Research article Special Issues

Estimates of coefficients for bi-univalent Ma-Minda-type functions associated with q-Srivastava-Attiya operator

  • In this article, we consider new subclasses of analytic and bi-univalent functions associated with the q-Srivastava-Attiya operator in the open unit disk. We obtain coefficient bounds for the Taylor-Maclaurin coefficients |a2| and |a3| of the functions of these new subclasses. Furthermore, we establish the Fekete-Szegö inequality for functions in the classes Tϵτ,q,α(ψ),KHϵτ,q,α(δ,ψ),andAϵτ,q,α(δ,ψ).

    Citation: Norah Saud Almutairi, Adarey Saud Almutairi, Awatef Shahen, Hanan Darwish. Estimates of coefficients for bi-univalent Ma-Minda-type functions associated with q-Srivastava-Attiya operator[J]. AIMS Mathematics, 2025, 10(3): 7269-7289. doi: 10.3934/math.2025333

    Related Papers:

    [1] Erhan Deniz, Muhammet Kamali, Semra Korkmaz . A certain subclass of bi-univalent functions associated with Bell numbers and qSrivastava Attiya operator. AIMS Mathematics, 2020, 5(6): 7259-7271. doi: 10.3934/math.2020464
    [2] Luminiţa-Ioana Cotîrlǎ . New classes of analytic and bi-univalent functions. AIMS Mathematics, 2021, 6(10): 10642-10651. doi: 10.3934/math.2021618
    [3] Ahmad A. Abubaker, Khaled Matarneh, Mohammad Faisal Khan, Suha B. Al-Shaikh, Mustafa Kamal . Study of quantum calculus for a new subclass of q-starlike bi-univalent functions connected with vertical strip domain. AIMS Mathematics, 2024, 9(5): 11789-11804. doi: 10.3934/math.2024577
    [4] Sheza. M. El-Deeb, Gangadharan Murugusundaramoorthy, Kaliyappan Vijaya, Alhanouf Alburaikan . Certain class of bi-univalent functions defined by quantum calculus operator associated with Faber polynomial. AIMS Mathematics, 2022, 7(2): 2989-3005. doi: 10.3934/math.2022165
    [5] Tariq Al-Hawary, Ala Amourah, Abdullah Alsoboh, Osama Ogilat, Irianto Harny, Maslina Darus . Applications of qUltraspherical polynomials to bi-univalent functions defined by qSaigo's fractional integral operators. AIMS Mathematics, 2024, 9(7): 17063-17075. doi: 10.3934/math.2024828
    [6] Sarem H. Hadi, Maslina Darus, Choonkil Park, Jung Rye Lee . Some geometric properties of multivalent functions associated with a new generalized q-Mittag-Leffler function. AIMS Mathematics, 2022, 7(7): 11772-11783. doi: 10.3934/math.2022656
    [7] Ekram E. Ali, Miguel Vivas-Cortez, Rabha M. El-Ashwah . New results about fuzzy γ-convex functions connected with the q-analogue multiplier-Noor integral operator. AIMS Mathematics, 2024, 9(3): 5451-5465. doi: 10.3934/math.2024263
    [8] Ala Amourah, B. A. Frasin, G. Murugusundaramoorthy, Tariq Al-Hawary . Bi-Bazilevič functions of order ϑ+iδ associated with (p,q) Lucas polynomials. AIMS Mathematics, 2021, 6(5): 4296-4305. doi: 10.3934/math.2021254
    [9] F. Müge Sakar, Arzu Akgül . Based on a family of bi-univalent functions introduced through the Faber polynomial expansions and Noor integral operator. AIMS Mathematics, 2022, 7(4): 5146-5155. doi: 10.3934/math.2022287
    [10] Prathviraj Sharma, Srikandan Sivasubramanian, Nak Eun Cho . Initial coefficient bounds for certain new subclasses of bi-univalent functions with bounded boundary rotation. AIMS Mathematics, 2023, 8(12): 29535-29554. doi: 10.3934/math.20231512
  • In this article, we consider new subclasses of analytic and bi-univalent functions associated with the q-Srivastava-Attiya operator in the open unit disk. We obtain coefficient bounds for the Taylor-Maclaurin coefficients |a2| and |a3| of the functions of these new subclasses. Furthermore, we establish the Fekete-Szegö inequality for functions in the classes Tϵτ,q,α(ψ),KHϵτ,q,α(δ,ψ),andAϵτ,q,α(δ,ψ).



    The class of functions f that are analytic in the open unit disk D={z:zCand|z|<1} and are normalized by the criteria f(0)=f(0)1=0 is indicated by the symbol H. Equivalently, if fH, the Taylor-Maclaurin series representation takes the form:

    f(z)=z+l=2alzl,zD. (1.1)

    In addition, let us designate S as the fundamental subclass of H, whose functions are univalent in D. Koebe one-quarter theorem [1], which is widely recognized, guarantees that the image of D under each function fS contains a disk with a radius of 14. Therefore, it can be concluded that every univalent function f possesses an inverse f1 that satisfies the equation

    f1(f(z))=z,zD

    and

    f1(f(μ))=μ,(|μ|<r0(f),r0(f)14),

    where

    G(μ)=f1(μ)=μa2μ2+(2a22a3)μ3(5a325a2a3+a4)μ4+.... (1.2)

    If f and f1 are both univalent in D, then a function fH is considered bi-univalent in D. The class of bi-univalent functions defined in the unit disk D is indicated by τ. Because it univalently maps the unit disk D onto the entire complex plane, minus a slit along the line from 14 to , the well-known Koebe function is not an element of τ. Therefore, the unit disk D is absent from the image domain. The well-known Bieberbach conjecture, which asserts that the following coefficient inequality holds for each fS produced by the Taylor-Maclaurin series expansion (1.1), was established in 1985 by Louis de Branges [2],

    |al|l(lN/{1}).

    The class of analytic bi-univalent functions was first introduced and studied by Lewin who proved |a2|<1.51. Brannan and Clunie subsequently enhanced Lewin's outcome to |a2|2. Indeed, it is verified for the class of bi-close to convex functions in the article [3]. Researchers Brannan and Taha [4] and Taha [5] looked at different types of bi-univalent functions and found that they are similar to well-known types of univalent functions represented by strongly starlike, starlike and convex functions. We present bi-starlike functions and bi-convex functions, and established non-sharp estimates for the first two Taylor-Maclaurin coefficients |a2| and |a3|.

    Next, we recall the definition of subordination between analytic functions. For two functions f,GH, we say that the function f is subordinate to G, if there exists a Schwarz function w, which is analytic in D with the following property:

    w(0)=0,|w(z)|<1,for all zD,

    such that

    f(z)=G(w(z)).

    This subordination is symbolically written as follows:

    fGorf(z)G(z)(zD).

    It is well known that if the function G is univalent in D, then the following equivalence holds (see [6]):

    fG(zD)f(0)=G(0)andf(D)G(D).

    The q-difference operator which was introduced by Jackson is

    Dqf(z)=f(z)f(qz)z(1q),zD/{0}. (1.3)

    The following limit relationship is clear:

    limq1Dqf(z)=f(z)andDqf(0)=f(0).

    For a function fD defined by (1.1), we deduce the following result:

    Dqf(z)=1+l=2[l]qalzl1,

    where [l]q is given by

    [l]q=1ql1q(lN{1}).

    As q1, we have [l]ql and [0]q=0.

    The Srivastava-Attiya operator, which has been extensively investigated, was defined by Srivastava and Attiya [7] by using the Hurwitz-Lerch zeta function Φ(z,ϵ,α), which is systematically discussed in recent survey papers [8,9]. To obtain comprehensive information regarding the interconnections between the function Φ(z,ϵ,α) and many significant functions within the realm of analytic number theory, readers may consult Chapter I in reference [10]. The following q-analogue of the Hurwitz-Lerch zeta function Φ(z,ϵ,α) was explored by Shah and Noor [11] (see also [12]):

    ϕq(ϵ,α;z):=l=0zl[l+α]ϵq, (1.4)

    where αC{Z0},ϵCwhen|z|<1,(ϵ)>1, and |z|=1.

    Z0 being the set of negative integers. The normalized form of the series (1.4) is defined by

    ψq(ϵ,α;z)=[1+α]ϵq(ϕq(ϵ,α;z)[α]ϵq)=z+l=2([1+α]q[l+α]q)ϵzl. (1.5)

    By using (1.1) and (1.5), Shah and Noor [11] defined the q-Srivastava-Attiya operator Jϵq,α:HH as follows:

    Definition 1.1. (see [11,12]) The q-Srivastava-Attiya operator: Jϵq,α:HH is defined in terms of the Hadamard product (or convolution) by

    Jϵq,αf(z)=ψq(ϵ,α;z)(z)f(z)=z+l=2Cϵq,α(l)alzl, (1.6)

    where

    Cϵq,α(l)=([1+α]q[l+α]q)ϵ.

    The mathematical applications of q-calculus, fractional q-calculus, and fractional q-derivative operators in geometric function theory of complex analysis were investigated by Srivastava [13] in his recently published survey-cum-expository review article. Srivastava [13] also exposed the not-yet-widely-understood fact that the so-called (p,q)-variation of classical q-calculus is a relatively trivial and inconsequential variation of classical q-calculus, the additional parameter p being redundant or superfluous (see, for details, [13], p. 340).

    In this paper, we utilize the fundamental or quantum (or q) extension ϕq(ϵ,α;z). When q1, it produces the well-known Hurwitz-Lerch zeta function Φ(z,ϵ,α). Local or non-local symmetries are observed in certain properties of many members of the Hurwitz-Lerch zeta function. family, as previously mentioned. Additional support for our investigation into the practical uses of quantum extensions (or q) in this research can be located in the chapter titled "Symmetric Quantum Calculus" in reference [14].

    Remark 1.1. The operator Jϵq,α is a generalization of several known operators studied in earlier investigations, which are recalled below:

    1) The operator Jϵq,α coincides with the Srivastava-Attiya operator in [7], and for q1, the function ϕq(ϵ,α;z) reduces to the Hurwitz-Lerch zeta function (see [8,9]). The Srivastava-Attiya operator has several uses, which can be found in [15,16,17] and the references listed in each of these previous publications.

    2) The operator Jϵq,α reduces to the q-Bernardi operator for ϵ=1 as stated in [18].

    3) The operator Jϵq,α reduces to the q-Libera operator for ϵ=α=1, as stated in [18].

    4) The operator Jϵq,α reduces to the Bernardi operator for q1 and ϵ=1 (see [19]).

    5) The operator Jϵq,α reduces to the Alexander operator for q1,ϵ=1, and α=0 (see [20]).

    We define the subclasses S,ϵq,α(δ) and Kϵq,α(δ) of the class H for 0δ<1 using the q-Srivastava-Attiya operator.

    Definition 1.2. A function f(z) of the form (1.1) is in the class S,ϵq,α(δ) if it satisfies the following condition:

    {z(Jϵq,αf(z))Jϵq,αf(z)}>δ,forallzD.

    When ϵ=0, we obtain the result.

    Corollary 1.1. A function f(z) of the form (1.1) is in the class S,0q,α(δ) if it satisfies the following condition [21]:

    {z(f(z))f(z)}>δ,for allzD.

    Definition 1.3. A function f(z) of the form (1.1) is in the class Kϵq,α(δ) if it satisfies the following condition:

    {1+z(Jϵq,αf(z))(Jϵq,αf(z))}>δ,forallzD.

    Observe that Jϵq,αfKϵq,α(δ) if and only if z(Jϵq,αf(z))S,ϵq,α(δ). When ϵ=0, we obtain the result.

    Corollary 1.2. A function f(z) of the form (1.1) is in the class K0q,α(δ) if it satisfies the following condition [22]:

    {1+z(f(z))f(z))}>δ,for allzD.

    Definition 1.4. A function f(z) of the form (1.1) is in the class Hϵq,α(δ) if it satisfies the following condition:

    {(Jϵq,αf(z))}>δ,forallzD.

    When ϵ=0, we obtain the result.

    Corollary 1.3. A function f(z) of the form (1.1) is in the class H0q,α(δ) if it satisfies the following condition [23]:

    {(f(z)}>δ,for allzD.

    In this study, we derive estimates for the initial coefficients a2 and a3 of three novel subclasses of the class τ of bi-univalent functions.

    Let ψ be an analytic function with a positive real part in D such that ψ(0)=1,ψ(0)>0, and ψ(D) is symmetric with respect to the real axis. Such a function has a series expansion of the form

    ψ(z)=1+ν1z+ν2z2+ν3z3+...(ν1>0).

    With this brief introduction, we define the following classes of bi-univalent functions and find the coefficient estimates with the help of the q-Srivastava-Attiya operator.

    Definition 1.5. A function fτ is said to be in the class Tϵτ,q,α(ψ) if the following subordinations hold

    (Jϵq,αf(z))ψ(z)and(Jϵq,αG(μ))ψ(μ),whereG(μ)=f1(μ).

    Definition 1.6. A function f(z)τ is said to be in the class KHϵτ,q,α(δ,ψ),δ0, if the following subordinations hold:

    z(Jϵq,αf(z))f(z)+δz2(Jϵq,αf(z))f(z)ψ(z),(zD),

    and

    μ(Jϵq,αG(μ))G(μ)+δμ2(Jϵq,αG(μ))G(μ)ψ(μ),(μD),

    where G(μ)=f1(μ).

    Definition 1.7. A function fτ is said to be in the class Aϵτ,q,α(ψ),δ>0, if the following subordinations hold:

    (1δ)z(Jϵq,αf(z))Jϵq,αf(z)+δ(1+z(Jϵq,αf(z))(Jϵq,αf(z)))ψ(z),(zD),

    and

    (1δ)μ(Jϵq,αG(μ))Jϵq,αG(μ)+δ(1+μ(Jϵq,αG(μ))(Jϵq,αG(μ)))ψ(μ),(μD),

    where G(μ)=f1(μ).

    In order to derive our main results, we have to recall the following lemma here.

    Lemma 1.1. [24] If the function pP is given by the series

    p(z)=1+c1z+c2z2+c3z3+..., (1.7)

    where P is the family of all functions p(z) analytic in D and satisfying {p(z)}>0. Then the following sharp estimate holds:

    |cl|2(l=1,2,...).

    Also, γR for all, we obtain

    |c2γc21|max{1,|γ|}.

    Theorem 2.1. Let f(z)Tϵτ,q,α(ψ) and be given by (1.1). Then

    |a2|ν1ν1|3Cϵq,α(3)ν214(Cϵq,α(2))2ν2+4(Cϵq,α(2))2ν1|and|a3|ν13|Cϵq,α(3)|+|ν212|Cϵq,α(2)|2. (2.1)

    Proof. Let fTϵτ,q,α(ψ) and G=f1. Then there are analytic functions r,F:DD, with r(0)=F(0)=0, satisfying

    (Jϵq,αf(z))=ψ(r(z))and(Jϵq,αG(z))=ψ(F(μ)). (2.2)

    The functions p1 and p2 are defined as follows:

    p1(z)=1+r(z)1r(z)=1+c1z+c2z2+c3z3+...andp2(z)=1+F(z)1F(z)=1+b1z+b2z2+b3z3+...,

    or, equivalently,

    r(z)=p1(z)1p1(z)+1=12(c1z+(c2c212)z2+...) (2.3)

    and

    F(z)=p2(z)1p2(z)+1=12(b1z+(b2b212)z2+...). (2.4)

    It is clear that p1 and p2 are analytic in D and p1(0)=p2(0)=1. Also p1 and p2 have a positive real part in D and hence |bi|2 and |ci|2(iN{1}).

    Substituting (2.3) and (2.4) into (2.2) and using (1), we can obtain

    ψ(p1(z)1p1(z)+1)=1+12ν1c1z+(12ν1(c2c212)+14ν2c21)z2+... (2.5)

    and

    ψ(p2(z)1p2(z)+1)=1+12ν1b1μ+(12ν1(b2b212)+14ν2b21)μ2+.... (2.6)

    Since fτ has the Maclaurin series given by (1.1), a computation shows that its inverse G=f1 has the expansion G(μ)=f1(μ)=μa2μ2+(2a22a3)μ3+.....

    Since

    (Jϵq,αf(z))=1+2Cϵq,α(2)a2z+3Cϵq,α(3)a3z2+...

    and

    (Jϵq,αG(μ))=12Cϵq,α(2)a2μ+3Cϵq,α(3)(2a22a3)μ2+...,

    it follows from (2.5), (2.6), and (2.2) that

    2a2=ν1c12Cϵq,α(2), (2.7)
    3Cϵq,α(3)a3=12ν1(c2c212)+14ν2c21, (2.8)
    2a2=ν1b12Cϵq,α(2), (2.9)
    3Cϵq,α(3)(2a22a3)=12ν1(b2b212)+14ν2b21. (2.10)

    From (2.7) and (2.9), we obtain

    c1=b1 (2.11)

    and

    2a22=ν21(c21+b21)16(Cϵq,α(2))2. (2.12)

    Adding Eqs (2.8) and (2.10) and using (2.12), we now obtain

    a22=ν31(c2+b2)4[3Cϵq,α(3)ν214(Cϵq,α(2))2ν2+4(Cϵq,α(2))2ν1].

    Applying Lemma 1.1 for the coefficients b2 and c2, we immediately have

    |a2|ν1ν1|3Cϵq,α(3)ν214(Cϵq,α(2))2ν2+4(Cϵq,α(2))2ν1|.

    As stated in (2.7), this provides us with the bound on |a2|. Next, in order to find the bound on |a3|, by subtracting (2.10) from (2.8) and also from (2.11), we get c21=b21, hence

    a3=112Cϵq,α(3)ν1(c2b2)+116(Cϵq,α(2))2(ν21c21).

    Using (2.12) and applying Lemma 1.1 once again for the coefficients b2 and c2, we have

    |a3|ν13|Cϵq,α(3)|+ν212|Cϵq,α(2)|2.

    This completes the proof of Theorem 2.1.

    When ϵ=0, we obtain the result presented by Ali et al. [25].

    Corollary 2.1. Let f(z)Tτ(ψ) and be given by (1.1). Then

    |a2|ν1ν1|3ν214ν2+4ν1|and|a3|ν13+ν214. (2.13)

    Theorem 2.2. Let f(z) given by (1.1) be in the class KHϵτ,q,α(δ,ψ). Then

    |a22|ν31|[(1+2Cϵq,α(2)(1+2δ))2(ν1ν2)+(3Cϵq,α(3)(1+2δ)2Cϵq,α(2)(1+δ))ν21]|, (2.14)

    and

    |a3|ν1+|ν2ν1|3|Cϵq,α(3)|(1+2δ)+2|Cϵq,α(2)|(1+δ). (2.15)

    Proof. Let f(z)KHϵτ,q,α(δ,ψ). Then there are analytic functions r,F:DD, with r(0)=F(0)=0, satisfying

    z(Jϵq,αf(z))f(z)+δz2(Jϵq,αf(z))f(z)=ψ(r(z)),(zD), (2.16)

    and

    μ(Jϵq,αG(μ))G(μ)+δμ2(Jϵq,αG(μ))G(μ)=ψ(F(μ)),(μD), (2.17)

    where G(μ)=f1(μ). Since Jϵq,αf(z)=z+Cϵq,α(2)a2z2+Cϵq,α(3)a3z3+... and Jϵq,αG(μ)=μCϵq,α(2)a2μ2+Cϵq,α(3)(2a22a3)μ3+..., we have

    1+[1+2Cϵq,α(2)(1+δ)]a2z+([1+3Cϵq,α(3)(1+2δ)]a3+[12Cϵq,α(2)(1+δ)]a22)z2...,

    and

    1+[12Cϵq,α(2)(1+δ)]a2μ+([1+3Cϵq,α(3)(1+2δ)]a3+[6Cϵq,α(3)(1+2δ)2Cϵq,α(2)(1+δ)1]a22)μ2....

    Equating the coefficients (2.16), (2.17), (2.5), and (2.6) on both sides, we have

    [1+2Cϵq,α(2)(1+δ)]a2=ν1c12, (2.18)
    [1+3Cϵq,α(3)(1+2δ)]a3+[12Cϵq,α(2)(1+δ)]a22=12ν1(c2c212)+14ν2c21, (2.19)
    [12Cϵq,α(2)(1+δ)]a2=ν1b12, (2.20)
    [1+3Cϵq,α(3)(1+2δ)]a3+[6Cϵq,α(3)(1+2δ)2Cϵq,α(2)(1+δ)1]a22 (2.21)
    =12ν1(b2b212)+14ν2b21. (2.22)

    From (2.18) and (2.20), we obtain

    c1=b1 (2.23)

    and

    2a22=ν21(c21+b21)4[1+2Cϵq,α(2)(1+2δ)]2. (2.24)

    Adding Eqs (2.19) and (2.21) and using (2.24), we now obtain

    a22=ν31(c2+b2)4[(1+2Cϵq,α(2)(1+2δ))2(ν1ν2)+(3Cϵq,α(3)(1+2δ)2Cϵq,α(2)(1+δ))ν21].

    Applying Lemma 1.1 for the coefficients b2 and c2, we immediately get

    |a22|ν31|[(1+2Cϵq,α(2)(1+2δ))2(ν1ν2)+(3Cϵq,α(3)(1+2δ)2Cϵq,α(2)(1+δ))ν21]|.

    Since ν1>0, the last inequality gives the desired estimate on |a2| given in (2.14). Next, in order to find the bound on |a3|, by subtracting (2.21) from (2.19) and also from (2.23), we get c21=b21, hence

    a3=ν1([1+6Cϵq,α(3)(1+2δ)2Cϵq,α(2)(1+δ)]c2+[1+2Cϵq,α(2)(1+δ)]b2)[6Cϵq,α(3)(1+2δ)4Cϵq,α(2)(1+δ)][2+6Cϵq,α(3)(1+2δ)]+b21(ν2ν1)[1+3Cϵq,α(3)(1+2δ)]2[6Cϵq,α(3)(1+2δ)4Cϵq,α(2)(1+δ)][2+6Cϵq,α(3)(1+2δ)].

    Applying Lemma 1.1 once again for the coefficients b2 and c2, we obtain

    |a3|ν1+|ν2ν1|3|Cϵq,α(3)|(1+2δ)+2|Cϵq,α(2)|(1+δ).

    This estimate is exactly that found in (2.15).

    When ϵ=0, we obtain the result presented by Ali et al. [25].

    Corollary 2.2. Let f(z) given by (1.1) be in the class KHτ(δ,ψ). Then

    |a2|ν1ν1|(1+2δ)2(ν1ν2)+(1+4δ)ν21|,

    and

    |a3|ν1+|ν2ν1|(1+4δ).

    When ϵ=0 and δ=0, the coefficient estimates for Ma-Minda bi-starlike functions are obtained [26].

    Corollary 2.3. Let f(z) given by (1.1) be in the class KHτ(0,ψ). Then

    |a2|ν1ν1|ν1ν2+ν21|,

    and

    |a3|ν1+|ν2ν1|.

    Theorem 2.3. Let f given by (1.1) be in the class Aϵτ,q,α(ψ). Then

    |a22|ν31[|Cϵq,α(2)|2(1+δ)2(ν1ν2)+(2|Cϵq,α(3)|(1+2δ)|Cϵq,α(2)|2(1+3δ))ν21], (2.25)

    and

    |a3|ν1+|ν2ν1|2|Cϵq,α(3)|(1+2δ)|Cϵq,α(2)|2(1+3δ). (2.26)

    Proof. Let f(z)Aϵτ,q,α(δ,ψ). Then there are analytic functions r,F:DD, with r(0)=F(0)=0, satisfying

    (1δ)z(Jϵq,αf(z))Jϵq,αf(z)+δ(1+z(Jϵq,αf(z))(Jϵq,αf(z)))=ψ(r(z)),(zD), (2.27)

    and

    (1δ)μ(Jϵq,αG(μ))Jϵq,αG(μ)+δ(1+μ(Jϵq,αG(μ))(Jϵq,αG(μ)))=ψ(r(μ)),(μD), (2.28)

    where G(μ)=f1(μ). By (2.27) and (2.28), we have

    1+(1+δ)Cϵq,α(2)a2z+(2(1+2δ)Cϵq,α(3)a3(1+3δ)(Cϵq,α(2))2a22)z2+...

    and

    1(1+δ)Cϵq,α(2)a2μ+([4(1+2δ)Cϵq,α(3)(1+3δ)(Cϵq,α(2))2]a22+[2(1+2δ)Cϵq,α(3)]a3)μ2....

    Equating the coefficients (2.27), (2.28), (2.5), and (2.6) on both sides, we have

    (1+δ)Cϵq,α(2)a2=ν1c12, (2.29)
    2(1+2δ)Cϵq,α(3)a3(1+3δ)(Cϵq,α(2))2a22=12ν1(c2c212)+14ν2c21, (2.30)
    (1+δ)Cϵq,α(2)a2=ν1b12, (2.31)
    2(1+2δ)Cϵq,α(3)a3+[4(1+2δ)Cϵq,α(3)(1+3δ)(Cϵq,α(2))2]a22=12ν1(b2b212)+14ν2b21. (2.32)

    From (2.29) and (2.31), we obtain

    c1=b1, (2.33)

    and

    2a22=ν21(c21+b21)4(1+δ)2(Cϵq,α(2))2. (2.34)

    Adding Eqs (2.30) and (2.32) and using (2.34), we now obtain

    a22=ν31(c2+b2)4[(Cϵq,α(2))2(1+δ)2(ν1ν2)+(2Cϵq,α(3)(1+2δ)(Cϵq,α(2))2(1+3δ))ν21].

    Applying Lemma 1.1 for the coefficients b2 and c2, we immediately get

    |a22|ν31[|Cϵq,α(2)|2(1+δ)2(ν1ν2)+(2|Cϵq,α(3)|(1+2δ)|Cϵq,α(2)|2(1+3δ))ν21],

    which yields the desired estimate on |a2| as described in (2.25). Next, in order to find the bound on |a3|, by subtracting (2.32) from (2.30) and also from (2.33), we get c21=b21, hence

    a3=(ν1/2)[(4Cϵq,α(3)(1+2δ)(Cϵq,α(2))2(1+3δ))c2+(Cϵq,α(2))2(1+3δ)b2]+b21(ν2ν1)[Cϵq,α(3)(1+2δ)]4Cϵq,α(3)(1+2δ)(2Cϵq,α(3)(1+2δ)(Cϵq,α(2))2(1+3δ)).

    Applying Lemma 1.1 once again for the coefficients b2 and c2, we obtain

    |a3|ν1+|ν2ν1|2|Cϵq,α(3)|(1+2δ)|Cϵq,α(2)|2(1+3δ).

    This estimate is exactly that found in (2.26).

    When ϵ=0, we obtain the result presented by Ali et al. [25].

    Corollary 2.4. Let f(z) given by (1.1) be in the class Aτ(δ,ψ). Then

    |a2|ν1ν1|(1+δ)2(ν1ν2)+(1+δ)ν21|,

    and

    |a3|ν1+|ν2ν1|(1+δ).

    The coefficient estimates for Ma-Minda bi-starlike functions are obtained when ϵ=0 and δ=0. Conversely, for Ma-Minda bi-convex functions, the coefficient estimates are obtained when δ=1 [26].

    Corollary 2.5. Let f(z) given by (1.1) be in the class CNτ(ψ). Then

    |a2|ν1ν12|2ν12ν2+ν21|,

    and

    |a3|12(ν1+|ν2ν1|).

    Fekete and Szegö published their findings in 1933 [27], setting a precise limit for the functional a3γa22. This limit, known as the conventional Fekete-Szegö inequality, was determined using real values of γ(0γ1). Establishing accurate bounds for a function within a compact family of functions (fH) for a real parameter γ is a tough problem. The Fekete-Szegö coefficient bounds for different analytic subclasses have been established by other authors [28,29,30]. In this context, the Fekete-Szegö inequality for functions belonging to the classes f(z)Tϵτ,q,α(ψ),KHϵτ,q,α(δ,ψ),andAϵτ,q,α(δ,ψ), is studied, using the findings of Zaprawa [31].

    Theorem 3.1. Let the function f(z) given by (1.1) be in the class Tϵτ,q,α(ψ). Then for some γR,

    |a3γa22|{ν16|Cϵq,α(3)|, (γ[γ1,γ2]),ν16|Cϵq,α(3)||12ν22ν1+3ν1Cϵq,α(3)4(Cϵq,α(2))23γCϵq,α(3)8(Cϵq,α(2))2|,(γ[γ1,γ2]), (3.1)

    where

    γ1=23|Cϵq,α(3)|(2(ν1+ν2)|Cϵq,α(2)|2+3ν21|Cϵq,α(3)|ν21)

    and

    γ2=23|Cϵq,α(3)|(2(3ν1ν2)|Cϵq,α(2)|2+3ν21|Cϵq,α(3)|ν21).

    Proof. Using for those in the Eqs (2.9) and (2.10), we get

    2a2=ν1b12Cϵq,α(2)a22=ν21b2116(Cϵq,α(2))2, (3.2)

    and

    3Cϵq,α(3)(2a22a3)=12ν1(b2b212)+14ν2b213Cϵq,α(3)a3=12ν1(b2b212)+14ν2b216Cϵq,α(3)a223Cϵq,α(3)a3=12ν1(b2b212)+14ν2b216Cϵq,α(3)(ν21b2116(Cϵq,α(2))2)a3=ν16Cϵq,α(3)(b2b212)ν2b2112Cϵq,α(3)+ν21b218(Cϵq,α(2))2. (3.3)

    Now, from (3.2) and (3.3), we can easily see that

    a3γa22=ν16Cϵq,α(3)(b2b212)ν2b2112Cϵq,α(3)+ν21b218(Cϵq,α(2))2γν21b2116(Cϵq,α(2))2a3γa22=ν1b26Cϵq,α(3)+(ν112Cϵq,α(3)ν212Cϵq,α(3)+ν218(Cϵq,α(2))2γν2116(Cϵq,α(2))2)b21a3γa22=ν16Cϵq,α(3){b2+(12ν22ν1+3ν1Cϵq,α(3)4(Cϵq,α(2))23γν1Cϵq,α(3)8(Cϵq,α(2))2)b21},

    and

    |a3γa22|=ν16|Cϵq,α(3)||b2(12ν22ν1+3ν1Cϵq,α(3)4(Cϵq,α(2))23γν1Cϵq,α(3)8(Cϵq,α(2))2)b21|.

    Therefore, in view of Lemma 1.1, we conclude that

    |a3γa22|ν16|Cϵq,α(3)|max{1,|12ν22ν1+3ν1Cϵq,α(3)4(Cϵq,α(2))23γν1Cϵq,α(3)8(Cϵq,α(2))2|}.

    Moreover, we have

    |12ν22ν1+3ν1Cϵq,α(3)4(Cϵq,α(2))23γν1Cϵq,α(3)8(Cϵq,α(2))2|1112+ν22ν13ν1|Cϵq,α(3)|4|Cϵq,α(2)|23γν1|Cϵq,α(3)|8|Cϵq,α(2)|2112+ν22ν13ν1|Cϵq,α(3)|4|Cϵq,α(2)|242+2ν2ν13ν1|Cϵq,α(3)||Cϵq,α(2)|23γν1|Cϵq,α(3)|2|Cϵq,α(2)|242+2ν2ν13ν1|Cϵq,α(3)||Cϵq,α(2)|26|Cϵq,α(2)|2ν1+2ν2|Cϵq,α(2)|23ν21|Cϵq,α(3)|ν213γ|Cϵq,α(3)|22|Cϵq,α(2)|2+2ν2|Cϵq,α(2)|23ν21|Cϵq,α(3)|ν2123|Cϵq,α(3)|(2(ν1+ν2)|Cϵq,α(2)|2+3ν21|Cϵq,α(3)|ν21)γ23|Cϵq,α(3)|(2(3ν1ν2)|Cϵq,α(2)|2+3ν21|Cϵq,α(3)|ν21)γ1γγ2.

    Taking ϵ=0 in Theorem 3.1, we obtain the following corollary.

    Corollary 3.1. Let f(z) given by (1.1) be in the class Tτ(ψ). Then

    |a3γa22|{ν16, (γ[γ1,γ2]),ν16|12ν22ν1+3ν143γ8|,(γ[γ1,γ2]),

    where

    γ1=23(2(ν1+ν2)+3ν21ν21)

    and

    γ2=23(2(3ν1ν2)+3ν21ν21).

    Theorem 3.2. Let the function f(z) given by (1.1) be in the class KHϵτ,q,α(δ,ψ). Then for some γR,

    |a3γa22|{ν12[1+3η], (γ[γ1,γ2]),ν12[1+3η]|ν1[6η2Cϵq,α(2)(1+δ)1]2[12Cϵq,α(2)(1+δ)]2+(ν1+ν2)2ν1γν1[1+3η]2[12Cϵq,α(2)(1+δ)]2|,(γ[γ1,γ2]), (3.4)

    where

    η=|Cϵq,α(3)|(1+2δ)

    and

    γ1=(3ν1+ν2)[12|Cϵq,α(2)|(1+δ)]2ν21[1+3|Cϵq,α(3)|(1+2δ)]+[6|Cϵq,α(3)|(1+2δ)2|Cϵq,α(2)|(1+δ)1][1+3|Cϵq,α(3)|(1+2δ)],
    γ2=(ν1ν2)[12|Cϵq,α(2)|(1+δ)]2ν21[1+3|Cϵq,α(3)|(1+2δ)]+ν1[6|Cϵq,α(3)|(1+2δ)2|Cϵq,α(2)|(1+δ)1]ν1[1+3|Cϵq,α(3)|(1+2δ)].

    Proof. Using the relations in Eqs (2.20) and (2.21), we get

    [12Cϵq,α(2)(1+δ)]a2=ν1b12a22=ν21b214[12Cϵq,α(2)(1+δ)]2. (3.5)
    [1+3Cϵq,α(3)(1+2δ)]a3+[6Cϵq,α(3)(1+2δ)2Cϵq,α(2)(1+δ)1]a22=12ν1(b2b212)+14ν2b21,a3=[6Cϵq,α(3)(1+2δ)2Cϵq,α(2)(1+δ)1](ν21b214[12Cϵq,α(2)(1+δ)]2[1+3Cϵq,α(3)(1+2δ)])ν1(2b2b21)ν2b214[1+3Cϵq,α(3)(1+2δ)]. (3.6)

    Now, from (3.5) and (3.6), we can see that

    a3γa22=[6Cϵq,α(3)(1+2δ)2Cϵq,α(2)(1+δ)1](ν21b214[12Cϵq,α(2)(1+δ)]2[1+3Cϵq,α(3)(1+2δ)])ν1(2b2b21)ν2b214[1+3Cϵq,α(3)(1+2δ)]γν21b214[12Cϵq,α(2)(1+δ)]2a3γa22=ν1b22[1+3Cϵq,α(3)(1+2δ)]+(ν21[6Cϵq,α(3)(1+2δ)2Cϵq,α(2)(1+δ)1]4[12Cϵq,α(2)(1+δ)]2[1+3Cϵq,α(3)(1+2δ)]+(ν1+ν2)4[1+3Cϵq,α(3)(1+2δ)]γν214[12Cϵq,α(2)(1+δ)]2)b21a3γa22=ν12[1+3Cϵq,α(3)(1+2δ)]{b2+(ν1[6Cϵq,α(3)(1+2δ)2Cϵq,α(2)(1+δ)1]2[12Cϵq,α(2)(1+δ)]2+(ν1+ν2)2ν1γν1[1+3Cϵq,α(3)(1+2δ)]2[12Cϵq,α(2)(1+δ)]2)b21}|a3γa22|=ν12[1+3|Cϵq,α(3)|(1+2δ)]|b2+(ν1[6Cϵq,α(3)(1+2δ)2Cϵq,α(2)(1+δ)1]2[12Cϵq,α(2)(1+δ)]2+(ν1+ν2)2ν1γν1[1+3Cϵq,α(3)(1+2δ)]2[12Cϵq,α(2)(1+δ)]2)b21|.

    Therefore, in view of Lemma 1.1, we conclude that

    |a3γa22|ν12[1+3|Cϵq,α(3)|(1+2δ)]max{1,|ν1[6Cϵq,α(3)(1+2δ)2Cϵq,α(2)(1+δ)1]2[12Cϵq,α(2)(1+δ)]2+(ν1+ν2)2ν1γν1[1+3Cϵq,α(3)(1+2δ)]2[12Cϵq,α(2)(1+δ)]2|}.

    Moreover, we have

    |ν1[6Cϵq,α(3)(1+2δ)2Cϵq,α(2)(1+δ)1]2[12Cϵq,α(2)(1+δ)]2+(ν1+ν2)2ν1γν1[1+3Cϵq,α(3)(1+2δ)]2[12Cϵq,α(2)(1+δ)]2|11ν1[6|Cϵq,α(3)|(1+2δ)2|Cϵq,α(2)|(1+δ)1]2[12|Cϵq,α(2)|(1+δ)]2(ν1+ν2)2ν1γν1[1+3|Cϵq,α(3)|(1+2δ)]2[12|Cϵq,α(2)|(1+δ)]21ν1[6|Cϵq,α(3)|(1+2δ)2|Cϵq,α(2)|(1+δ)1]2[12|Cϵq,α(2)|(1+δ)]2(ν1+ν2)2ν1(ν1ν2)[12|Cϵq,α(2)|(1+δ)]2ν21[1+3|Cϵq,α(3)|(1+2δ)]+ν1[6|Cϵq,α(3)|(1+2δ)2|Cϵq,α(2)|(1+δ)1]ν1[1+3|Cϵq,α(3)|(1+2δ)]γ(3ν1+ν2)[12|Cϵq,α(2)|(1+δ)]2ν21[1+3|Cϵq,α(3)|(1+2δ)]+[6|Cϵq,α(3)|(1+2δ)2|Cϵq,α(2)|(1+δ)1][1+3|Cϵq,α(3)|(1+2δ)]γ1γγ2.

    Taking ϵ=0 and δ=0 in Theorem 3.2, we obtain the following corollary.

    Corollary 3.2. Let f(z) given by (1.1) be in the class KHτ(0,ψ). Then

    |a3γa22|{ν14, (γ[γ1,γ2]),ν14|3ν12+(ν1+ν2)2ν12γν12|,(γ[γ1,γ2]),
    γ1=3ν1+ν22ν21+32,

    and

    γ2=ν1ν22ν21+3ν12ν1.

    Theorem 3.3. Let the function f(z) given by (1.1) be in the class Aϵτ,q,α(δ,ψ). Then for some γR,

    |a3γa22|{ν14(1+2δ)|Cϵq,α(3)|, (γ[γ1,γ2]),ν14(1+2δ)|Cϵq,α(3)||2(1+3δ)ν21(1+δ)2+(ν2ν1)24γν21(1+2δ)Cϵq,α(3)[(1+δ)Cϵq,α(2)]2|,(γ[γ1,γ2]), (3.7)

    where

    γ1=(2ν2+ν1)[(1+δ)|Cϵq,α(2)|]28ν21(1+2δ)|Cϵq,α(3)|+(1+3δ)|Cϵq,α(2)|22(1+2δ)|Cϵq,α(3)|

    and

    γ2=(2+ν2ν1)[(1+δ)|Cϵq,α(2)|]28ν21(1+2δ)|Cϵq,α(3)|+(1+3δ)|Cϵq,α(2)|22(1+2δ)|Cϵq,α(3)|.

    Proof. Using for those in Eqs (2.29) and (2.30), we get

    (1+δ)Cϵq,α(2)a2=ν1c12a22=ν21c21[(1+δ)Cϵq,α(2)]2, (3.8)
    2(1+2δ)Cϵq,α(3)a3(1+3δ)(Cϵq,α(2))2a22=12ν1(c2c212)+14ν2c21a3=(1+3δ)ν21c212(1+2δ)Cϵq,α(3)(1+δ)2+ν1c24(1+2δ)Cϵq,α(3)+(ν2ν1)c218(1+2δ)Cϵq,α(3). (3.9)

    Now, from (3.8) and (3.9), we can easily see that

    a3γa22=(1+3δ)ν21c212(1+2δ)Cϵq,α(3)(1+δ)2+ν1c24(1+2δ)Cϵq,α(3)+(ν2ν1)c218(1+2δ)Cϵq,α(3)γν21c21[(1+δ)Cϵq,α(2)]2,a3γa22=ν1c24(1+2δ)Cϵq,α(3)+((1+3δ)ν212(1+2δ)(1+δ)2Cϵq,α(3)+(ν2ν1)8(1+2δ)Cϵq,α(3)γν21[(1+δ)Cϵq,α(2)]2)c21,a3γa22=ν14(1+2δ)Cϵq,α(3){c2+(2(1+3δ)ν21(1+δ)2+(ν2ν1)24γν21(1+2δ)Cϵq,α(3)[(1+δ)Cϵq,α(2)]2)c21},|a3γa22|=ν14(1+2δ)|Cϵq,α(3)||c2+(2(1+3δ)ν21(1+δ)2+(ν2ν1)24γν21(1+2δ)Cϵq,α(3)[(1+δ)Cϵq,α(2)]2)c21|.

    Therefore, in view of Lemma 1.1, we conclude that

    |a3γa22|ν14(1+2δ)|Cϵq,α(3)|max{1,|2(1+3δ)ν21(1+δ)2+(ν2ν1)24γν21(1+2δ)Cϵq,α(3)[(1+δ)Cϵq,α(2)]2|}.

    Moreover, we have

    |2(1+3δ)ν21(1+δ)2+(ν2ν1)24γν21(1+2δ)Cϵq,α(3)[(1+δ)Cϵq,α(2)]2|1(2ν2+ν1)[(1+δ)|Cϵq,α(2)|]28ν21(1+2δ)|Cϵq,α(3)|+(1+3δ)|Cϵq,α(2)|22(1+2δ)|Cϵq,α(3)|γ(2+ν2ν1)[(1+δ)|Cϵq,α(2)|]28ν21(1+2δ)|Cϵq,α(3)|+(1+3δ)|Cϵq,α(2)|22(1+2δ)|Cϵq,α(3)|γ1γγ2.

    Taking ϵ=0 and δ=0 from Theorem 3.3, we obtain the following corollary.

    Corollary 3.3. Let f(z) given by (1.1) be in the class Aτ(0,ψ). Then

    |a3γa22|{ν14, (γ[γ1,γ2]),ν14|2ν21(12γ)+(ν2ν1)2|,(γ[γ1,γ2]), (3.10)

    where

    γ1=2ν2+ν18ν21+12

    and

    γ2=2+ν2ν18ν21+12.

    In these Theorems 3.1–3.3, we use the technique of [32].

    In our present investigation, we have introduced and studied the coefficient problems associated with each of the following three new subclasses: Tϵτ,q,α(ψ), KHϵτ,q,α(δ,ψ), Aϵτ,q,α(ψ) of the class of bi-univalent Ma-Minda-type functions associated with the q-Srivastava-Attiya operator in the open unit disk D. These bi-univalent Ma-Minda-type functions associated with q-Srivastava-Attiya operator classes are given by Definitions 1.2 to 1.7, respectively. For functions in each of these three bi-univalent Ma-Minda-type functions associated with q-Srivastava-Attiya operator classes, we have derived the estimates of the Taylor-Maclaurin coefficients |a2| and |a3| for functions belonging to these new subclasses, along with estimates for the Fekete-Szegö functional problem, for functions belonging to each of these bi-univalent function classes. Our results also further generalize the results of Theorems 2.1–2.3 of R. M. Ali et al. and some results of W. Ma and D. Minda. The results presented in this paper are a beneficial supplement for the research of geometric function theory of complex analysis.

    Norah Saud Almutairi: Investigation, supervision, writing–original draft, writing–review, and editing; Adarey Saud Almutairi: Supervision; Awatef Shahen: Supervision; Hanan Darwish: Supervision, writing–review and editing. All authors have read and approved the final version of the manuscript for publication.

    The first author would like to thank her father Saud Dhaifallah Almutairi for supporting this work.

    The author(s) express their sincere gratitude and appreciation to [Onaizah Colleges, Saudi Arabia] for providing APC funding for this research.

    The authors declare that they have no conflict of interest.



    [1] P. L. Duren, Univalent functions, Springer Science & Business Media, 2001.
    [2] L. de-Branges, A proof of the Bieberbach conjecture, Acta Math., 154 (1985), 137–152.
    [3] S. Sivasubramanian, R. Sivakumar, S. Kanas, S. Kim, Verification of Brannan and Clunie's conjecture for certain subclasses of bi-univalent functions, Ann. Pol. Math., 113 (2015), 295–304. https://doi.org/10.4064/ap113-3-6 doi: 10.4064/ap113-3-6
    [4] D. A. Brannan, T. S. Taha, On some classes of bi-univalent functions, Math. Anal. Appl., 1988, 53–60. https://doi.org/10.1016/B978-0-08-031636-9.50012-7 doi: 10.1016/B978-0-08-031636-9.50012-7
    [5] T. S. Taha, Topics in univalent function theory, Ph.D. Thesis, University of London, 1981.
    [6] S. S. Miller, P. T. Mocanu, Differential subordinations: Theory and applications, 1st Eds., Boca Raton: CRC Press, 2000. https://doi.org/10.1201/9781482289817
    [7] H. M. Srivastava, A. A. Attiya, An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination, Integral Transforms Spec. Funct., 18 (2007), 207–216. https://doi.org/10.1080/10652460701208577 doi: 10.1080/10652460701208577
    [8] H. M. Srivastava, The Zeta and related functions: Recent developments, J. Adv. Eng. Comput., 3 (2019), 329–354. http://dx.doi.org/10.25073/jaec.201931.229 doi: 10.25073/jaec.201931.229
    [9] F. Ghanim, B. Batiha, A. H. Ali, M. Darus, Geometric properties of a linear complex operator on a subclass of meromorphic functions: An analysis of Hurwitz-Lerch-Zeta functions, Appl. Math. Nonlinear Sci., 8 (2023), 2229–2240. https://doi.org/10.2478/amns.2023.1.00407 doi: 10.2478/amns.2023.1.00407
    [10] H. Bateman, Higher transcendental functions, New York: McGraw-Hill Book Company, Ⅰ-Ⅲ (1953).
    [11] S. A. Shah, K. I. Noor, Study on the q-analogue of a certain family of linear operators, Turkish J. Math., 43 (2019), 2707–2714. https://doi.org/10.3906/mat-1907-41 doi: 10.3906/mat-1907-41
    [12] E. Deniz, M. Kamali, S. Korkmaz, A certain subclass of bi-univalent functions associated with Bell numbers and q-Srivastava-Attiya operator, AIMS Mathematics, 5 (2020), 7259–7271. https://doi.org/10.3934/math.2020464 doi: 10.3934/math.2020464
    [13] H. M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. Sci., 44 (2020), 327–344. https://doi.org/10.1007/s40995-019-00815-0 doi: 10.1007/s40995-019-00815-0
    [14] V. Kac, P. Cheung, Symmetric quantum calculus, In: Quantum calculus, New York: Springer, 2002, 99–104. https://doi.org/10.1007/978-1-4613-0071-7_26
    [15] H. M. Srivastava, A. R. S. Juma, H. M. Zayed, Univalence conditions for an integral operator defined by a generalization of the Srivastava-Attiya operator, Filomat, 32 (2018), 2101–2114. https://doi.org/10.2298/FIL1806101S doi: 10.2298/FIL1806101S
    [16] Y. J. Sim, O. S. Kwon, N. E. Cho, H. M. Srivastava, Bounds for the real parts and arguments of normalized analytic functions defined by the Srivastava-Attiya operator, J. Comput. Anal. Appl., 28 (2020), 628–645.
    [17] H. M. Srivastava, A. Prajapati, P. Gochhayat, Third-order differential subordination and differential superordination results for analytic functions involving the Srivastava-Attiya operator, Appl. Math. Inform. Sci., 12 (2018), 469–481. http://dx.doi.org/10.18576/amis/120301 doi: 10.18576/amis/120301
    [18] K. I. Noor, S. Riaz, M. A. Noor, On q-Bernardi integral operator, TWMS J. Pure Appl. Math., 8 (2017), 3–11.
    [19] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135 (1969), 429–446. https://doi.org/10.2307/1995025 doi: 10.2307/1995025
    [20] J. W. Alexander, Functions which map the interior of the unit circle upon simple region, Ann. Math., 17 (1915), 12–22. https://doi.org/10.2307/2007212 doi: 10.2307/2007212
    [21] R. H. Nevanlinna, Über die konforme abbildung von sterngebieten, Översikt av Finska Vetens. Soc. Förh., Avd., 63 (1921), 1–21.
    [22] E. Study, Vorlesungen über ausgewählte gegenstände der geometrie, zweites heft; konforme abbildung einfach-zusammenhängender bereiche, 1913.
    [23] W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J., 1 (1952), 169–185. https://doi.org/10.1307/mmj/1028988895 doi: 10.1307/mmj/1028988895
    [24] C. Pommerenke, Univalent functions, Vandenhoeck and Ruprecht, 1975.
    [25] R. M. Ali, S. K. Lee, V. Ravichandran, S. Supramaniam, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett., 25 (2012), 344–351. https://doi.org/10.1016/j.aml.2011.09.012 doi: 10.1016/j.aml.2011.09.012
    [26] W. C. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Proceedings of the conference on complex analysis, 1992,157–169.
    [27] M. Fekete, G. Szegö, Eine Bemerkung über ungerade schlichte Funktionen, J. Lond. Math. Soc., s1-8 (1933), 85–89. https://doi.org/10.1112/jlms/s1-8.2.85 doi: 10.1112/jlms/s1-8.2.85
    [28] A. Cătaş, On the Fekete-Szegö problem for certain classes of meromorphic functions using a p, q-derivative operator and a p, q-wright type hypergeometric function, Symmetry, 13 (2021), 2143.
    [29] N. S. Almutairi, A. Shahen, A. Cătaş, H. Darwish, On the Fekete–Szegö problem for certain classes of (γ,δ)-starlike and (γ,δ)-convex functions related to quasi-subordinations, Symmetry, 16 (2024), 1043. https://doi.org/10.3390/sym16081043 doi: 10.3390/sym16081043
    [30] G. Murugusundaramoorthy, L. Cotîrla, Bi-univalent functions of complex order defined by Hohlov operator associated with legendrae polynomial, AIMS Mathematics, 7 (2022), 8733–8750. https://doi.org/10.3934/math.2022488 doi: 10.3934/math.2022488
    [31] P. Zaprawa, On the Fekete-Szegö problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin, 21 (2014), 169–178. https://doi.org/10.36045/bbms/1394544302 doi: 10.36045/bbms/1394544302
    [32] H. M. Srivastava, M. Kamali, A. Urdaletova, A study of the Fekete-Szegö functional and coefficient estimates for subclasses of analytic functions satisfying a certain subordination condition and associated with the Gegenbauer polynomials, AIMS Mathematics, 7 (2022), 2568–2584. https://doi.org/10.3934/math.2022144 doi: 10.3934/math.2022144
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(191) PDF downloads(27) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog