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Abstract: In the present study, we commenced by presenting a new class of maps, termed
noncyclic (φ,Rt)-enriched quasi-contractions within metric spaces equipped with a transitive relation
Rt. Subsequently, we identified the conditions for the existence of an optimal pair of fixed points
pertaining to these mappings, thereby extending and refining a selection of contemporary findings
documented in some articles. Specifically, our analysis will encompass the outcomes pertinent to
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1. Introduction

Let F , ∅ and G , ∅ be subsets of a metric space (X, d). A self-mapping Γ on F ∪G is said to be
noncyclic whenever Γ(F) ⊆ F and Γ(G) ⊆ G. In this situation, a point (p∗, q∗) ∈ F × G is called an
optimal pair of fixed points of Γ provided that

(Γp∗,Γq∗) = (p∗, q∗) and d(p∗, q∗) = Dist(F,G),

where Dist(F,G) = inf{d(p, q) : p ∈ F, q ∈ G}. We denote the set of all optimal pairs of fixed points
of Γ in F ×G by Fix(Γ |F×G).
Γ : F ∪G → F ∪G is called a noncyclic contraction if there exists λ ∈ [0, 1) such that

d(Γp,Γq) ≤ λd(p, q) + (1 − λ)Dist(F,G), (1.1)
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for all (p, q) ∈ F ×G.
In 2013, Espı́nola and Gabeleh proved that if F and G are nonempty, weakly compact, and convex

subsets of a strictly convex Banach space X, then Fix(Γ |F×G) , ∅ for every noncyclic contraction Γ
defined on F ∪G (see Theorem 3.10 of [1]).

After that, Gabeleh used the projection operators and proved both existence and convergence of
an optimal pair of fixed points for noncyclic contractions in the setting of uniformly convex Banach
spaces (see Theorem 3.2 of [2]).

We refer to [3–10] to study the problem of the existence of an optimal pair of fixed points for various
classes of noncyclic mappings.

Recently, the authors of [10] introduced a new class of noncyclic mappings called noncyclic Fisher
quasi-contractions, which contains the class of noncyclic contractions as a subclass, and they surveyed
the existence and convergence of an optimal pair of fixed points in metric spaces by using a geometric
notion of property WUC (Definition 2.2) on a nonempty pair of subsets of a metric space.

In this article, we extend the main conclusion of the paper [10] by considering an appropriate control
function and equipping the metric space (X, d) with a transitive relation Rt. Indeed, we introduce a new
class of noncyclic mappings called noncyclic (φ,Rt)-enriched quasi-contractions, which is a kind of
contraction at a point defined first in [11] and generalized later on in [12, 13]. We then study the
existence, uniqueness, and convergence of an optimal pair of fixed points for such mappings in metric
spaces equipped with a transitive relation Rt. This idea to consider a contractive condition only for
points in some transitive relations was first introduced in [14] in order to generalize the ideas of coupled
fixed points in partially ordered spaces, and further developed in a sequence of articles [15–17]. We
will also examine some other existence conclusions of an optimal pair of fixed points in the framework
of reflexive and strictly convex Banach spaces.

2. Preliminaries

In this section, we point out some definitions and notations, which will be used in our coming
arguments.

In what follows, BX and SX denote the unit closed ball and the unit sphere in a Banach space X.

Definition 2.1. ( [18]) A Banach space X is said to be

(i) uniformly convex provided that for every ε ∈ (0, 2], one can find a corresponding δ = δ(ε) with
the property that, whenever p, q ∈ BX with ∥p − q∥ ≥ ε, it follows that

∥
p + q

2
∥ < 1 − δ;

(ii) strictly convex if for any two distinct elements p, q ∈ SX, we have

∥
p + q

2
∥ < 1.

It is evident that every uniformly convex Banach space X is strictly convex. However, the reverse
does not universally hold. For instance, the Banach space ℓ1, which is equipped with its standard norm

∥u∥ =
√
∥u∥21 + ∥u∥

2
2, ∀u ∈ l1,
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where ∥.∥1 and ∥.∥2 are the norms on l1 and l2, respectively, is strictly convex, which is not uniformly
convex (see [19] for more details). Also, Hilbert spaces and lp spaces (1 < p < ∞) are well-known
examples of uniformly convex Banach spaces. It is worth noticing that by the Milman-Pettis theorem,
every uniformly convex Banach space is reflexive, too.

Definition 2.2. ( [20, 21]) Let F , ∅ and G , ∅ be subsets of a metric space (X, d), then (F,G) is said
to satisfy

(i) property UC, if for all sequences {pn}, {p′n} ⊆ F in F and {qn} ⊆ G, we have

limn→∞ d(pn, qn) = Dist(F,G),
limn→∞ d(p′n, qn) = Dist(F,G),

}
⇒ lim

n→∞
d(pn, p′n) = 0;

(ii) property WUC, if for any sequence {pn} ⊆ F such that

∀ϵ > 0, ∃q ∈ G ; d(pn, q) ≤ Dist(F,G) + ϵ, for n ≥ n0,

{pn} is Cauchy.

In [22], it was disclosed that each nonempty, closed, and convex pair in a uniformly convex
Banach space X possesses the property UC. Additionally, if F , ∅ and G , ∅ are subsets in a metric
space (X, d), with F being complete and the pair (F,G) exhibiting the property UC, then the pair
(F,G) is also endowed with the property WUC (see [20]). For more information and properties of the
geometric notions of UC, we refer to [23] and the most recent results in [24], where the authors have
found a connection between the properties UC and uniform convexity and have introduced some
generalizations of these properties.

Here, we sate the main result of [10].

Theorem 2.3. ( [10]) Given nonempty and complete subsets F and G of a metric space (X, d), suppose
that the pairs (F,G) and (G, F) have the property WUC. Let noncyclic continuous self-mapping Γ
on F ∪ G, be a noncyclic Fisher quasi-contraction, that is, for some α, β ∈ N, there exists λ ∈ [0, 1)
such that

d(Γαx,Γβq) ≤λ∆[Cp
α,C

q
β] + (1 − λ)Dist(F,G) ∀p ∈ F, q ∈ G, (2.1)

where Cu
n := {u,Γu,Γ2u, · · · ,Γnu} for u ∈ X, n ∈ N, and

∆[Cp
α,C

q
β] := sup{d(p′, q′) : (p′, q′) ∈ Cp

α ×Cq
β}.

There exists (p∗, q∗) ∈ F × G such that Fix(Γ |F×G) = {(p∗, q∗)}, (Γn p0,Γ
nq0) → (p∗, q∗) as n → ∞

for every (p0, q0) ∈ F ×G.

3. Noncyclic (φ,Rt)-enriched quasi-contractions

Throughout this section, we assume that I is an identity function defined on [0,+∞) and φ ∈ [ϕ],
such that

[ϕ] :=
{
φ : [0,+∞)→ [0,+∞) : φ is a strictly increasing function and I − φ is increasing

}
.
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For instance, if we define φ1(t) = λt for some λ ∈ [0, 1) and φ2(t) = (t + 2) − ln(t + 2) and
φ3(t) = t −

√
t + 1 + 3, then φ j ∈ [ϕ] for j = 1, 2, 3.

It is worth noticing that if φ ∈ [ϕ], then for all t > 0, we have

φ(t) > φ(
t
2

) ≥ 0. (3.1)

So, (I − φ)(t) < t for all t > 0. Since I − φ is increasing, it can be easily proven that φ is continuous.
Also, for given nonempty subsets F and G of a metric space (X, d), we set

d∗(p, q) := d(p, q) − Dist(F,G), ∀(p, q) ∈ F ×G,

∆∗
[
F,G

]
:= sup

{
d∗(p, q) : (p, q) ∈ F ×G

}
.

Definition 3.1. Let F , ∅ and G , ∅ be subsets of a metric space (X, d) and “Rt” be a transitive relation
on F. Let Γ be a noncyclic mapping on F ∪G, then

(i) we say that Γ isRt-continuous at p ∈ F if for every sequence {pn} in F with pn → p and pn R
t pn+1,

for all n ∈ N, we have Γpn → Γp;
(ii) we say that Γ preserves “Rt” on F whenever TuRt Tv for every u, v ∈ F with uRt v;

(iii) we say that “Rt” has a property (∗) on F, if for any sequence {pn} in F with pn → p ∈ F and
pn R

t pn+1 for all n ∈ N, we have pn R
t p for all n ∈ N.

Now, with these prerequisites and inspired by the main existence results of [10], we introduce the
following new family of noncyclic mappings. Henceforth, we denote a metric space (X, d) equipped
with a transitive relation “Rt” by Xd,t.

Definition 3.2. Let ∅ , F,G ⊆ Xd,t. A mapping Γ : F ∪ G → F ∪ G is said to be a noncyclic
(φ,Rt)-enriched quasi-contraction if Γ is noncyclic. For some α, β ∈ N,

d∗(Γαp,Γβq) ≤(I − φ)
(
∆∗[Cp

α,C
q
β]
)
, (3.2)

for all (p, q) ∈ F ×G that are comparable with respect to “Rt”.

Example 3.3. Let F , ∅ and G , ∅ be subsets of a metric space (X, d) and let Γ : F ∪G → F ∪G be a
noncyclic Fisher quasi-contraction in the sense of Theorem 2.3, then Γ is a noncyclic (φ,Rt)-enriched
quasi-contraction with Rt := X × X and φ(t) := (1 − λ)t for t ≥ 0 and λ ∈ [0, 1).

Remark 3.4. Let ∅ , F,G ⊆ Xd,t and Γ : F∪G → F∪G be a noncyclic mapping. SetD := Dist(F,G).
If for any (p, q) ∈ F ×G, we have

d(Γp,Γq) ≤(I − φ) (max {d(p, q), d(p,Γq), d(q,Γp)}) + φ(D),
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then

d(Γp,Γq) ≤ max {(I − φ)(d(p, q)), (I − φ)(d(p,Γq)), (I − φ)(d(q,Γp))}
− (I − φ)(D) +D

= max
{
(I − φ)

(
d∗(p, q) +D

)
− (I − φ)(D), (I − φ)

(
d∗(p,Γq) +D

)
− (I − φ)(D),

(I − φ)
(
d∗(q,Γp) +D

)
− (I − φ)(D)

}
+D. (3.3)

Now, define φ∗ : [0,+∞) → [0,+∞) with φ∗(t) := φ(t + D) − φ(D) for all t ≥ 0. In view of the
fact that (I − φ∗)(t) = (I − φ)(t +D) − (I − φ)(D), we can see that φ∗ is strictly increasing and I − φ∗ is
increasing. So from (3.3), we get

d(Γp,Γq) ≤max
{
(I − φ∗)(d∗(p, q)), (I − φ∗)(d∗(p,Γq)), (I − φ∗)(d∗(q,Γp))

}
+D

≤(I − φ∗) (max {d∗(p, q), d∗(p,Γq), d∗(q,Γp)}).

Example 3.5. Given complete subsets F , ∅ and G , ∅ of a metric space (X, d), let Γ : F∪G → F∪G
be a noncyclic φ-contraction ( [8]), that is, Γ is noncyclic on F ∪G and

∃ φ ∈ [ϕ]; d(Γx,Γy) ≤ d(p, q) − φ(d(p, q)) + φ(Dist(F,G)), ∀(p, q) ∈ F ×G.

From Remark 3.4, Γ is a noncyclic (φ∗,Rt)-enriched quasi-contraction with Rt := X × X.

The following lemmas play essential roles in proving our main result in this section.

Lemma 3.6. Let ∅ , F,G ⊆ Xd,t be complete. Let Γ be a noncyclic (φ,Rt)-enriched quasi-contraction
mapping on F ∪G, and Γ preserves “Rt”. Let p0 ∈ F and q0 ∈ G be such that p0 R

t q0 R
t Γp0. Define

pn+1 := Γpn and qn+1 := Γqn for each n ≥ 0, then for any m, n ∈ N, we have

∆∗[Cp0
n ,C

q0
m ] = d∗(Γk p0,Γ

lq0), where k < α or l < β. (3.4)

Proof. Since Γ preserves “Rt” on F ∪G and p0 R
t q0 R

t p1, we get

p0 R
t q0 R

t p1 R
t q1 R

t p2 R
t q2 R

t p3 R
t · · · . (3.5)

So, from transitivity of Rt, for all i, j ∈ N, we have

pi and q j are comparable w.r.t. “Rt”. (3.6)

Suppose that ∆∗[Cp0
n ,C

q0
m ] = d∗(Γi p0,Γ

jq0), where α ≤ i ≤ n and β ≤ j ≤ m. From (3.2) and (3.6),
we have

d∗(Γi p0,Γ
jq0) = d∗(Γαpi−α,Γ

βq j−β)

≤ (I − φ)
(
∆∗[Cpi−α

α ,C
q j−β

β ]
)

≤ (I − φ)
(
∆∗[Cp0

n ,C
q0
m ]

)
. (3.7)

Thus, we must have φ
(
∆∗[Cp0

n ,C
q0
m ]

)
≤ 0. Strictly increasing of the function φ causes ∆∗[Cp0

n ,C
q0
m ] =

0 and ∆∗[Cp0
n ,C

q0
m ] = d∗(p0, q0), which ensures that (3.4) holds.
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Lemma 3.7. Under the assumptions and notations of Lemma 3.6, for every m, n ∈ N, we have

∆∗[Cp0
n ,C

q0
m ] ≤ Mp0,q0 , (3.8)

where

Mp0,q0 = max
0≤i, j≤max{α,β}

{
d∗(Γi p0,Γ

jq0), φ−1
(
d(Γi p0,Γ

αp0)
)
φ−1

(
d(Γiq0,Γ

βq0)
) }
.

Proof. From Lemma 3.6, we have ∆∗[Cp0
n ,C

q0
m ] = d∗(Γi p0,Γ

jq0), for some i, j ≥ 0 where i < α or j < β.
In the case that i < α and j < β, (3.8) clearly holds. Therefore, without loss of generality, it can be
assumed that 0 ≤ i < α and β ≤ j ≤ m. Using (3.7), we obtain

∆∗[Cp0
n ,C

q0
m ] = d∗(Γi p0,Γ

jq0)
≤ d(Γi p0,Γ

αp0) + d∗(Γαp0,Γ
jq0)

≤ d(Γi p0,Γ
αp0) + (I − φ)

(
∆∗[Cp0

n ,C
q0
m ]

)
,

which deduces that

φ
(
∆∗[Cp0

n ,C
q0
m ]

)
≤ d(Γi p0,Γ

αp0).

Since φ ∈ [ϕ], φ−1 exists. Therefore,

∆∗[Cp0
n ,C

q0
m ] ≤ φ−1

(
d(Γi p0,Γ

αp0)
)
,

and so (3.8) holds.

Lemma 3.8. Under the assumptions and notations of Lemma 3.6, for each m, n, r, s ≥ 0 with m, n ≥
max{α, β}, we have

∆∗[Cpn
r ,C

qm
s ] ≤ (I − φ)

(
∆∗[Cpn−α

r+α ,C
qm−β

s+β ]
)
. (3.9)

Proof. It follows from the relation (3.7) that for some 0 ≤ r′ ≤ r, 0 ≤ s′ ≤ s,

∆∗[Cpn
r ,C

qm
s ] = d∗(Γr′ pn,Γ

s′qm)

= d(Γp+r′ pn−α,Γ
q+s′qm−β)

≤ (I − φ)
(
∆∗[Cpn−α

r+α ,C
qm−β

s+β ]
)
.

Hence, (3.9) holds.

Lemma 3.9. Under the assumptions and notations of Lemma 3.6,

∀ ϵ > 0, ∃m ∈ N ; d(pn, qm) ≤ Dist(F,G) + ϵ, for n ≥ m.

Proof. From Lemma 3.8, for n,m ≥ max{2α, 2β}, we have
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d∗(pn, qm) = ∆∗[Cpn
0 ,C

qm
0 ]

≤ (I − φ)
(
∆∗[Cpn−α

α ,C
qm−β

β ]
)

≤ (I − φ)
(
(I − φ)

(
∆∗[Cpn−2α

2α ,C
qm−2β

2β ]
))

= (I − φ)2
(
∆∗[Cpn−2α

2α ,C
βm−2β

2q ]
)
.

Continuing this process and using Lemma 3.7, we get

0 ≤ d∗(pn, qm)

≤ (I − φ)kn,m
(
∆∗

[
C

pn−kn,mα

kn,mα
,C

qm−kn,mβ

kn,mβ

])
≤ (I − φ)kn,m

(
∆∗[Cp0

n ,C
q0
m ]

)
≤ (I − φ)kn,m

(
Mp0,q0

)
, (3.10)

where kn,m = min{⌊ n
α
⌋, ⌊m
β
⌋}. On the other hand, for the purposes of this discussion, it is permissible to

presume that Mp0,q0 > 0. Since I − φ is increasing and (I − φ)(t) < t for all t > 0, we obtain

Mp0,q0 ≥ (I − φ)
(
Mp0,q0

)
≥ (I − φ)2

(
Mp0,q0

)
≥ · · · . (3.11)

Additionally, from (3.10), for every i ∈ N there exist ni,mi ∈ N such that kni,mi ≥ i, and so (3.11)
implies that

(I − φ)i
(

Mp0,q0

)
≥ (I − φ)kni ,mi

(
Mp0,q0

)
≥ 0.

Thus,
Mp0,q0 ≥ (I − φ)

(
Mp0,q0

)
≥ (I − φ)2

(
Mp0,q0

)
≥ · · · ≥ 0,

which deduces that the sequence {(I − φ)k
(
Mp0,q0

)
} is decreasing. Since {(I − φ)k

(
Mp0,q0

)
} is bounded

below, we assume that
lim
k→∞

(I − φ)k
(
Mp0,q0

)
= s,

for some s ≥ 0. If (I − φ)k0
(
Mp0,q0

)
= 0 for some k0 ≥ 1, then s = 0. Otherwise, if (I − φ)k

(
Mp0,q0

)
> 0

for each k ∈ N, from continuity of I − φ, we get

(I − φ)(s) = s,

hence, φ(s) = 0, and from (3.1), we get s = 0. Therefore, from (3.10), we conclude that

∀ ϵ > 0, ∃m ∈ N : d∗(pn, qm) ≤ ϵ, for n ≥ m,

and, in addition, the lemma.

The next result is a direct consequence of Lemma 3.9.

Corollary 3.10. Under the assumptions and notations of Lemma 3.6, if (F,G) has the property WUC,
then the sequence {pn} is Cauchy.
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We have now reached a level of preparedness that allows us to demonstrate the main existential
finding of this segment, an expanded variant of Theorem 2.3.

Theorem 3.11. Under the assumptions and notations of Lemma 3.6, the following statements hold:

(i) If the pair (F,G) satisfies the property WUC, the set F is complete, and Γ |F: F → F is Rt-
continuous on F, then there exists p∗ ∈ F such that Γp∗ = p∗;

(ii) If the pair (G, F) satisfies the property WUC, the set G is complete, and Γ |G: G → G is Rt-
continuous on G, then there exists q∗ ∈ G such that Γq∗ = q∗;

(iii) If, in addition to (i) and (ii), every pair of elements (p, q) ∈ F × G are comparable w.r.t. “Rt”,
then Fix(Γ |F×G) = {(p∗, q∗)}.

Proof. (i) Let pn+1 := Γpn for each n ≥ 0. From Corollary 3.10 and completeness of F, the sequence
{pn} converges to some p∗ ∈ F. Also from (3.5), we have pn R

t pn+1 for each n ≥ 0. Since Γ |F is
Rt-continuous, it follows that Γp∗ = p∗.

(ii) By using a similar argument (i), the result is obtained.
(iii) If p∗ ∈ F and q∗ ∈ G are the fixed points of T , then from Lemma 3.9 we have

d(p∗, q∗) = lim
n→∞

d(Γn p0,Γ
nq0) = Dist(F,G),

that is, (p∗, q∗) ∈ Fix(Γ |F×G). Now, assume that each elements p ∈ F and q ∈ G are comparable with
respect to “Rt”. Suppose p is another fixed point of Γ in F and let q0 ∈ G. From Lemma 3.9, we have

lim
n→∞

d(p∗,Γnq0) = lim
n→∞

d(Γn p∗,Γnq0)

= Dist(F,G)
= lim

n→∞
d(Γn p,Γnq0)

= lim
n→∞

d(p,Γnq0).

Since (F,G) satisfies the property WUC, we get p∗ = p. In a similar fashion, it becomes apparent
that q∗ is a unique fixed point of Γ in G.

Example 3.12. Consider X := R with the usual metric and let

Rt :=
{(
±

1
n + 1

,±
1

m + 1
)
∈ X × X : n,m ∈ N

}
.

For F = [0, 1] and G = [−1, 0], define a noncyclic mapping Γ : F ∪G → F ∪G with

Γ(p) =


p

1 + 2p
if p ∈ { 1

n+1 : n ∈ N},

1 if p ∈ F \ {0, 1
n+1 : n ∈ N},

0 if p = 0.

Γ(q) =


q

1 − 2q
if q ∈ {− 1

m+1 : m ∈ N},

−1 if p ∈ G \ {0,− 1
m+1 : m ∈ N},

0 if q = 0.
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If φ(t) = t2
1+2t for t ≥ 0, then (I − φ)(t) = t+t2

1+2t and φ ∈ [ϕ]. Let (p, q) ∈ F ×G be comparable w.r.t.
“Rt”, then we must have (p, q) = ( 1

n+1 ,−
1

m+1 ) for some n,m ∈ N, which implies that

d∗(Γp,Γq) = |
1

n+1

1 + 2
n+1

+

1
m+1

1 + 2
m+1

|

=

1
n+1 +

1
m+1 +

4
(n+1)(m+1)

1 + 2( 1
n+1 +

1
m+1 ) + 4

(n+1)(m+1)

≤

1
n+1 +

1
m+1 +

4
(n+1)(m+1)

1 + 2( 1
n+1 +

1
m+1 )

≤
( 1

n+1 +
1

m+1 ) + ( 1
n+1 +

1
m+1 )2

1 + 2( 1
n+1 +

1
m+1 )

= (I − φ)(
1

n + 1
+

1
m + 1

)

= (I − φ)(d∗(p, q)),

that is, Γ is a noncyclic (φ,Rt)-enriched quasi-contraction map, which is not a noncyclic φ-contraction.
It is not difficult to see that all conditions of the part (i) of Theorem 3.11 are satisfied, and p∗ = 0 is a
fixed point of Γ in F. Note that since every pair of elements (p, q) ∈ F × G are not comparable w.r.t.
“Rt”, the fixed point of Γ in F is not unique.

Example 3.13. Again, consider X := R with the usual metric and let Rt := X × X. For F = [0, 1] and
G = [−1, 0], define a noncyclic mapping Γ : F ∪G → F ∪G by

Γ(p) =


p

1 + 2p
if p ∈ F,

q
1 − 2q

if q ∈ G.

If φ(t) = t2
1+2t for t ≥ 0, then φ ∈ [ϕ]. A similar argument of the previous example shows that

d∗(Γp,Γq) ≤ (I − φ)(d∗(p, q)) for all (p, q) ∈ F × G. Hence, Γ is a noncyclic (φ,Rt)-enriched quasi-
contraction map. It now follows from Theorem 3.11 that p∗ = 0 is a unique fixed point of Γ in F.

The next theorem shows that if α = 1 (resp., β = 1) in Definition 3.2, then we can drop the continuity
of T |F (resp., T |G) in Theorem 3.11. In this way, we obtain a real generalization of Theorem 3 in [6] as
well as Theorem 2.7 in [10].

Theorem 3.14. Let ∅ , F,G ⊆ Xd,t be such that F is complete and (F,G) satisfies the property WUC.
Let “Rt” be a transitive relation on F ∪ G with the property (∗) on F, and Γ is a noncyclic (φ,Rt)-
enriched quasi-contraction mapping on F ∪G with α = 1, for which Γ preserves “Rt” on F ∪G. Let
p0 ∈ F and q0 ∈ G be such that p0 R

t q0 R
t Γp0, then there exists p∗ ∈ F such that Γp∗ = p∗. If every

pair of elements p ∈ F and q ∈ G are comparable with respect to “Rt”, then Γ has a unique fixed point
in F.

Proof. From the proof of Theorem 3.11, the sequence {Γn p0} is convergent to some p∗ ∈ F. By
Lemma 3.9, pn R

t pn+1 for each n ≥ 0. By using property (∗), we get pn R
t p∗ for each n ≥ 0. Now,
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from the relation (3.6), we obtain qn R
t pn+1 R

t p∗ for each n ≥ 0. Thus, qn R
t p∗ for each n ≥ 0, and by

the fact that Γ is a noncyclic (φ,Rt)-enriched quasi-contraction from (3.2), we have

d∗(Γp∗,Γnq0) = d∗(Γp∗,Γβqn−β) ≤ (I − φ)
(
∆∗[Cp∗

1 ,C
qn−β

β ]
)
.

Therefore,

lim sup
n→∞

d∗(Γp∗,Γnq0) ≤ (I − φ)
(

max
{
lim sup

m→∞
d∗(p∗,Γmq0), lim sup

m→∞
d∗(Γp∗,Γmq0)

})
.

By Lemma 3.9, we get

lim sup
n→∞

d∗(Γp∗,Γnq0) ≤(I − φ)
(
max

{
0, lim sup

n→∞
d∗(Γp∗,Γnq0)

})
.

Hence,

φ

(
lim sup

n→∞
d∗(Γp∗,Γnq0)

)
= 0.

So, from (3.1), we obtain

lim
n→∞

d(Γp∗,Γnq0) = Dist(F,G). (3.12)

Since limn→∞ d(p∗,Γnq0) = Dist(F,G), from (3.12) and by taking into account that (F,G) has the
property WUC, we conclude that Γp∗ = p∗. The uniqueness of a fixed point of Γ in F follows from an
equivalent discussion of Theorem 3.11.

Corollary 3.15. Let F , ∅ and G , ∅ be complete subsets of a metric space (X, d) such that (F,G)
and (G, F) satisfy the property WUC. Let “Rt” be a transitive relation on F ∪G with the property (∗)
on F ∪G. Assume that Γ is a noncyclic mapping on F ∪G satisfying

d∗(Γp,Γq) ≤ (I − φ)
(
max

{
d∗(p, q), d∗(p,Γq), d∗(q,Γp)

})
,

for each (p, q) ∈ F × G that are comparable with respect to “Rt”. Let (p0, q0) ∈ F × G be such that
p0 R

t q0 R
t Γp0 and Γ preserves “Rt” on F ∪G, then there exists (p∗, q∗) ∈ Fix(Γ |F×G). If every pair of

elements p ∈ F and q ∈ G are comparable with respect to “Rt”, then Fix(Γ |F×G) = {(p∗, q∗)}.

Building upon the foundations laid by the preceding theorem, we arrive at a subsequent finding that
serves as a generalization of Corollary 2.8 of [10].

Corollary 3.16. Let F , ∅ and G , ∅ be complete subsets of a metric space (X, d) such that (F,G) and
(G, F) satisfy the property WUC. Assume that Γ is a noncyclic mapping on F ∪G satisfying

d∗(Γp,Γq) ≤ (I − φ)
(
max

{
d∗(p, q), d∗(p,Γq), d∗(q,Γp)

})
,

for each p ∈ F and q ∈ G. There exists (p∗, q∗) ∈ F × G such that Fix(Γ |F×G) = {(p∗, q∗)}, and for
every p0 ∈ F and q0 ∈ G, the sequences {Γn p0} and {Γnq0} converge to p∗ and q∗, respectively.
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The following common fixed point results are obtained from Theorem 3.11 and Corollary 3.15,
immediately. These results are extensions of Corollaries 2.10 and 2.11 of [10].

Corollary 3.17. Let Γ and Λ be two continuous self-mappings on a complete metric space (X, d) such
that for some α, β ∈ N,

d(Γαp,Λβq) ≤ (I − φ)
(
max

{
d(Γi p,Λ jq) : 0 ≤ i ≤ α, 0 ≤ j ≤ β

})
,

for all p, q ∈ X, then Λ and Γ have a unique common fixed point p∗ ∈ X such that limn→∞ Γ
n p0 =

limn→∞Λ
n p0 = p∗ for every p0 ∈ X.

Corollary 3.18. Let Γ and Λ be two self-mappings on a complete metric space (X, d) satisfying

d(Γp,Λq) ≤ (I − φ)
(
max

{
d(p, q), d(p,Λq), d(q,Γp)

})
,

for all p, q ∈ X, then Λ and Γ have a unique common fixed point in X.

4. More results in reflexive and strictly convex Banach spaces

In the latest section of this article, motivated by the results of [25, 26], we present some other
existence, convergence, and uniqueness of an optimal pair of fixed points of noncyclic
φ-quasi-contractions in the setting of reflexive and strictly convex Banach spaces. We also refer
to [27–29] for different approaches to the same problems for cyclic mappings and some interesting
applications in game theory.

Throughout this section, we assume that φ ∈ [ϕ]. Also, by “
w
−→ ”, we mean the weak convergence

in a Banach space X.

Theorem 4.1. Suppose that F , ∅ and G , ∅ are weakly closed subsets of a reflexive Banach space X
and let Γ : F ∪G → F ∪G be a noncyclic φ-quasi-contraction map, that is,

∥Γp − Γq∥ ≤(I − φ) (max {∥x − y∥, ∥x − Γq∥, ∥Γp − y∥}) + φ(Dist(F,G)),

for all (p, q) ∈ F ×G. There exists (p∗, q∗) ∈ F ×G such that ∥p∗ − q∗∥ = Dist(F,G).

Proof. In the case that Dist(F,G) = 0, the result follows from Theorem 3.14. Otherwise, if Dist(F,G) >
0, for an arbitrary element (p0, q0) ∈ F ×G, define

(pn+1, qn+1) := (Γpn,Γqn), ∀n ≥ 0.

From Lemma 3.9, the sequence {(pn, qn)} is bounded in F×G. Since F is weakly closed in a reflexive
Banach space X, there exists a subsequence {pnk} of {pn} with pnk

w
−→ p∗ ∈ F. As {qnk} is a bounded

sequence in a weakly closed set G, without loss of generality, one may assume that qnk

w
−→ q∗ ∈ G

as k → ∞. Since pnk − qnk

w
−→ p∗ − q∗ , 0 as k → ∞, one can find a bounded linear functional

f : X → [0,+∞) with the property that

∥ f ∥ = 1 and f (p∗ − q∗) = ∥p∗ − q∗∥.
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It follows from Lemma 3.9 that

∥p∗ − q∗∥ = | f (p∗ − q∗)|
= lim

k→∞
| f (pnk − qnk)|

≤ lim
k→∞
∥ f ∥∥pnk − qnk∥

= lim
k→∞
∥pnk − qnk∥

= Dist(F,G).

So, ∥p∗ − q∗∥ = Dist(F,G).

Definition 4.2. Suppose that F and G are subsets of a normed linear space X and Γ is a noncyclic
self-mapping on F ∪G. We say that Γ satisfies the D-property on F if {pn} is a sequence in F and {qn}

is a sequence in G, such that

pn
w
−→ p∗ ∈ F, ∥pn − qn∥ → Dist(F,G), and ∥Γpn − qn∥ → Dist(F,G),

then Γp∗ = p∗.

Note that if Dist(F,G) = 0 or (F,G) has the property UC, then the conditions of the above definition
require that

pn
w
−→ p∗ ∈ F, and ∥Γpn − pn∥ → 0.

Therefore, in these cases, the D-property of Γ on F is equal to demiclosedness property of I −Γ |F at 0.

Theorem 4.3. Suppose that F , ∅ and G , ∅ are weakly closed subsets of a reflexive and strictly
convex Banach space X and let Γ : F ∪G → F ∪G be a noncyclic φ-quasi-contraction map. Assume
that one of the following conditions is satisfied:

(a) F is convex and Γ is weakly continuous on F;
(b) Γ satisfies the D-property on F.

Thus Γ has a fixed point in F.

Proof. In the case that Dist(F,G) = 0, there is nothing to prove by Theorem 3.14, so assume that
Dist(F,G) > 0. Let (p0, q0) ∈ F ×G be an arbitrary element and define

(pn+1, qn+1) := (Γpn,Γqn), ∀n ≥ 0.

From Theorem 4.1, there exists a point (p∗, q∗) ∈ F ×G and subsequences {pnk} and {qnk} such that
∥p∗ − q∗∥ = Dist(F,G), pnk

w
−→ p∗ ∈ F, and qnk

w
−→ q∗ ∈ G as k → ∞.

(a) Since Γ is weakly continuous on F and Γ(F) ⊆ F, we have pnk+1
w
−→ Γp∗ ∈ F as k → ∞. Since

pnk+1 − qnk

w
−→ Γp∗ − q∗ , 0 as k → ∞, one can find a bounded linear functional f : X → [0,+∞) with

the property that

∥ f ∥ = 1, and f (Γp∗ − q∗) = ∥Γp∗ − q∗∥.
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It follows from Lemma 3.9 that

∥Γp∗ − q∗∥ = | f (Γp∗ − q∗)|
= lim

k→∞
| f (pnk+1 − qnk)|

≤ lim
k→∞
∥ f ∥∥pnk+1 − qnk∥

= lim
k→∞
∥pnk+1 − qnk∥

= Dist(F,G).

So, ∥Γp∗ − q∗∥ = Dist(F,G). We assume the contrary, Γp∗ , p∗, and it follows from the strict
convexity of X that

∥
p∗ + Γp∗

2
− q∗∥ < Dist(F,G). (4.1)

Since F is convex, p∗+Γp∗

2 ∈ F, so (4.1) is a contradiction.
(b) It follows from Lemma 3.9 that

lim
k→∞
∥pnk − qnk∥ = lim

k→∞
∥Γpnk − qnk∥ = Dist(F,G),

and by the D-property of Γ on F, we get Γp∗ = p∗.

Theorem 4.4. Suppose that F , ∅ and G , ∅ are weakly closed and convex subsets of a reflexive and
strictly convex Banach space X, and let Γ : F ∪G → F ∪G be a noncyclic φ-quasi-contraction map.
Let one of the following conditions be satisfied:

(a) Γ is weakly continuous on F ∪G;
(b) Γ satisfies the D-property on F ∪G.

Thus, Fix(Γ |F×G) , ∅. Also, if (F − F) ∩ (G − G) = {0}, then Fix(Γ |F×G) = {(p∗, q∗)} for some
(p∗, q∗) ∈ F ×G.

Proof. According to Theorems 4.1 and 4.3, it is enough to prove the uniqueness of an optimal pair
of fixed points (p∗, q∗) ∈ F × G. Suppose that there exists another point (p′, q′) ∈ F × G for which
∥p′−q′∥ = Dist(F,G). As (F−F)∩(G−G) = {0}, we obtain that p′−p∗ , q′−q∗ (since (p′, q′) , (p∗, q∗),
we have p′ , p∗ or q′ , q∗. Hence, p′ − p∗ , 0 or q′ − q∗ , 0), so p∗ − q∗ , p′ − q′ . From the strict
convexity of X, we have

∥
p′ + p∗

2
−

q′ + q∗

2
∥ < Dist(F,G). (4.2)

which is a contradiction.

The next result guarantees the uniqueness of an optimal pair of fixed points in Theorem 3.5 of [5].

Theorem 4.5. Suppose that F , ∅ and G , ∅ are closed and convex subsets of a reflexive and strictly
convex Banach space X and let Γ : F ∪G → F ∪G be a noncyclic φ-contraction map, that is,

∥Γp − Γq∥ ≤∥p − q∥ − φ(∥p − q∥) + φ(Dist(F,G)), (4.3)

for all (p, q) ∈ F × G. If (F − F) ∩ (G − G) = {0}, then there exists (p∗, q∗) ∈ F × G such that
Fix(Γ |F×G) = {(p∗, q∗)}.
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Proof. In the case that Dist(F,G) = 0, the result concludes from Theorem 3.14 directly. Otherwise, if
Dist(F,G) > 0, since F is closed and convex, it is weakly closed. It follows from Theorem 4.1 that
there exists (p∗, q∗) ∈ F×G such that ∥p∗−q∗∥ = Dist(F,G). The proof of uniqueness of (p∗, q∗) ∈ F×G
with ∥p∗ − q∗∥ = Dist(F,G) is concluded from a similar discussion of Theorem 4.4. It follows from
(4.3) that

∥Γp∗ − Γq∗∥ = ∥p∗ − q∗∥ = Dist(F,G),

which ensures that (Γp∗,Γq∗) = (p∗, q∗). Thus, Γp∗ = p∗ and Γq∗ = q∗, and we are finished.

5. Conclusions

In this paper, we defined a new class of noncyclic mappings and investigated the existence,
uniqueness, and convergence of an optimal pair fixed point for such maps in the framework of metric
spaces equipped with a transitive relation. We also presented the counterpart results under some other
sufficient conditions in strictly convex and reflexive Banach spaces. In this way, we obtained some
real extensions of previous results that appeared in [2, 10, 22, 25].
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