(t) + 3u1(t) + u2(t)
}

dt, (6.1)

governed by the nonlinear dynamical system
ẋ1(t) = u2(t),
ẋ2(t) = −x2

1(t) + u1(t), t ∈ [0, 1],
x = (1, 0)T.

(6.2)

with the maximum hands-off control constraint

A1(u1, u2) =
2∑

i=1

λi

∫ 1

0
|ui(t)|dt ≤ µ = 10, (6.3)

and the bound constraints of the control inputs

− 1 ≤ u j(t) ≤ 1, t ∈ [0, 1], j ∈ I2.
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Table 1. Type, control strategies, optimal cost, and A1(u1, u2).

Type Control strategies Optimal cost A1(u1, u2)
Case 1 u1∗ h0(u1∗) = 0.3392 A1(u1∗)= 21.2052
Case 2 u2∗ h0(u2∗) = 0.3737 A1(u2∗) = 7.303

Case 1: The optimal control problem governed by nonlinear dynamical system (6.2) without the
maximum hands-off control constraint (6.3).

Case 2: The optimal control problem governed by nonlinear dynamical system (6.2) with the max-
imum hands-off control constraint (6.3).

For Cases 1 and 2, the number of segments for the two controls are, respectively, 10 and 20. For
Cases 1 and 2, by using the proposed method we respectively obtain the optimal control strategies u1∗

and u2∗ plotted in Figures 1 and 2. Their corresponding optimal cost and sparsity levels are given in
Table 1. From Figure 2, it is observed that for the first control, sparse control happened in the first and
from the fourth to the tenth segments. For the second control, sparse control occurred in the second,
the sixteenth, from the ninth to the thirteenth, and from the eighteenth to the twentieth segments.

The graphical representation in Figure 1 illustrates that the optimal control strategies demonstrate a
considerable density. In contrast, Figure 2 portrays these strategies with a noticeable level of sparsity.
Nevertheless, it is essential to highlight that the inclusion of the maximum hands-off control constraint
(6.3) results in a marginal increase in the cost function value compared to the scenario without this
constraint (6.3). Specifically, the cost function slightly exceeds its counterpart when the maximum
hands-off control constraint is imposed.

The observed trend in Figure 2 reveals a noteworthy pattern in the sparsity of the sparse optimal
control strategies. It becomes evident that there is a rapid initial increase in sparsity, accompanied by
a relatively minor escalation in cost. Therefore, based on the findings presented in this paper, it can be
inferred that the proposed method exhibits the capability to generate solutions of superior quality.

Furthermore, from Table 1, it is pertinent to note that the value of the cost function, specifically
h0(u2∗), slightly exceeds that of h0(u1∗). The smaller the value of A1(u∗), the sparser u∗ becomes. From
Table 1, it follows that u2∗ is sparser than u1∗. So, we can conclude that this proposed method achieves
a balance between system performance and sparsity, thereby suggesting its efficacy in providing solu-
tions that optimize both aspects effectively.

Figure 1. The optimal control strategies u1∗ without the maximum hands-off control con-
straint (6.3).
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Figure 2. The sparse optimal control strategies u2∗ with the maximum hands-off control
constraint (6.3).

7. Conclusions

Solving the sparse optimal control problem within the framework of linear dynamical systems often
allows for an analytical solution. However, when addressing the maximum hands-off control problem
within the domain of nonlinear dynamical systems, obtaining an analytical solution proves to be con-
siderably challenging. This paper necessitates the numerical solution of the sparse optimal control
problem which is governed by nonlinear dynamical systems. We employ control parameterization in
conjunction with the sequential adaptive switching time optimization technique to approximate the
maximum hands-off control problem by a sequence of finite-dimensional optimization problem. This
approach allows for varying control switching times without imposing uniformity and offers flexibil-
ity in selecting control components. The resolution of the sparse optimal control problem relies on
a gradient-based algorithm. To showcase the efficacy of the proposed methodology, an illustrative
example is provided.
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