Research article Special Issues

Applications of $ q- $Ultraspherical polynomials to bi-univalent functions defined by $ q- $Saigo's fractional integral operators

  • Received: 06 December 2023 Revised: 04 April 2024 Accepted: 10 April 2024 Published: 16 May 2024
  • MSC : 30C45

  • This study established upper bounds for the second and third coefficients of analytical and bi-univalent functions belonging to a family of particular classes of analytic functions utilizing $ q- $Ultraspherical polynomials under $ q- $Saigo's fractional integral operator. We also discussed the Fekete-Szegö family function problem. As a result of the specialization of the parameters used in our main results, numerous novel outcomes were demonstrated.

    Citation: Tariq Al-Hawary, Ala Amourah, Abdullah Alsoboh, Osama Ogilat, Irianto Harny, Maslina Darus. Applications of $ q- $Ultraspherical polynomials to bi-univalent functions defined by $ q- $Saigo's fractional integral operators[J]. AIMS Mathematics, 2024, 9(7): 17063-17075. doi: 10.3934/math.2024828

    Related Papers:

  • This study established upper bounds for the second and third coefficients of analytical and bi-univalent functions belonging to a family of particular classes of analytic functions utilizing $ q- $Ultraspherical polynomials under $ q- $Saigo's fractional integral operator. We also discussed the Fekete-Szegö family function problem. As a result of the specialization of the parameters used in our main results, numerous novel outcomes were demonstrated.



    加载中


    [1] A. Alsoboh, A. Amourah, M. Darus, R. I. Al Sharefeen, Applications of Neutrosophic $q–$Poisson Distribution Series for subclass of Analytic Functions and bi-univalent functions, Mathematics, 11 (2023), 868. http://doi.org/10.3390/math11040868 doi: 10.3390/math11040868
    [2] A. Amourah, A. Alsoboh, O. Ogilat, G. M. Gharib, R. Saadeh, M. A. Al Soudi, Generalization of Gegenbauer Polynomials and Bi-Univalent Functions, Axioms, 12, (2023), 128. http://doi.org/10.3390/axioms12020128 doi: 10.3390/axioms12020128
    [3] A. Amourah, B. A. Frasin, G. Murugusundaramoorthy, T. Al-Hawary, Bi-Bazilevič functions of order $\vartheta+i\delta$ associated with $(p, q)-$Lucas polynomials, AIMS Mathematics, 6 (2021), 4296–4305. https://doi.org/10.3934/math.2021254 doi: 10.3934/math.2021254
    [4] A. Amourah, T. Al-Hawary, B. A. Frasin, Application of Chebyshev polynomials to certain class of bi-Bazilevič functions of order $\vartheta +i\beta $, Afr. Mat., 32 (2021), 1–8.
    [5] A. Amourah, M. Alomari, F. Yousef, A. Alsoboh, Consolidation of a Certain Discrete Probability Distribution with a Subclass of Bi-Univalent Functions Involving Gegenbauer Polynomials, Math. Probl. Eng., 2022 (2022), 6354994. http://doi.org/10.1155/2022/6354994 doi: 10.1155/2022/6354994
    [6] R. Askey, M. E. H. Ismail, A generalization of ultraspherical polynomials, In: Studies of Pure Mathematics, Basel: Birkhauser, 1983. http://doi.org/10.1007/978-3-0348-5438-2_6
    [7] R. Askey, J. Wilson, Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Memoirs of the American Mathematical Society, 1985. https://doi.org/10.1090/memo/0319
    [8] D. A. Brannan, J. G. Clunie, Aspects of contemporary complex analysis, New York, London: Academic Press, 1980.
    [9] L. Carlitz, Some polynomials related to the Hermite polynomials, Duke Math. J., 26 (1959), 429–444.
    [10] R. Chakrabarti, R. Jagannathan, S. S. Naina Mohammed, New connection formulae for the $q$-orthogonal polynomials via a series expansion of the $q$–exponential, J. Phys. A: Math. Gen., 39 (2006), 12371.
    [11] G. Gasper, M. Rahman, Basic Hypergeometric Series, Cambridge: Cambridge university press, 2004.
    [12] F. H. Jackson, On $q$-functions and a certain difference operator, Earth Environ. Sci. Trans., 46 (1909), 253–281. https://doi.org/10.1017/S0080456800002751 doi: 10.1017/S0080456800002751
    [13] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18 (1967), 63–68. https://doi.org/10.1090/S0002-9939-1967-0206255-1 doi: 10.1090/S0002-9939-1967-0206255-1
    [14] S. S. Miller, P. T. Mocanu, Second Order Differential Inequalities in the Complex Plane. J. Math. Anal. Appl., 65 (1978), 289–305.
    [15] S. S. Miller, P. T. Mocanu, Differential Subordinations and Univalent Functions. Mich. Math. J., 28 (1981), 157–172.
    [16] S. S. Miller, P. T. Mocanu, Differential Subordinations. Theory and Applications, New York: Marcel Dekker, 2000.
    [17] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $ |z|<1$, Arch. Ration. Mech. An., 32 (1969), 100–112.
    [18] S. D. Purohit, R. K. Raina, Fractional q-calculus and certain subclass of univalent analytic functions, Mathematica, 55 (2013), 62–74.
    [19] S. D. Purohit, R. K. Raina, Some classes of analytic and multivalent functions associated with q-derivative operators, Acta Univ. Sapientiae, Math., 6 (2014), 5–23. https://doi.org/10.2478/ausm-2014-0015 doi: 10.2478/ausm-2014-0015
    [20] S. D. Purohit, R. K. Raina, On a subclass of p-valent analytic functions involving fractional q-calculus operators, KJS, 42 (2015), 1.
    [21] S. D. Purohit, R.K. Raina, Certain subclasses of analytic functions associated with fractional q-calculus operators, Math. Scand., 109 (2011), 55–70. https://doi.org/10.7146/math.scand.a-15177 doi: 10.7146/math.scand.a-15177
    [22] A. B. Patil, T. G. Shaba, Sharp initial coefficient bounds and the Fekete-Szegö problem for some certain subclasses of analytic and bi-univalent functions, Ukrains'kyi Matematychnyi Zhurnal, 75 (2023), 198–206. https://doi.org/10.37863/umzh.v75i2.6602 doi: 10.37863/umzh.v75i2.6602
    [23] C. Quesne, Disentangling $q$-Exponentials: A General Approach, Int. J. Theor. Phys., 43 (2004), 545–559. https://doi.org/10.1023/B:IJTP.0000028885.42890.f5 doi: 10.1023/B:IJTP.0000028885.42890.f5
    [24] N. Ravikumar, Certain classes of analytic functions defined by fractional $q$-calculus operator, Acta Univ. Sapientiae, Math., 10 (2018), 178–188.
    [25] H. M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in Geometric Function Theory of complex analysis, Iran. J. Sci. Technol., Trans. A, Sci., 44 (2020), 327–344. https://doi.org/10.1007/s40995-019-00815-0 doi: 10.1007/s40995-019-00815-0
    [26] M. Saigo, A remark on integral operators involving the Gauss hypergeometric functions, Kyushu University, 11 (1978), 135–143.
    [27] H. Srivastava, S. Owa, Univalent Functions, Fractional Calculus and Their Applications, New Jersey: John Wiley and Sons, 1989.
    [28] F. Yousef, B. A. Frasin, T. Al-Hawary, Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Chebyshev polynomials, Filomat, 32 (2018), 3229–3236. https://doi.org/10.2298/FIL1809229Y doi: 10.2298/FIL1809229Y
    [29] P. Zaprawa, On the Fekete-Szegö problem for classes of bi-univalent functions, Bull. Belg. Math. Soc.-Simon Stevin 21 (2014), 169–178. https://doi.org/10.36045/bbms/1394544302 doi: 10.36045/bbms/1394544302
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(815) PDF downloads(66) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog