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Abstract: We established a Schwarz lemma for harmonic maps from Riemannian manifolds to metric
spaces of curvature bounded above in the sense of Alexandrov. We adopted the gradient estimate
technique which was based on Zhang-Zhu’s maximum principle. In particular, when the domain
manifold was a hyperbolic surface, the energy of any conformal harmonic maps into CAT(−1) spaces
were bounded from above uniformly.
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1. Introduction

The classical Schwarz-Pick lemma states that any holomorphic map from unit disk in C2 into itself
decreases the Poincaré-Bergman metric. Ahlfors [1], Chern et al. [2], and Lu [3] extended this result
to more general domains and targets with curvature conditions.

In 1978, Yau [4] used the so-called Omori-Yau maximum principle to prove the distance decreasing
property for holomorphic maps from Kähler manifolds to Hermitian manifolds under suitable curvature
conditions. Later, in the Riemannian settings, the Schwarz type lemma was studied extensively; see,
e.g., [5, 6]. There are also many generalizations for generalized harmonic maps; readers can refer
to [7–11] and references therein.

There is also growing interest on harmonic maps with singular targets. Gromov and Schoen [12]
first developed a theory of harmonic maps in which the target spaces can be taken as metric spaces
of curvature bounded from above. This theory has further generalized in Korevaar and Schoen [13],
and also Jost [14–16]. These investigations have deeply revealed the structure of harmonic maps with
singular targets. Thus, it is natural to consider establishing a Schwarz type lemma for harmonic maps
in this broader context.

In this note, the target spaces (N, d) we considered are CAT(−k) (k > 0) spaces, which is a class of
metric spaces with curvature bounded above by −k and the curvature condition is given by Toponogov’s
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triangle comparison.
A map u : M −→ N is called harmonic if u is a local minimizer of the energy functional in the

sense of Korevaar and Schoen. For a detailed definition and its properties, we refer to Section 2 below.
Our main result states the following.

Theorem 1.1. Let u : M −→ N be a harmonic map from an m-dimensional complete Riemannian
manifold with RicM ≥ −A into a CAT(−k) space N, where A ≥ 0 and k > 0 are both constants.
Suppose u has generalized dilatation of order β, then

π ≤
Am2β4

2k(1 + β2)
g,

where π is the pull-back inner product (cf. Section 2).

Remark 1.2. The notion of harmonic maps with bounded dilatation was originated from Shen [6],
where he proved a related Schwarz type lemma. Our result can be viewed as a generalization in the
singular targets setting.

Corollary 1.3. If RicM ≥ 0, then any harmonic map of generalized dilatation from M into a CAT(−k)
(k > 0) space is constant.

Corollary 1.4. If M is a hyperbolic surface and N is a CAT(−1) space, then the energy of conformal
harmonic map u : M −→ N satisfies

|∇u|2 ≤ 2.

Remark 1.5. Freidin [17] proved Corollary 1.4 under the additional assumption that Σ is closed. Our
result improves his.

Owing to the lack of smoothness, one cannot employ the usual argument of the maximum principle
directly in this setting. Instead, we will make use of an approximating version of the maximum
principle established by Zhang and Zhu [18]. The similar idea has been successfully applied by
Zhang et al. [19] to obtain gradient estimates of harmonic maps in the setting of singular targets.

The rest is organized as follows: In Section 2, we recall some basic and known results on CAT(κ)
spaces and harmonic maps. In Section 3, we prove the main results.

2. Preliminaries

2.1. Alexandrov curvature bound

Give a metric space (N, d). We assume our metric spaces to be length spaces, i.e., for each P,Q ∈ N,
there is a curve, which we denote [P,Q], such that the length of [P,Q] is exactly d(P,Q). We call [P,Q]
a geodesic between P and Q. We say N is a CAT(0) space (see [20]) if any geodesic triangles in N are
thinner than their comparison triangles in R2. In other words, for every P,Q,R ∈ N, and corresponding
points P̄, Q̄, R̄ ∈ R2 with

d(P,Q) = |P̄Q̄|, d(R,Q) = |R̄Q̄|, d(P,R) = |P̄R̄|,

we have
d(P,Qt) ≤ |P̄Q̄t|,
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where Qt and Q̄t lie a fraction t of the way along the geodesic segment from P to Q and P̄ to Q̄,
respectively.

A CAT(−1) space N, or N having curvature bounded from above by -1 in the sense of Alexandrov,
is simply a length space with a stronger comparison principle. Instead of constructing comparison
triangles in R2, one constructs them in H2, and the CAT(−1) space has the same comparison inequality.

2.2. Harmonic maps into metric spaces

In this subsection, we define harmonic maps from an m-dimensional complete Riemannian manifold
(M, g) to a general metric space (N, d). Let Ω ⊂ M be a relatively compact domain. We denote by
L2(Ω,N) the space of all Borel maps u : Ω −→ N, (i.e., measurable with respect to dVg) such that for
some and, thus, every p ∈ N, we have∫

Ω

d2(u(x), p)dVg(x) < ∞.

The (Korevaar-Schoen) energy of u ∈ L2(Ω,N) is defined as follows. For ε > 0, we set

eε(x) := m ·
?

S (x,ε)

d2 (u(x), u (x′))
ε2 dΣ(x′)

whenever x ∈ Ω satisfies d(x, ∂Ω) > ε and eε(x) = 0 otherwise. Here, S (x, ε) is the sphere centered at
x with radius ε. A map u is said to be in W1,2(Ω,N) if its energy, defined by

E(u) := sup
η∈C0(Ω)
0≤η≤1

(
lim sup
ε→0

∫
Ω

η(x)eε(x)dVg(x)
)
, (2.1)

is finite. If u ∈ W1,2(Ω,N), then there exists a function e(u) ∈ L1(Ω), called the energy density function
of u, such that eεdVg ⇀ e(u)dVg as ε → 0 and E(u) =

∫
Ω

e(u)dVg; see [13]. We often write |∇u|2(x)
in place of e(u)(x). In the case that N is a Riemannian manifold and u is smooth, the energy defined
in (2.1) coincides with the usual energy.

Definition 2.1. A map u ∈ W1,2(Ω,N) is said to be energy minimizing harmonic if E(u) ≤ E(v) for all
v ∈ W1,2(Ω,N). A map u : M → N is called energy minimizing harmonic if its restriction to every
relatively compact domain is energy minimizing harmonic.

Let x(x, t) be the flow generated by a unit vector field ω on M, that is,

x(x, 0) = x,
d
dt

x(x, t) = ω.

The directional energy density |u∗(ω)|2 is defined by

|u∗(ω)|2(x) := lim
ε→0

d2 (u(x(x, ε)), u(x))
ε2 , a.e. x ∈ M,

and the energy density satisfies

|∇u|2(x) =
∫
Sn−1
|u∗(ω)|2dσ(ω),
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where Sn−1 ⊂ TxM.
The CAT(−k) hypothesis implies that we can make sense of the notion of the pull-back

inner product.

Definition 2.2 ( [13]). The pull-back inner product π : Γ(T M) × Γ(T M) −→ L1(M) is defined by

π(Z,W) :=
1
4
|u∗(Z +W)|2 −

1
4
|u∗(Z −W)|2.

Proposition 2.3 (Theorem 2.3.2 in [13]). For the operator π defined above, we have

(1) π is continuous, symmetric, bilinear, nonnegative and tensorial.
(2) If we write πi j = π(ei, e j) for a local frame {ei} on M, then for Z = Ziei and W = W je j, we have
π(Z,W) = πi jZiW j.

(3) The energy density is the trace of π with respect to g, i.e., |∇u|2 = gi jπi j = trg(π).

3. The Schwarz lemma

Let (Mm, g) be a complete Riemannian manifold with RicM ≥ −A, where A ≥ 0 is a constant, and
suppose that u : M −→ N is a harmonic map into a CAT(−k) (k > 0) space N. Under a local frame {ei}

on M, the pull-back tensor π can be expressed as a matrix

π = (πi j).

From Proposition 2.3, it is clear that the eigenvalus of π are nonnegative, say,

λ1(x) ≥ λ2(x) ≥ · · · ≥ λm(x) ≥ 0.

Hence, we can introduce the notion of generalized dilatation in this context.

Definition 3.1. Let (M, g) be a Riemannian manifold and N be a CAT(0) space. A map u ∈ W1,2(M,N)
is said to have generalized dilatation of order β, if there is a positive number β such that λ1(x) ≤
β2(λ2(x) + · · · + λm(x)) for a.e. x ∈ M.

Let us recall the proof of Schwarz type lemma in the smooth context. We refer to [7] and [8]. There
are two main ingredients: the Bochner formula and a maximum principle. When the target space is of
CAT(−1) type, we have the following Bochner inequality.

Lemma 3.2 (Theorem 1 in [17]). For a harmonic map u : M −→ N from a Riemannian manifold M
into a CAT(−k) (k > 0) metric space, |∇u|2 satisfies

1
2
∆|∇u|2 ≥ ⟨RicM, π⟩ + k(|∇u|4 − |π|2) (3.1)

in the sense of distributions. Here, ⟨RicM, π⟩ denotes the inner product on symmetric 2-tensors and
|π|2 = ⟨π, π⟩.

We remark that the energy density |∇u|2 is not smooth generally. Moreover, it even may not be
continuous. That presents a problem to carry the gradient estimates argument in [7] or Omori-Yau
maximum principle in [8] directly due to the lack of smoothness. This can be overcome by making use
of the following Zhang-Zhu’s maximum principle.
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Theorem 3.3 (Theorem 1.3 in [18]). Let Ω be a bounded domain in a Riemannian manifold (Mm, g)
with RicM ≥ −A for some constant A ≥ 0. Let f ∈ W1,2

loc (Ω) ∩ L∞loc(Ω) satisfy ∆ f as a signed Radon
measure with ∆sing f ≥ 0, where ∆ f = ∆ac f · dVg + ∆

sing f is the Radon-Nikodym decomposition with
respect to dVg. Assume f attains its strict maximum in Ω in the following sense: there is a
neighborhood U ⊂⊂ Ω such that

sup
U

f > sup
Ω\U

f .

Then, for any function w ∈ W1,2(Ω) ∩ L∞(Ω), there is a sequence {x j} j∈N ⊂ U satisfying that they are
approximate continuity points of ∆ac f and ⟨∇ f ,∇w⟩, with the following properties:

f (x j) ≥ sup
Ω

f −
1
j
, ∆ac f (x j) + ⟨∇ f ,∇w⟩ (x j) ≤

1
j
.

In the following, supU f means ess-supU f .

We prove the main result.

Theorem 3.4. Let u : M −→ N be a harmonic map from a complete Riemannian manifold with
RicM ≥ −A into a CAT(−k) space N, where A ≥ 0 and k > 0 are both constants. Suppose u has
generalized dilatation of order β, then

π ≤
Am2β4

2k(1 + β2)
g,

where π is the pull-back inner product.

Proof. For simplicity, we assume k = 1. By the curvature condition and the Bochner inequality (3.1),
we have

1
2
∆|∇u|2 ≥ ⟨Ric, π⟩ + |∇u|4 − |π|2

≥ −A|∇u|2 + |∇u|4 − |π|2.
(3.2)

Note that u is of bounded dilatation, thus

|∇u|4 − |π|2 =
[
trg(π)

]2
− |π|2 =

 m∑
i=1

λi

2

−

 m∑
i=1

λ2
i


= 2

∑
1≤i< j≤m

λiλ j ≥ 2λ1

m∑
j=2

λ j ≥
2
β2λ

2
1

≥
2
β2

(
λ1 + . . . + λm

m

)2

.

(3.3)

On the other hand,

|∇u|2 = trg(π) =
m∑

i=1

λi. (3.4)

Combining (3.2), (3.3), and (3.4), we conclude that |∇u|2 satisfies

∆|∇u|2 ≥ −2A|∇u|2 +
4
β2m2 |∇u|4, (3.5)
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in the weak sense. For simplicity, let F := |∇u|2.

Fix a constant δ > 0 to be sufficiently small and let η(x) := η(r(x)) be a function of the distance
r(x, x0), where x0 is a fixed point in M, such that

δ ≤ η ≤ 1 on BR(x0), η =

 1, on BR
2
(x0),

δ, on BR(x0) \ B 3R
4

(x0),

and

−
C1

R
η

1
2 ≤ η

′

≤ 0, |η
′′

| ≤
C1

R2 , ∀r ∈
(
0,

3R
4

)
,

where C1 is a constant independent of m,K,R. We remark that the function η can be chosen in the
following ways: one first takes a function ϕ such that 0 ≤ ϕ ≤ 1, ϕ = 1 on (0, R

2 ), ϕ = 0 on (3R
4 ,R),

−C
R ≤ ϕ

′ ≤ 0, and |ϕ′′| ≤ C
R2 , and then sets η :=

(
ε+ϕ

ε+1

)2
, where ε

ε+1 =
√
δ. One can verify that η satisfies

all of the requirements by direct calculations.

Thus,

|∇η| = |η′||∇r| ≤
C1

R
η

1
2 , on B 3R

4
(x0). (3.6)

By the Laplacian comparison theorem, we also have that

∆η ≥ −
C1

R

√(m − 1)A coth

r √
A

m − 1

 − C1

R2

≥ −
C1

R

(√
(m − 1)A +

m − 1
R

)
−

C1

R2

≥ −
C2

R2 , on B 3R
4

(x0)

(3.7)

in the sense of distributions. Here, C2 := C1

(
R
√

(m − 1)A + m
)
.

Next, we set G := F · η. It is obvious that G is in W1,2(B 3R
4

(x0)) ∩ L∞(B 3R
4

(x0)) and G achieves one
of its strict maxima in BR

2
(x0) in the sense of Theorem 3.3. Then,

∆G = 2
〈
∇η,∇

(
G
η

)〉
+ η · ∆F + ∆η · F

≥ ∆η ·
G
η
+ 2

〈
∇ log η,∇G

〉
− 2
|∇η|2

η
·

G
η
+ η · ∆F

≥ −
G
η
·

C2

R2 + 2
〈
∇ log η,∇G

〉
−

G
η
·

2C2
1

R2 + η

(
−2AF +

4
β2m2 F2

)
.
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Let w := −2 log η, then w ∈ W1,2(B 3R
4

(x0)) ∩ L∞(B 3R
4

(x0)). The above inequality reads as

∆wG = ∆G + ⟨∇w,∇G⟩

≥ −
G
η
·

C2

R2 −
G
η
·

2C2
1

R2 + η ·

 4
β2m2

(
G
η

)2

− 2A
(
G
η

)
≥ −

G
η
·

C2

R2 −
G
η
·

2C2
1

R2 +
4
β2m2

G2

η
− 2A

G
η

≥
G
η

[
−

C2

R2 −
2C2

1

R2 +
4
β2m2 G − 2A

]
=

G
η

[
−

C3

R2 +
4
β2m2 G − 2A

]
,

where we have used G ≥ 0, 1 ≤ 1
η
, and C3 := C2 + 2C2

1. That is, we have

∆G + ⟨∇w,∇G⟩ ≥
G
η

[
−

C3

R2 +
4
β2m2 G − 2A

]
(3.8)

in the weak sense. By Theorem 3.3, we can conclude that there exists a sequence of points {x j} such
that for each j ∈ N,

G j := G(x j) ≥ sup
3R
4

G −
1
j

and
G j

η(x j)

[
−

C3

R2 +
4
β2m2 G j − 2A

]
≤

1
j
.

Since η(x j) ≥ δ > 0, we can take j→ ∞ to obtain

sup
3R
4

G = lim
j→∞

G j ≤
Aβ2m2

2
+

C3β
2m2

4R2 ,

which implies

sup
R
2

|∇u|2 ≤ sup
3R
4

G ≤
Aβ2m2

2
+

C3β
2m2

4R2 .

Letting R→ ∞, it follows that

|∇u|2 ≤
Aβ2m2

2
. (3.9)

As |∇u|2 = trg(π) =
∑m

i=1 λi, we have

λ1 +
1
β2λ1 ≤

m∑
i=1

λi ≤
Aβ2m2

2
.

This yields λ1 ≤
Aβ4m2

2(1+β2) , and we have finished the proof. □

Proof of Corollary 1.4. Note that a mapping u : M −→ N is called conformal if π satisfies π = λg
for some nonnegative function λ. Then, the corollary follows from Theorem 1.1 immediately. □
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