Research article

Study of quantum calculus for a new subclass of $ q $-starlike bi-univalent functions connected with vertical strip domain

  • Received: 26 December 2023 Revised: 26 February 2024 Accepted: 13 March 2024 Published: 26 March 2024
  • MSC : Primary 30A55, 30C45, Secondary 11B65, 47B38

  • In this study, using the ideas of subordination and the quantum-difference operator, we established a new subclass $ \mathcal{S} ^{\ast }\left(\delta, \sigma, q\right) $ of $ q $-starlike functions and the subclass $ \mathcal{S}_{\Sigma }^{\ast }\left(\delta, \sigma, q\right) $ of $ q $-starlike bi-univalent functions associated with the vertical strip domain. We examined sharp bounds for the first two Taylor-Maclaurin coefficients, sharp Fekete-Szegö type problems, and coefficient inequalities for the function $ h $ that belong to $ \mathcal{S}^{\ast }\left(\delta, \sigma, q\right) $, as well as sharp bounds for the inverse function $ h $ that belong to $ \mathcal{S}^{\ast }\left(\delta, \sigma, q\right) $. We also investigated some results for the class of bi-univalent functions $ \mathcal{S}_{\Sigma }^{\ast }\left(\delta, \sigma, q\right) $ and well-known corollaries were also highlighted to show connections between previous results and the findings of this paper.

    Citation: Ahmad A. Abubaker, Khaled Matarneh, Mohammad Faisal Khan, Suha B. Al-Shaikh, Mustafa Kamal. Study of quantum calculus for a new subclass of $ q $-starlike bi-univalent functions connected with vertical strip domain[J]. AIMS Mathematics, 2024, 9(5): 11789-11804. doi: 10.3934/math.2024577

    Related Papers:

  • In this study, using the ideas of subordination and the quantum-difference operator, we established a new subclass $ \mathcal{S} ^{\ast }\left(\delta, \sigma, q\right) $ of $ q $-starlike functions and the subclass $ \mathcal{S}_{\Sigma }^{\ast }\left(\delta, \sigma, q\right) $ of $ q $-starlike bi-univalent functions associated with the vertical strip domain. We examined sharp bounds for the first two Taylor-Maclaurin coefficients, sharp Fekete-Szegö type problems, and coefficient inequalities for the function $ h $ that belong to $ \mathcal{S}^{\ast }\left(\delta, \sigma, q\right) $, as well as sharp bounds for the inverse function $ h $ that belong to $ \mathcal{S}^{\ast }\left(\delta, \sigma, q\right) $. We also investigated some results for the class of bi-univalent functions $ \mathcal{S}_{\Sigma }^{\ast }\left(\delta, \sigma, q\right) $ and well-known corollaries were also highlighted to show connections between previous results and the findings of this paper.



    加载中


    [1] S. R. Swamy, S. Bulut, Y. Sailaja, Some special families of holomorphic and Salagean type bi-univalent functions associated with Horadam polynomials involving a modified sigmoid activation function, Hacet. J. Math. Stat., 50 (2021), 710–720. https://doi.org/10.15672/hujms.695858 doi: 10.15672/hujms.695858
    [2] M. Cağlar, H. Orhan, N. Yağmur, Coefficient bounds for new subclasses of bi-univalent functions, Filomat, 27 (2013), 1165–1171. https://doi.org/10.2298/FIL1307165C doi: 10.2298/FIL1307165C
    [3] M. Obradović, S. Ponnusamy, Radius of univalence of certain class of analytic functions, Filomat, 27 (2013), 1085–1090. https://doi.org/10.2298/FIL1306085O doi: 10.2298/FIL1306085O
    [4] H. M. Srivastava, S. Bulut, M. Cağlar, N. Yağmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27 (2013), 831–842. https://doi.org/10.2298/FIL1305831S doi: 10.2298/FIL1305831S
    [5] B. Khan, Z. G. Liu, T. G. Shaba, S. Araci. N. Khan, M. G. Khan, Applications of $q$-derivative operator to the subclass of bi-univalent functions involving $q$-Chebyshev polynomials, J. Math., 2022 (2022), 1–7. https://doi.org/10.1155/2022/8162182 doi: 10.1155/2022/8162182
    [6] E. Amini, S. A. Omari, K. Nonlaopon, D. Baleanu, Estimates for coefficients of bi-univalent functions associated with a fractional $q$-difference operator, Symmetry, 14 (2022), 1–13. https://doi.org/10.3390/sym14050879 doi: 10.3390/sym14050879
    [7] A. Amourah, B. A. Frasin, S. R. Swamy, Y. Sailaja, Coefficient bounds for Al-Oboudi type bi-univalent functions connected with a modified sigmoid activated function and $k$-Fibonacci numbers, J. Math. Comput. Sci., 27 (2022), 105–117. https://doi.org/10.22436/jmcs.027.02.02 doi: 10.22436/jmcs.027.02.02
    [8] F. Yousef, A. Amourah, B. A. Frasin, T. Bulboac, An Avant-Garde construction for subclasses of analytic bi-univalent functions, Axioms, 11 (2022), 1–8. https://doi.org/10.3390/axioms11060267 doi: 10.3390/axioms11060267
    [9] D. A. Brannan, T. S. Taha, On some classes of bi-univalent functions, In: Proceedings of the International Conference on Mathematical Analysis and its Applications, Kuwait, 1988, 53–60. https://doi.org/10.1016/B978-0-08-031636-9.50012-7
    [10] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $\left \vert z\right \vert < 1$, Arch. Rational Mech. Anal., 32 (1969), 100–112. https://doi.org/10.1007/BF00247676 doi: 10.1007/BF00247676
    [11] H. M. Srivastava, A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188–1192. https://doi.org/10.1016/j.aml.2010.05.009 doi: 10.1016/j.aml.2010.05.009
    [12] L. Bieberbach, Über dié koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln, Sitzungsber. Preuss. Akad. Wiss., 138 (1916), 940–955.
    [13] L. Branges, A proof of the Bieberbach conjecture, Acta Math., 154 (1985), 137–152. https://doi.org/10.1007/BF02392821 doi: 10.1007/BF02392821
    [14] M. Fekete, G. Szegö, Eine bemerkung uber ungerade schlichte funktionen, J. London Math. Soc., s1-8 (1933), 85–89. https://doi.org/10.1112/jlms/s1-8.2.85 doi: 10.1112/jlms/s1-8.2.85
    [15] K. Kuroki, S. Owa, Notes on new class for certain analytic functions, RIMS Kokyuroku, 1772 (2011), 21–25.
    [16] B. A. Uralegaddi, M. D. Ganigi, S. M. Sarangi, Univalent functions with positive coefficients, Tamkang J. Math., 25 (1994), 225–230. https://doi.org/10.5556/j.tkjm.25.1994.4448 doi: 10.5556/j.tkjm.25.1994.4448
    [17] Y. Sun, Y. P. Jiang, A. Rasila, Coefficient estimates for certain subclasses of analytic and bi-univalent functions, Filomat, 29 (2015), 351–360. https://doi.org/10.2298/FIL1502351S doi: 10.2298/FIL1502351S
    [18] Y. Sun, Z. G. Wang, A. Rasila, J. Sokół, On a subclass of starlike functions associated with a vertical strip domain, J. Inequal. Appl., 2019 (2019), 1–14. https://doi.org/10.1186/s13660-019-1988-8 doi: 10.1186/s13660-019-1988-8
    [19] S. Bulut, Coefficient bounds for close-to-convex functions associated with vertical strip domain, Commun. Korean Math. Soc., 35 (2020), 789–797. https://doi.org/10.4134/CKMS.c190268 doi: 10.4134/CKMS.c190268
    [20] A. W. Goodman, Univalent functions, Mariner Publishing Company, 1983.
    [21] W. Janowski, Some extremal problems for certain families of analytic functions, Ann. Polon. Math., 3 (1973), 297–326.
    [22] K. I. Noor, S. N. Malik, On coefficient inequalities of functions associated with conic domains, Comput. Math. Appl., 62 (2011), 2209–2217. https://doi.org/10.1016/j.camwa.2011.07.006 doi: 10.1016/j.camwa.2011.07.006
    [23] S. Kanas, A. Wiśniowska, Conic regions and $k$-uniform convexity, J. Comput. Appl. Math., 105 (1999), 327–336. https://doi.org/10.1016/S0377-0427(99)00018-7 doi: 10.1016/S0377-0427(99)00018-7
    [24] S. Kanas, A. Wiśniowska, Conic domains and starlike functions, Rev. Roum. Math. Pures Appl., 45 (2000), 647–658.
    [25] K. I. Noor, S. N. Malik, On a new class of analytic functions associated with conic domain, Comput. Math. Appl., 62 (2011), 367–375. https://doi.org/10.1016/j.camwa.2011.05.018 doi: 10.1016/j.camwa.2011.05.018
    [26] F. H. Jackson, XI.–On $q$-functions and a certain difference operator, Trans. Royal Soc. Edinburgh, 46 (1909), 253–281. https://doi.org/10.1017/S0080456800002751 doi: 10.1017/S0080456800002751
    [27] F. H. Jackson, On $q$-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203.
    [28] M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Var. Theory Appl., 14 (1990), 77–84.
    [29] S. Kanas, D. Raducanu, Some class of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183–1196. https://doi.org/10.2478/s12175-014-0268-9 doi: 10.2478/s12175-014-0268-9
    [30] M. Arif, H. M. Srivastava, S. Uma, Some applications of a $q$-analogue of the Ruscheweyh type operator for multivalent functions, RACSAM, 113 (2019), 1211–1221. https://doi.org/10.1007/s13398-018-0539-3 doi: 10.1007/s13398-018-0539-3
    [31] X. L. Zhang, S. Khan, S. Hussain, H. Tang, Z. Shareef, New subclass of $q$-starlike functions associated with generalized conic domain, AIMS Math., 5 (2020), 4830–4848. https://doi.org/10.3934/math.2020308 doi: 10.3934/math.2020308
    [32] M. F. Khan, A. Goswami, S. Khan, Certain new subclass of multivalent $q$-starlike functions associated with $q$-symmetric calculus, Fractal Fract., 6 (2022), 1–14. https://doi.org/10.3390/fractalfract6070367 doi: 10.3390/fractalfract6070367
    [33] L. K. Liu, R. Srivastava, J. L. Liu, Applications of higher-order $ q $-derivative to meromorphic $q$-starlike function related to Janowski function, Axioms, 11 (2022), 1–10. https://doi.org/10.3390/axioms11100509 doi: 10.3390/axioms11100509
    [34] M. Raza, H. M. Srivastava, M. Arif, K. Ahmad, Coefficient estimates for a certain family of analytic functions involving a $q$-derivative operator, Ramanujan J., 55 (2021), 53–71. https://doi.org/10.1007/s11139-020-00338-y doi: 10.1007/s11139-020-00338-y
    [35] S. Mahmood, M. Raza, E. S. A. Abujarad, G. Srivastava, H. M. Srivastava, S. N. Malik, Geomotric properties of certain classes of analytic functions associated with a $q$-integral operator, Symmetry, 11 (2019), 1–14. https://doi.org/10.3390/sym11050719 doi: 10.3390/sym11050719
    [36] B. Ahmad, M. G. Khan, B. A. Frasin, M. K. Aouf, T. Abdeljawad, W. K. Mashwani, et al., On $q$-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain, AIMS Math., 6 (2021), 3037–3052. https://doi.org/10.3934/math.2021185 doi: 10.3934/math.2021185
    [37] H. M. Srivastava, Operators of basic (or $q$-) calculus and fractional $q$-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A Sci., 44 (2020), 327–344. https://doi.org/10.1007/s40995-019-00815-0 doi: 10.1007/s40995-019-00815-0
    [38] H. M. Srivastava, D. Bansal, Close-to-convexity of a certain family of $q$-Mittag-Leffler functions, J. Nonlinear Var. Anal., 1 (2017), 61–69.
    [39] A. Lavagno, A. M. Scarfone, P. N. Swamy, $q$-deformed structure and generalized thermodynamics, Reports Math. Phys., 55 (2005), 423–433. https://doi.org/10.1016/S0034-4877(05)80056-4 doi: 10.1016/S0034-4877(05)80056-4
    [40] W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc., s2-48 (1945), 48–82. https://doi.org/10.1112/PLMS/S2-48.1.48 doi: 10.1112/PLMS/S2-48.1.48
    [41] F. R. Keogh, E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20 (1969), 8–12.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(654) PDF downloads(39) Cited by(1)

Article outline

Figures and Tables

Figures(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog