Loading [MathJax]/jax/output/SVG/jax.js
Research article

Common fixed and coincidence point theorems for nonlinear self-mappings in cone b-metric spaces using φ-mapping

  • Received: 19 March 2023 Revised: 14 June 2023 Accepted: 27 June 2023 Published: 07 July 2023
  • In this paper, by means of a mapping φΦ(P,P1), some new common fixed and coincidence point theorems for four and six nonlinear self-mappings in cone b-metric spaces are established, respectively. Also, some examples are given to prove the effectiveness of our results. And with some remarks stating that our results complement and sharply improve some related results in the literature.

    Citation: Mingliang Song, Dan Liu. Common fixed and coincidence point theorems for nonlinear self-mappings in cone b-metric spaces using φ-mapping[J]. Electronic Research Archive, 2023, 31(8): 4788-4806. doi: 10.3934/era.2023245

    Related Papers:

    [1] Muajebah Hidan, Abbas Kareem Wanas, Faiz Chaseb Khudher, Gangadharan Murugusundaramoorthy, Mohamed Abdalla . Coefficient bounds for certain families of bi-Bazilevič and bi-Ozaki-close-to-convex functions. AIMS Mathematics, 2024, 9(4): 8134-8147. doi: 10.3934/math.2024395
    [2] Abdulmtalb Hussen, Mohammed S. A. Madi, Abobaker M. M. Abominjil . Bounding coefficients for certain subclasses of bi-univalent functions related to Lucas-Balancing polynomials. AIMS Mathematics, 2024, 9(7): 18034-18047. doi: 10.3934/math.2024879
    [3] Tariq Al-Hawary, Ala Amourah, Abdullah Alsoboh, Osama Ogilat, Irianto Harny, Maslina Darus . Applications of qUltraspherical polynomials to bi-univalent functions defined by qSaigo's fractional integral operators. AIMS Mathematics, 2024, 9(7): 17063-17075. doi: 10.3934/math.2024828
    [4] Abeer O. Badghaish, Abdel Moneim Y. Lashin, Amani Z. Bajamal, Fayzah A. Alshehri . A new subclass of analytic and bi-univalent functions associated with Legendre polynomials. AIMS Mathematics, 2023, 8(10): 23534-23547. doi: 10.3934/math.20231196
    [5] Bilal Khan, H. M. Srivastava, Muhammad Tahir, Maslina Darus, Qazi Zahoor Ahmad, Nazar Khan . Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functions. AIMS Mathematics, 2021, 6(1): 1024-1039. doi: 10.3934/math.2021061
    [6] Sheza. M. El-Deeb, Gangadharan Murugusundaramoorthy, Kaliyappan Vijaya, Alhanouf Alburaikan . Certain class of bi-univalent functions defined by quantum calculus operator associated with Faber polynomial. AIMS Mathematics, 2022, 7(2): 2989-3005. doi: 10.3934/math.2022165
    [7] Luminiţa-Ioana Cotîrlǎ . New classes of analytic and bi-univalent functions. AIMS Mathematics, 2021, 6(10): 10642-10651. doi: 10.3934/math.2021618
    [8] F. Müge Sakar, Arzu Akgül . Based on a family of bi-univalent functions introduced through the Faber polynomial expansions and Noor integral operator. AIMS Mathematics, 2022, 7(4): 5146-5155. doi: 10.3934/math.2022287
    [9] Norah Saud Almutairi, Adarey Saud Almutairi, Awatef Shahen, Hanan Darwish . Estimates of coefficients for bi-univalent Ma-Minda-type functions associated with q-Srivastava-Attiya operator. AIMS Mathematics, 2025, 10(3): 7269-7289. doi: 10.3934/math.2025333
    [10] Tingting Du, Zhengang Wu . Some identities involving the bi-periodic Fibonacci and Lucas polynomials. AIMS Mathematics, 2023, 8(3): 5838-5846. doi: 10.3934/math.2023294
  • In this paper, by means of a mapping φΦ(P,P1), some new common fixed and coincidence point theorems for four and six nonlinear self-mappings in cone b-metric spaces are established, respectively. Also, some examples are given to prove the effectiveness of our results. And with some remarks stating that our results complement and sharply improve some related results in the literature.



    Let A indicate an analytic functions family, which is normalized under the condition f (0)= f(0)1=0 in U={z:zC and |z |<1} and given by the following Taylor-Maclaurin series:

    f (z)=z+n=2anzn .      (1.1)

    Further, by S we shall denote the class of all functions in A which are univalent in U.

    With a view to recalling the principle of subordination between analytic functions, let the functions f and g be analytic in U. Then we say that the function f is subordinate to g if there exists a Schwarz function w(z), analytic in U with

    ω(0)=0, |ω(z)|<1, (zU)

    such that

    f (z)=g (ω(z)).

    We denote this subordination by

    fg or f (z)g (z).

    In particular, if the function g is univalent in U, the above subordination is equivalent to

    f (0)=g (0), f (U)g (U).

    The Koebe-One Quarter Theorem [11] asserts that image of U under every univalent function fA contains a disc of radius 14. thus every univalent function f has an inverse  f1  satisfying  f1(f(z))=z and f ( f1 (w))=w (|w|<r 0(f ),r 0(f ) >14 ), where

     f1(w)=wa2w2+(2a22a3)w3(5a325a2a3+a4)w4+. (1.2)

    A function fA is said to be bi-univalent functions in U if both f and  f1 are univalent in U. A function fS is said to be bi-univalent in U if there exists a function gS such that g(z) is an univalent extension of f1 to U. Let Λ denote the class of bi-univalent functions in U. The functions z1z, log(1z), 12log(1+z1z) are in the class Λ (see details in [20]). However, the familiar Koebe function is not bi-univalent. Lewin [17] investigated the class of bi-univalent functions Λ and obtained a bound |a2|1.51. Motivated by the work of Lewin [17], Brannan and Clunie [9] conjectured that |a2|2. The coefficient estimate problem for |an|(nN,n3) is still open ([20]). Brannan and Taha [10] also worked on certain subclasses of the bi-univalent function class Λ and obtained estimates for their initial coefficients. Various classes of bi-univalent functions were introduced and studied in recent times, the study of bi-univalent functions gained momentum mainly due to the work of Srivastava et al. [20]. Motivated by this, many researchers [1], [4,5,6,7,8], [13,14,15], [20], [21], and [27,28,29], also the references cited there in) recently investigated several interesting subclasses of the class Λ and found non-sharp estimates on the first two Taylor-Maclaurin coefficients. Recently, many researchers have been exploring bi-univalent functions, few to mention Fibonacci polynomials, Lucas polynomials, Chebyshev polynomials, Pell polynomials, Lucas–Lehmer polynomials, orthogonal polynomials and the other special polynomials and their generalizations are of great importance in a variety of branches such as physics, engineering, architecture, nature, art, number theory, combinatorics and numerical analysis. These polynomials have been studied in several papers from a theoretical point of view (see, for example, [23,24,25,26,27,28,29,30] also see references therein).

    We recall the following results relevant for our study as stated in [3].

    Let p(x) and q(x) be polynomials with real coefficients. The (p,q) Lucas polynomials Lp,q,n(x) are defined by the recurrence relation

    Lp,q,n(x)=p(x)Lp,q,n1(x)+q(x)Lp,q,n2(x)(n2),

    from which the first few Lucas polynomials can be found as

    Lp,q,0(x)=2,Lp,q,1(x)=p(x),Lp,q,2(x)=p2(x)+2q(x),Lp,q,3(x)=p3(x)+3p(x)q(x),.... (1.3)

    For the special cases of p(x) and q(x), we can get the polynomials given Lx,1,n(x)Ln(x) Lucas polynomials, L2x,1,n(x)Dn(x) Pell–Lucas polynomials, L1,2x,n(x)jn(x) Jacobsthal–Lucas polynomials, L3x,2,n(x)Fn(x) Fermat–Lucas polynomials, L2x,1,n(x)Tn(x) Chebyshev polynomials first kind.

    Lemma 1.1. [16] Let G{L(x)}(z)be the generating function of the (p,q)Lucas polynomial sequence Lp,q,n(x).Then,

    G{L(x)}(z)=n=0Lp,q,n(x)zn=2p(x)z1p(x)zq(x)z2

    and

    G{L(x)}(z)=G{L(x)}(z)1=1+n=1Lp,q,n(x)zn=1+q(x)z21p(x)zq(x)z2.

    Definition 1.2. [22] For ϑ0, δR, ϑ+iδ0 and fA, let B(ϑ,δ) denote the class of Bazilevič function if and only if

    Re[(zf(z)f(z))(f(z)z)ϑ+iδ]>0.

    Several authors have researched different subfamilies of the well-known Bazilevič functions of type ϑ from various viewpoints (see [3] and [19]). For Bazilevič functions of order ϑ+iδ, there is no much work associated with Lucas polynomials in the literature. Initiating an exploration of properties of Lucas polynomials associated with Bazilevič functions of order ϑ+iδ is the main goal of this paper. To do so, we take into account the following definitions. In this paper motivated by the very recent work of Altinkaya and Yalcin [3] (also see [18]) we define a new class B(ϑ,δ), bi-Bazilevič function of Λ based on (p,q) Lucas polynomials as below:

    Definition 1.3. For fΛ, ϑ0, δR, ϑ+iδ0 and let B(ϑ,δ) denote the class of Bi-Bazilevič functions of order t  and type ϑ+iδ if only if

    [(zf(z)f(z))(f(z)z)ϑ+iδ]G{L(x)}(z)(zU) (1.4)

    and

    [(zg(w)g(w))(g(w)w)ϑ+iδ]G{L(x)}(w)(wU), (1.5)

    where GLp,q,n(z)Φ and the function g is described as g(w)=f1(w).

    Remark 1.4. We note that for δ=0 the class R(ϑ,0)=R(ϑ) is defined by Altinkaya and Yalcin [2].

    The class B(0,0)=SΛ is defined as follows:

    Definition 1.5. A function fΛ is said to be in the class SΛ, if the following subordinations hold

    zf(z)f(z)G{L(x)}(z)(zU)

    and

    wg(w)g(w)G{L(x)}(w)(wU)

    where g(w)=f1(w).

    We begin this section by finding the estimates of the coefficients |a2| and |a3| for functions in the class B(ϑ,δ).

    Theorem 2.1. Let the function f(z) given by 1.1 be in the class B(ϑ,δ). Then

    |a2|p(x)2p(x)|{((ϑ+iδ)2+3(ϑ+iδ)+2)2(ϑ+iδ+1)2}p2(x)4q(x)(ϑ+iδ+1)2|.

    and

    |a3|p2(x)(ϑ+1)2+δ2+p(x)(ϑ+2)2+δ2.

    Proof. Let fB(ϑ,δ,x) there exist two analytic functions u,v:UU with u(0)=0=v(0), such that |u(z)|<1, |v(w)|<1, we can write from (1.4) and (1.5), we have

    [(zf(z)f(z))(f(z)z)ϑ+iδ]=G{L(x)}(z)(zU) (2.1)

    and

    [(zg(w)g(w))(g(w)w)ϑ+iδ]=G{L(x)}(w)(wU), (2.2)

    It is fairly well known that if

    |u(z)|=|u1z+u2z2+|<1

    and

    |v(w)|=|v1w+v2w2+|<1.

    then

    |uk|1and|vk|1(kN)

    It follows that, so we have

    G{L(x)}(u(z))=1+Lp,q,1(x)u(z)+Lp,q,2(x)u2(z)+=1+Lp,q,1(x)u1z+[Lp,q,1(x)u2+Lp,q,2(x)u21]z2+ (2.3)

    and

    G{L(x)}(v(w))=1+Lp,q,1(x)v(w)+Lp,q,2(x)v2(w)+=1+Lp,q,1(x)v1w+[Lp,q,1(x)v2+Lp,q,2(x)v21]w2+ (2.4)

    From the equalities (2.1) and (2.2), we obtain that

    [(zf(z)f(z))(f(z)z)ϑ+iδ]=1+Lp,q,1(x)u1z+[Lp,q,1(x)u2+Lp,q,2(x)u21]z2+, (2.5)

    and

    [(zg(w)g(w))(g(w)w)ϑ+iδ]=1+Lp,q,1(x)v1w+[Lp,q,1(x)v2+Lp,q,2(x)v21]w2+, (2.6)

    It follows from (2.5) and (2.6) that

    (ϑ+iδ+1)a2=Lp,q,1(x)u1,, (2.7)
    (ϑ+iδ1)(ϑ+iδ+2)2a22(ϑ+iδ+2)a3=Lp,q,1(x)u2+Lp,q,2(x)u21, (2.8)

    and

    (ϑ+iδ+1)a2=Lp,q,1(x)v1, (2.9)
    (ϑ+iδ+2)(ϑ+iδ+3)2a22+(ϑ+iδ+2)a3=Lp,q,1(x)v2+Lp,q,2(x)v21, (2.10)

    From (2.7) and (2.9)

    u1=v1 (2.11)

    and

    2(ϑ+iδ+1)2a22=L2p,q,1(x)(u21+v21)., (2.12)

    by adding (2.8) to (2.10), we get

    ((ϑ+iδ)2+3(ϑ+iδ)+2)a22=Lp,q,1(x)(u2+v2)+Lp,q,2(x)(u21+v21), (2.13)

    by using (2.12) in equality (2.13), we have

    [((ϑ+iδ)2+3(ϑ+iδ)+2)2Lp,q,2(x)(ϑ+iδ+1)2L2p,q,1(x)]a22=Lp,q,1(x)(u2+v2),
    a22=L3p,q,1(x)(u2+v2)[((ϑ+iδ)2+3(ϑ+iδ)+2)L2p,q,1(x)2Lp,q,2(x)(ϑ+iδ+1)2]. (2.14)

    Thus, from (1.3) and (2.14) we get

    |a2|p(x)2p(x)|{((ϑ+iδ)2+3(ϑ+iδ)+2)2(ϑ+iδ+1)2}p2(x)4q(x)(ϑ+iδ+1)2|.

    Next, in order to find the bound on |a3|, by subtracting (2.10) from (2.8), we obtain

    2(ϑ+iδ+2)a32(ϑ+iδ+2)a22=Lp,q,1(x)(u2v2)+Lp,q,2(x)(u21v21)2(ϑ+iδ+2)a3=Lp,q,1(x)(u2v2)+2(ϑ+iδ+2)a22a3=Lp,q,1(x)(u2v2)2(ϑ+iδ+2)+a22 (2.15)

    Then, in view of (2.11) and (2.12), we have from (2.15)

    a3=L2p,q,1(x)2(ϑ+iδ+2)2(u21+v21)+Lp,q,1(x)2(ϑ+iδ+2)(u2v2).
    |a3|p2(x)|ϑ+iδ+1|2+p(x)|ϑ+iδ+2|=p2(x)(ϑ+1)2+δ2+p(x)(ϑ+2)2+δ2

    This completes the proof.

    Taking δ=0, in Theorem 2.1, we get the following corollary.

    Corollary 2.2. Let the function f(z) given by (1.1) be in the class B(ϑ). Then

    |a2|p(x)2p(x)|{(ϑ2+3ϑ+2)2(ϑ+1)2}p2(x)4q(x)(ϑ+1)2|

    and

    |a3|p2(x)(ϑ+2)2+p(x)ϑ+2

    Also, taking ϑ=0 and δ=0, in Theorem 2.1, we get the results given in [18].

    Fekete-Szegö inequality is one of the famous problems related to coefficients of univalent analytic functions. It was first given by [12], the classical Fekete-Szegö inequality for the coefficients of fS is

    |a3μa22|1+2exp(2μ/(1μ)) for μ[0,1).

    As μ1, we have the elementary inequality |a3a22|1. Moreover, the coefficient functional

    ςμ(f)=a3μa22

    on the normalized analytic functions f in the unit disk U plays an important role in function theory. The problem of maximizing the absolute value of the functional ςμ(f) is called the Fekete-Szegö problem.

    In this section, we are ready to find the sharp bounds of Fekete-Szegö functional ςμ(f) defined for fB(ϑ,δ) given by (1.1).

    Theorem 3.1. Let f given by (1.1) be in the class B(ϑ,δ) and μR. Then

    |a3μa22|{p(x)(ϑ+2)2+δ2,        0|h(μ)|12(ϑ+2)2+δ22p(x)|h(μ)|,             |h(μ)|12(ϑ+2)2+δ2

    where

    h(μ)=L2p,q,1(x)(1μ)((ϑ+iδ)2+3(ϑ+iδ)+2)L2p,q,1(x)2Lp,q,2(x)(ϑ+iδ+1)2.

    Proof. From (2.14) and (2.15), we conclude that

    a3μa22=(1μ)L3p,q,1(x)(u2+v2)[((ϑ+iδ)2+3(ϑ+iδ)+2)L2p,q,1(x)2Lp,q,2(x)(ϑ+iδ+1)2]+Lp,q,1(x)2(ϑ+iδ+2)(u2v2)
    =Lp,q,1(x)[(h(μ)+12(ϑ+iδ+2))u2+(h(μ)12(ϑ+iδ+2))v2]

    where

    h(μ)=L2p,q,1(x)(1μ)((ϑ+iδ)2+3(ϑ+iδ)+2)L2p,q,1(x)2Lp,q,2(x)(ϑ+iδ+1)2.

    Then, in view of (1.3), we obtain

    |a3μa22|{p(x)(ϑ+2)2+δ2,        0|h(μ)|12(ϑ+2)2+δ22p(x)|h(μ)|,             |h(μ)|12(ϑ+2)2+δ2

    We end this section with some corollaries.

    Taking μ=1 in Theorem 3.1, we get the following corollary.

    Corollary 3.2. If fB(ϑ,δ), then

    |a3a22|p(x)(ϑ+2)2+δ2.

    Taking δ=0 in Theorem 3.1, we get the following corollary.

    Corollary 3.3. Let f given by (1.1) be in the class B(ϑ,0). Then

    |a3μa22|{p(x)ϑ+2,        0|h(μ)|12(ϑ+2)2p(x)|h(μ)|,             |h(μ)|12(ϑ+2)

    Also, taking ϑ=0, δ=0 and μ=1 in Theorem 3.1, we get the following corollary.

    Corollary 3.4. Let f given by (1.1) be in the class B. Then

    |a3a22|p(x)2.

    All authors declare no conflicts of interest in this paper.



    [1] G. Jungck, Common fixed points for noncontinuous nonself maps on non-metric spaces, Far East J. Math. Sci., 4 (1996), 199–215.
    [2] G. Jungck, B. E. Rhoades, Fixed point for set valued functions without continuity, Indian J. Pure Appl. Math., 29 (1998), 227–238.
    [3] G. Jungck, Common fixed points for commuting and compatible maps on compacta, Proc. Amer. Math. Soc., 103 (1988), 977–983. http://doi.org/10.1090/S0002-9939-1988-0947693-2 doi: 10.1090/S0002-9939-1988-0947693-2
    [4] G. Jungck, S. Radenović, S. Radojević, V. Rakočević, Common fixed point theorems for weakly compatible pairs on cone metric spaces, Fixed Point Theory Appl., 57 (2009), 643840. http://doi.org/10.1155/2009/643840 doi: 10.1155/2009/643840
    [5] R. P. Pant, Common fixed points of noncommuting mappings, J. Math. Anal. Appl., 188 (1994), 436–440. http://doi.org/10.1006/jmaa.1994.1437 doi: 10.1006/jmaa.1994.1437
    [6] I. Beg, M. Abbas, Coincidence point and invariant approximation for mappings satisfying generalized weak contractive condition, Fixed Point Theory Appl., 7 (2006), 74503. https://doi.org/10.1155/FPTA/2006/74503 doi: 10.1155/FPTA/2006/74503
    [7] M. Abbas, G. Jungck, Common fixed point results for noncommuting mappings without continuity in cone metric space, J. Math. Anal. Appl., 341 (2008), 416–420. https://doi.org/10.1016/j.jmaa.2007.09.070 doi: 10.1016/j.jmaa.2007.09.070
    [8] S. Radenović, Common fixed points under contractive conditions in cone metric spaces, Comput. Math. Appl., 58 (2009), 1273–1278. https://doi.org/10.1016/j.camwa.2009.07.035 doi: 10.1016/j.camwa.2009.07.035
    [9] S. K. Malhotra, S. Shukla, R. Sen, Some coincidence and common fixed point theorems for Prešić-Reich type mappings in cone metric spaces, Rend. Semin. Mat. Univ. Politec. Torino., 70 (2012), 247–260.
    [10] G. Song, X. Sun, Y. Zhao, G. Wang, New common fixed point theorems for maps on cone metric spaces, Appl. Math. Lett., 23 (2010), 1033–1037. https://doi.org/10.1016/j.aml.2010.04.032 doi: 10.1016/j.aml.2010.04.032
    [11] Z. Mustafa, J. R. Roshan, V. Parvaneh, Z. Kadelburg, Fixed point theorems for weakly T-Chatterjea and weakly T-Kannan contractions in b-metric spaces, J. Inequal. Appl., 46 (2014), 1–14. https://doi.org/10.1186/1029-242X-2014-46 doi: 10.1186/1029-242X-2014-46
    [12] A. Petrusel, G. Petrusel, J. C. Yao, Fixed point and coincidence point theorems in b-metric spaces with applications, Appl. Anal. Discrete Math., 11 (2017), 199–215. https://doi.org/10.2298/AADM1701199P doi: 10.2298/AADM1701199P
    [13] J. R. Roshan, N. Shobkolaei, S. Sedghi, M. Abbas, Common fixed point of four maps in b-metric spaces, Hacettepe J. Math. Stat., 43 (2014), 613–624.
    [14] S. Aleksić, H. Huang, Z. D. Mitrović, S. Radenović, Remarks on some fixed point results in b-metric spaces, J. Fixed Point Theory Appl., 20 (2018), 1–17. https://doi.org/10.1007/s11784-018-0626-2 doi: 10.1007/s11784-018-0626-2
    [15] N. Hussain, M. H. Shah, KKM mappings in cone b-metric spaces, Comput. Math. Appl., 62 (2011), 1677–1684. https://doi.org/10.1016/j.camwa.2011.06.004 doi: 10.1016/j.camwa.2011.06.004
    [16] H. Huang, S. Xu, Fixed point theorems of contractive mappings in cone b-metric spaces and applications, Fixed Point Theory Appl., 112 (2013), 1–10. https://doi.org/10.1186/1687-1812-2013-112 doi: 10.1186/1687-1812-2013-112
    [17] J. R. Roshan, N. Shobkolaei, S. Sedghi, V. Parvaneh, S. Radenović, Common fixed point theorems for three maps in discontinuous Gb metric spaces, Acta Math. Sci., 34 (2014), 1643–1654. https://doi.org/10.1016/S0252-9602(14)60110-7 doi: 10.1016/S0252-9602(14)60110-7
    [18] A. Z. Rezazgui, A. A. Tallafha, W. Shatanawi, Common fixed point results via Aϑ-α-contractions with a pair and two pairs of self-mappings in the frame of an extended quasi b-metric space, AIMS Math., 8 (2023), 7225–7241. https://doi.org/10.3934/math.2023363 doi: 10.3934/math.2023363
    [19] J. Ahmad, A. E. Al-Mazrooei, H. Aydi, M. D. L. Sen, Rational contractions on complex-valued extended b-metric spaces and an application, AIMS Math., 8 (2023), 3338–3352. https://doi.org/10.3934/math.2023172 doi: 10.3934/math.2023172
    [20] M. Abbas, B. E. Rhoades, T. Nazir, Common fixed points for four maps in cone metric spaces, Appl. Math. Comput., 216 (2010), 80–86. https://doi.org/10.1016/j.amc.2010.01.003 doi: 10.1016/j.amc.2010.01.003
    [21] Y. Han, S. Xu, New common fixed point results for four maps on cone metric spaces, Appl. Math., 2 (2011), 1114–1118. https://doi.org/10.4236/am.2011.29153 doi: 10.4236/am.2011.29153
    [22] M. Rangamma, K. Prudhvi, Common fixed points under contractive conditions for three maps in cone metric spaces, Bull. J. Math. Anal. Appl., 4 (2012), 174–180.
    [23] S. K. Malhotra, S. Shukla, R. Sen, Some coincidence and common fixed point theorems in cone metric spaces, Bull. J. Math. Anal. Appl., 4 (2012), 64–71.
    [24] A. K. Dubey, U. Mishra, Coincidence point and fixed point results for three self mapping in cone metric spaces, Int. J. Nonlinear Anal., 5 (2014), 104–110. http://doi.org/10.22075/IJNAA.2014.142 doi: 10.22075/IJNAA.2014.142
    [25] L. Liu, F. Gu, Common fixed point theorems for six self-maps in b-metric spaces with nonlinear contractive conditions, J. Nonlinear Sci. Appl., 9 (2016), 5909–5930. http://doi.org/10.22436/jnsa.009.12.02 doi: 10.22436/jnsa.009.12.02
    [26] L. G. Huang, X. Zhang, Cone metric space and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468–1476. https://doi.org/10.1016/j.jmaa.2005.03.087 doi: 10.1016/j.jmaa.2005.03.087
    [27] X. Zhang, Common fixed point theorem of Lipschitz type mappings on cone metric space, Acta Math. Sin., 53 (2010), 1139–1148.
  • This article has been cited by:

    1. Ala Amourah, Basem Aref Frasin, Thabet Abdeljawad, Sivasubramanian Srikandan, Fekete-Szegö Inequality for Analytic and Biunivalent Functions Subordinate to Gegenbauer Polynomials, 2021, 2021, 2314-8888, 1, 10.1155/2021/5574673
    2. Mohamed Illafe, Ala Amourah, Maisarah Haji Mohd, Coefficient Estimates and Fekete–Szegö Functional Inequalities for a Certain Subclass of Analytic and Bi-Univalent Functions, 2022, 11, 2075-1680, 147, 10.3390/axioms11040147
    3. Nazmiye Yilmaz, İbrahim Aktaş, On some new subclasses of bi-univalent functions defined by generalized Bivariate Fibonacci polynomial, 2022, 33, 1012-9405, 10.1007/s13370-022-00993-y
    4. Daniel Breaz, Halit Orhan, Luminiţa-Ioana Cotîrlă, Hava Arıkan, A New Subclass of Bi-Univalent Functions Defined by a Certain Integral Operator, 2023, 12, 2075-1680, 172, 10.3390/axioms12020172
    5. Luminiţa-Ioana Cotîrlǎ, Abbas Kareem Wanas, Applications of Laguerre Polynomials for Bazilevič and θ-Pseudo-Starlike Bi-Univalent Functions Associated with Sakaguchi-Type Functions, 2023, 15, 2073-8994, 406, 10.3390/sym15020406
    6. Isra Al-Shbeil, Abbas Kareem Wanas, Afis Saliu, Adriana Cătaş, Applications of Beta Negative Binomial Distribution and Laguerre Polynomials on Ozaki Bi-Close-to-Convex Functions, 2022, 11, 2075-1680, 451, 10.3390/axioms11090451
    7. Tariq Al-Hawary, Ala Amourah, Basem Aref Frasin, Fekete–Szegö inequality for bi-univalent functions by means of Horadam polynomials, 2021, 27, 1405-213X, 10.1007/s40590-021-00385-5
    8. Abbas Kareem Wanas, Luminiţa-Ioana Cotîrlă, Applications of (M,N)-Lucas Polynomials on a Certain Family of Bi-Univalent Functions, 2022, 10, 2227-7390, 595, 10.3390/math10040595
    9. Abbas Kareem Wanas, Haeder Younis Althoby, Fekete-Szegö Problem for Certain New Family of Bi-Univalent Functions, 2022, 2581-8147, 263, 10.34198/ejms.8222.263272
    10. Arzu Akgül, F. Müge Sakar, A new characterization of (P, Q)-Lucas polynomial coefficients of the bi-univalent function class associated with q-analogue of Noor integral operator, 2022, 33, 1012-9405, 10.1007/s13370-022-01016-6
    11. Tariq Al-Hawary, Coefficient bounds and Fekete–Szegö problem for qualitative subclass of bi-univalent functions, 2022, 33, 1012-9405, 10.1007/s13370-021-00934-1
    12. Ala Amourah, Basem Aref Frasin, Tamer M. Seoudy, An Application of Miller–Ross-Type Poisson Distribution on Certain Subclasses of Bi-Univalent Functions Subordinate to Gegenbauer Polynomials, 2022, 10, 2227-7390, 2462, 10.3390/math10142462
    13. Abbas Kareem Wanas, Alina Alb Lupaş, Applications of Laguerre Polynomials on a New Family of Bi-Prestarlike Functions, 2022, 14, 2073-8994, 645, 10.3390/sym14040645
    14. Ibtisam Aldawish, Basem Frasin, Ala Amourah, Bell Distribution Series Defined on Subclasses of Bi-Univalent Functions That Are Subordinate to Horadam Polynomials, 2023, 12, 2075-1680, 362, 10.3390/axioms12040362
    15. Ala Amourah, Omar Alnajar, Maslina Darus, Ala Shdouh, Osama Ogilat, Estimates for the Coefficients of Subclasses Defined by the Bell Distribution of Bi-Univalent Functions Subordinate to Gegenbauer Polynomials, 2023, 11, 2227-7390, 1799, 10.3390/math11081799
    16. Omar Alnajar, Maslina Darus, 2024, 3150, 0094-243X, 020005, 10.1063/5.0228336
    17. Muajebah Hidan, Abbas Kareem Wanas, Faiz Chaseb Khudher, Gangadharan Murugusundaramoorthy, Mohamed Abdalla, Coefficient bounds for certain families of bi-Bazilevič and bi-Ozaki-close-to-convex functions, 2024, 9, 2473-6988, 8134, 10.3934/math.2024395
    18. Ala Amourah, Ibtisam Aldawish, Basem Aref Frasin, Tariq Al-Hawary, Applications of Shell-like Curves Connected with Fibonacci Numbers, 2023, 12, 2075-1680, 639, 10.3390/axioms12070639
    19. Tariq Al-Hawary, Ala Amourah, Abdullah Alsoboh, Osama Ogilat, Irianto Harny, Maslina Darus, Applications of qUltraspherical polynomials to bi-univalent functions defined by qSaigo's fractional integral operators, 2024, 9, 2473-6988, 17063, 10.3934/math.2024828
    20. İbrahim Aktaş, Derya Hamarat, Generalized bivariate Fibonacci polynomial and two new subclasses of bi-univalent functions, 2023, 16, 1793-5571, 10.1142/S1793557123501474
    21. Abbas Kareem Wanas, Fethiye Müge Sakar, Alina Alb Lupaş, Applications Laguerre Polynomials for Families of Bi-Univalent Functions Defined with (p,q)-Wanas Operator, 2023, 12, 2075-1680, 430, 10.3390/axioms12050430
    22. Ala Amourah, Zabidin Salleh, B. A. Frasin, Muhammad Ghaffar Khan, Bakhtiar Ahmad, Subclasses of bi-univalent functions subordinate to gegenbauer polynomials, 2023, 34, 1012-9405, 10.1007/s13370-023-01082-4
    23. Tariq Al-Hawary, Basem Aref Frasin, Abbas Kareem Wanas, Georgia Irina Oros, On Rabotnov fractional exponential function for bi-univalent subclasses, 2023, 16, 1793-5571, 10.1142/S1793557123502170
    24. Tariq Al-Hawary, Ala Amourah, Hasan Almutairi, Basem Frasin, Coefficient Inequalities and Fekete–Szegö-Type Problems for Family of Bi-Univalent Functions, 2023, 15, 2073-8994, 1747, 10.3390/sym15091747
    25. Omar Alnajar, Osama Ogilat, Ala Amourah, Maslina Darus, Maryam Salem Alatawi, The Miller-Ross Poisson distribution and its applications to certain classes of bi-univalent functions related to Horadam polynomials, 2024, 10, 24058440, e28302, 10.1016/j.heliyon.2024.e28302
    26. Tariq Al-Hawary, Basem Frasin, Daniel Breaz, Luminita-Ioana Cotîrlă, Inclusive Subclasses of Bi-Univalent Functions Defined by Error Functions Subordinate to Horadam Polynomials, 2025, 17, 2073-8994, 211, 10.3390/sym17020211
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1126) PDF downloads(54) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog