Research article Special Issues

A predictive neuro-computing approach for micro-polar nanofluid flow along rotating disk in the presence of magnetic field and partial slip

  • Received: 01 September 2022 Revised: 28 December 2022 Accepted: 23 January 2023 Published: 21 March 2023
  • MSC : 35Qxx, 76Nxx

  • The present study aims to design a Levenberg-Marquardt backpropagation neural network (LMB-NN) integrated numerical computing to investigate the problem of fluid mechanics governing the flow of magnetohydrodynamics micro-polar nanofluid flow over a rotating disk (MHD-MNRD) model along with the partial slip condition. In terms of PDEs, the basic system model MHD-MNRD is transformed into a system of non-linear ODEs by applying the similarity of transformations. For MHD-MNRD scenarios, the comparative dataset of the built LMB-NN procedure is formulated with the technique of Adams numerical by variation of micro-polar parameters, Brownian motion, Lewis number, magnetic parameter, velocity slip parameter and thermophoresis parameter. To compute the approximate solution for MHD-MNRD for various scenarios, validation, testing and training procedures are carried out in accordance to adjust the networks under the backpropagation procedure in terms of the mean square error (MSE). The efficiency of the designed LMB-NN methodology is highlighted by comparative study and performance analysis based on error histograms, MSE analysis, regression and correlation.

    Citation: Muhammad Asif Zahoor Raja, Kottakkaran Sooppy Nisar, Muhammad Shoaib, Ajed Akbar, Hakeem Ullah, Saeed Islam. A predictive neuro-computing approach for micro-polar nanofluid flow along rotating disk in the presence of magnetic field and partial slip[J]. AIMS Mathematics, 2023, 8(5): 12062-12092. doi: 10.3934/math.2023608

    Related Papers:

  • The present study aims to design a Levenberg-Marquardt backpropagation neural network (LMB-NN) integrated numerical computing to investigate the problem of fluid mechanics governing the flow of magnetohydrodynamics micro-polar nanofluid flow over a rotating disk (MHD-MNRD) model along with the partial slip condition. In terms of PDEs, the basic system model MHD-MNRD is transformed into a system of non-linear ODEs by applying the similarity of transformations. For MHD-MNRD scenarios, the comparative dataset of the built LMB-NN procedure is formulated with the technique of Adams numerical by variation of micro-polar parameters, Brownian motion, Lewis number, magnetic parameter, velocity slip parameter and thermophoresis parameter. To compute the approximate solution for MHD-MNRD for various scenarios, validation, testing and training procedures are carried out in accordance to adjust the networks under the backpropagation procedure in terms of the mean square error (MSE). The efficiency of the designed LMB-NN methodology is highlighted by comparative study and performance analysis based on error histograms, MSE analysis, regression and correlation.



    加载中


    [1] M. Shoaib, M. A. Z. Raja, M. A. R. Khan, I. Farhat, S. E. Awan, Neuro-computing networks for entropy generation under the influence of MHD and thermal radiation, Surf. Interfaces, 25 (2021), 101243. https://doi.org/10.1016/j.surfin.2021.101243 doi: 10.1016/j.surfin.2021.101243
    [2] H. Ullah, M. Shoaib, A. Akbar, M. A. Z. Raja, S. Islam, K. S. Nisar, Neuro-computing for hall current and MHD effects on the flow of micro-polar nano-fluid between two parallel rotating plates, Arab. J. Sci. Eng., 47 (2022), 16371−16391. https://doi.org/10.1007/s13369-022-06925-z doi: 10.1007/s13369-022-06925-z
    [3] G. Zubair, M. Shoaib, M. I. Khan, I. Naz, A. Althobaiti, M. A. Z. Raja, et al., Intelligent supervised learning for viscous fluid submerged in water based carbon nanotubes with irreversibility concept, Int. Commun. Heat Mass Transf., 130 (2022), 105790. https://doi.org/10.1016/j.icheatmasstransfer.2021.105790 doi: 10.1016/j.icheatmasstransfer.2021.105790
    [4] M. Shoaib, G. Zubair, K. S. Nisar, M. A. Z. Raja, M. I. Khan, R. J. Punith Gowda, et al., Ohmic heating effects and entropy generation for nanofluidic system of ree-eyring fluid: Intelligent computing paradigm, Int. Commun. Heat Mass Transf., 129 (2021), 105683. https://doi.org/10.1016/j.icheatmasstransfer.2021.105683 doi: 10.1016/j.icheatmasstransfer.2021.105683
    [5] M. Shoaib, M. Kausar, K. S. Nisar, M. A. Z. Raja, M. Zeb, A. Morsy, The design of intelligent networks for entropy generation in ree-eyring dissipative fluid flow system along quartic autocatalysis chemical reactions, Int. Commun. Heat Mass Transf., 133 (2022), 105971. https://doi.org/10.1016/j.icheatmasstransfer.2022.105971 doi: 10.1016/j.icheatmasstransfer.2022.105971
    [6] M. Shoaib, M. A. Z. Raja, W. Jamshed, K. S. Nisar, I. Khan, I. Farhat, Intelligent computing levenberg marquardt approach for entropy optimized single-phase comparative study of second grade nanofluidic system, Int. Commun. Heat Mass Transf., 127 (2021), 105544. https://doi.org/10.1016/j.icheatmasstransfer.2021.105544 doi: 10.1016/j.icheatmasstransfer.2021.105544
    [7] M. Shoaib, M. A. Z. Raja, M. T. Sabir, A. H. Bukhari, H. Alrabaiah, Z. Shah, et al., A stochastic numerical analysis based on hybrid nar-rbfs networks nonlinear sitr model for novel covid-19 dynamics, Comput. Meth. Prog. Bio., 202 (2021), 105973. https://doi.org/10.1016/j.cmpb.2021.105973 doi: 10.1016/j.cmpb.2021.105973
    [8] J. L. Aljohani, E. S. Alaidarous, M. A. Z. Raja, M. S. Alhothuali, M. Shoaib, Supervised learning algorithm to study the magnetohydrodynamic flow of a third grade fluid for the analysis of wire coating, Arab. J. Sci. Eng., 47 (2022), 7505−7518. https://doi.org/10.1007/s13369-021-06212-3 doi: 10.1007/s13369-021-06212-3
    [9] A. C. Eringen, Theory of micropolar fluids, In: Technical Report, DTIC Document, 1965.
    [10] A. Ishak, R. Nazar, I. Pop, Flow of a micropolar fluid on a continuous moving surface, Arch. Mech., 58 (2006), 529−541.
    [11] S. Acharya, B. Nayak, S. R. Mishra, Illustration of the reynolds number on micropolar nanofluid flow through a permeable medium due to the interaction of thermal radiation, Wave Random Complex, 2022, 1−18. https://doi.org/10.1080/17455030.2022.2146780 doi: 10.1080/17455030.2022.2146780
    [12] G. K. Ramesh, G. S. Roopa, A. Rauf, S. A. Shehzad, F. M. Abbasi, Time-dependent squeezing flow of casson-micropolar nanofluid with injection/suction and slip effects, Int. Commun. Heat Mass Transf., 126 (2021), 105470. https://doi.org/10.1016/j.icheatmasstransfer.2021.105470 doi: 10.1016/j.icheatmasstransfer.2021.105470
    [13] A. Siddiqui, B. Shankar, Mhd flow and heat transfer of casson nanofluid through a porous media over a stretching sheet, In: Nanofluid Flow in Porous Media, IntechOpen, 2019.
    [14] M. V. Krishna, N. A. Ahamad, A. F. Aljohani, Thermal radiation, chemical reaction, hall and ion slip effects on Mhd oscillatory rotating flow of micro-polar liquid, Alex. Eng. J., 60 (2021), 3467−3484. https://doi.org/10.1016/j.aej.2021.02.013 doi: 10.1016/j.aej.2021.02.013
    [15] C. Perdikis, A. Raptis, Heat transfer of a micropolar fluid by the presence of radiation, Heat Mass Transf., 31 (1996), 381−382. https://doi.org/10.1007/BF02172582 doi: 10.1007/BF02172582
    [16] N. Sandeep, C. Sulochana, Dual solutions for unsteady mixed convection flow of Mhd micropolar fluid over a stretching/shrinking sheet with non-uniform heat source/sink, Eng. Sci. Technol., 18 (2015), 738−745. https://doi.org/10.1016/j.jestch.2015.05.006 doi: 10.1016/j.jestch.2015.05.006
    [17] S. Nadeem, Z. Ahmed, S. Saleem, The Effect of variable viscosities on micropolar flow of two nanofluids, Z. Naturforsch. A, 71 (2016), 1121−1129. https://doi.org/10.1515/zna-2015-0491 doi: 10.1515/zna-2015-0491
    [18] A. Ali, N. Amin, I. Pop, The unsteady boundary layer flow past a circular cylinder in micropolar fluids, Int. J. Numer. Method. H., 17 (2007), 692−714.
    [19] S. U. S. Choi, J. A Eastman, Enhancing thermal conductivity of fluids with nanoparticles, 1995.
    [20] M. M. Rashidi, A. K. Abdul Hakeem, N. Vishnu Ganesh, B. Ganga, M. Sheikholeslami, E. Momoniat, Analytical and numerical studies on heat transfer of a nanofluid over a stretching/shrinking sheet with second-order slip flow model, Int. J. Mech. Mater. Eng., 11 (2016), 1−14. https://doi.org/10.1186/s40712-016-0054-2 doi: 10.1186/s40712-016-0054-2
    [21] T. Hayat, T. Muhammad, S. A. Shehzad, A. Alsaedi, An analytical solution for magnetohydrodynamic Oldroyd-B nanofluid flow induced by a stretching sheet with heat generation/absorption, Int. J. Therm. Sci., 111 (2017), 274−288. https://doi.org/10.1016/j.ijthermalsci.2016.08.009 doi: 10.1016/j.ijthermalsci.2016.08.009
    [22] R. Dhanai, P. Rana, L. Kumar, Mhd mixed convection nanofluid flow and heat transfer over an inclined cylinder due to velocity and thermal slip effects: Buongiorno's model, Powder Technol., 288 (2016), 140−150. https://doi.org/10.1016/j.powtec.2015.11.004 doi: 10.1016/j.powtec.2015.11.004
    [23] O. K. Koriko, A. J. Omowaye, N. Sandeep, I. L. Animasaun, Analysis of boundary layer formed on an upper horizontal surface of a paraboloid of revolution within nanofluid flow in the presence of thermophoresis and brownian motion of 29 nm CuO, Int. J. Mech. Sci., 124 (2017), 22−36. https://doi.org/10.1016/j.ijmecsci.2017.02.020 doi: 10.1016/j.ijmecsci.2017.02.020
    [24] R. Mehmood, S. Nadeem, S. Saleem, N. S. Akbar, Flow and heat transfer analysis of jeffery nano fluid impinging obliquely over a stretched plate, J. Taiwan Inst. Chem. E., 74 (2017), 49−58. https://doi.org/10.1016/j.jtice.2017.02.001 doi: 10.1016/j.jtice.2017.02.001
    [25] T. Hayat, T. Muhammad, S. A. Shehzad, A. Alsaedi, On magnetohydrodynamic flow of nanofluid due to a rotating disk with slip effect: A numerical study, Comput. Methods Appl. Mech. Eng., 315 (2017), 467−477. https://doi.org/10.1016/j.cma.2016.11.002 doi: 10.1016/j.cma.2016.11.002
    [26] M. Sheikholeslami, D. D. Ganji, M. M. Rashidi, Magnetic field effect on unsteady nanofluid flow and heat transfer using buongiorno model, J. Magn. Magn. Mater., 416 (2016), 164−173. https://doi.org/10.1016/j.jmmm.2016.05.026 doi: 10.1016/j.jmmm.2016.05.026
    [27] N. Sandeep, R. P. Sharma, M. Ferdows, Enhanced heat transfer in unsteady magnetohydrodynamic nanofluid flow embedded with aluminum alloy nanoparticles, J. Mol. Liq., 234 (2017), 437−443. https://doi.org/10.1016/j.molliq.2017.03.051 doi: 10.1016/j.molliq.2017.03.051
    [28] N. Sandeep, Effect of aligned magnetic field on liquid thin film flow of magnetic-nanofluids embedded with graphene nanoparticles, Adv. Powder Technol., 28 (2017), 865−875. https://doi.org/10.1016/j.apt.2016.12.012 doi: 10.1016/j.apt.2016.12.012
    [29] G. Kumaran, N. Sandeep, Thermophoresis and brownian moment effects on parabolic flow of mhd casson and williamson fluids with cross diffusion, J. Mol. Liq., 233 (2017), 262−269. https://doi.org/10.1016/j.molliq.2017.03.031 doi: 10.1016/j.molliq.2017.03.031
    [30] M. Ramzan, M. Bilal, U. Farooq, J. D. Chung, Mixed convective radiative flow of second grade nanofluid with convective boundary conditions: An optimal solution, Results Phys., 6 (2016), 796−804. https://doi.org/10.1016/j.rinp.2016.10.011 doi: 10.1016/j.rinp.2016.10.011
    [31] A. Tassaddiq, I. Khan, K. S. Nisar, Heat transfer analysis in sodium alginate based nanofluid using mos2 nanoparticles: Atangana-Baleanu fractional model, Chaos Solitons Fractals, 130 (2020), 109445. https://doi.org/10.1016/j.chaos.2019.109445 doi: 10.1016/j.chaos.2019.109445
    [32] T. Hussain, S. A. Shehzad, A. Alsaedi, T. Hayat, M. Ramzan, Flow of casson nanofluid with viscous dissipation and convective conditions: A mathematical model, J. Cent. South Univ., 22 (2015), 1132−1140. https://doi.org/10.1007/s11771-015-2625-4 doi: 10.1007/s11771-015-2625-4
    [33] T. Hussain, S. A. Shehzad, T. Hayat, A. Alsaedi, F. Al-Solamy, M. Ramzan, Radiative hydromagnetic flow of jeffrey nanofluid by an exponentially stretching sheet, PLoS One, 9 (2014), e103719. https://doi.org/10.1371/journal.pone.0103719 doi: 10.1371/journal.pone.0103719
    [34] M. Ramzan, Influence of newtonian heating on three dimensional mhd flow of couple stress nanofluid with viscous dissipation and joule heating, PLoS One, 10 (2015), e0124699. https://doi.org/10.1371/journal.pone.0124699 doi: 10.1371/journal.pone.0124699
    [35] M. Ramzan, F. Yousaf, Boundary layer flow of three-dimensional viscoelastic nanofluid past a bi-directional stretching sheet with newtonian heating, AIP Adv., 5 (2015), 057132. https://doi.org/10.1063/1.4921312 doi: 10.1063/1.4921312
    [36] Z. Hu, W. Lu, M. D. Thouless, Slip and wear at a corner with coulomb friction and an interfacial strength, Wear, 338 (2015), 242−251.
    [37] Z. Hu, W. Lu, M. D. Thouless, J. R. Barber, Effect of plastic deformation on the evolution of wear and local stress fields in fretting, Int. J. Solids Struct., 82 (2016), 1−8. https://doi.org/10.1016/j.ijsolstr.2015.12.031 doi: 10.1016/j.ijsolstr.2015.12.031
    [38] H. Wang, Z. Hu, W. Lu, M. D. Thouless, The effect of coupled wear and creep during grid-to-rod fretting, Nucl. Eng. Des., 318 (2017), 163−173. https://doi.org/10.1016/j.nucengdes.2017.04.018 doi: 10.1016/j.nucengdes.2017.04.018
    [39] Th. V. Kármán, Über laminare und turbulente reibung, ZAMM‐Z. Angew. Math. Me., 1 (1921), 233−252. https://doi.org/10.1002/zamm.19210010401 doi: 10.1002/zamm.19210010401
    [40] W. G. Cochran, The flow due to a rotating disc, Paper presented at the Mathematical proceedings of the Cambridge philosophical society, 1934. https://doi.org/10.1017/S0305004100012561
    [41] J. A. D. Ackroyd, On the steady flow produced by a rotating disc with either surface suction or injection, J. Eng. Math., 12 (1978), 207−220. https://doi.org/10.1007/BF00036459 doi: 10.1007/BF00036459
    [42] M. N. Bashir, A. Rauf, S. A. Shehzad, M. Ali, T. Mushtaq, Thermophoresis phenomenon in radiative flow about vertical movement of a rotating disk in porous region, Adv. Mech. Eng., 14 (2022), 16878132221115019.
    [43] X. Si, L. Zheng, X. Zhang, X. Si, Homotopy analysis method for the asymmetric laminar flow and heat transfer of viscous fluid between contracting rotating disks, Appl. Math. Model., 36 (2012), 1806−1820. https://doi.org/10.1016/j.apm.2011.09.010 doi: 10.1016/j.apm.2011.09.010
    [44] M. Hussain, M. Rasool, A. Mehmood, Radiative flow of viscous nano-fluid over permeable stretched swirling disk with generalized slip, Sci. Rep., 12 (2022), 11038. https://doi.org/10.1038/s41598-022-15159-w doi: 10.1038/s41598-022-15159-w
    [45] M. Turkyilmazoglu, P. Senel, Heat and mass transfer of the flow due to a rotating rough and porous disk, Int. J. Therm. Sci., 63 (2013), 146−158. https://doi.org/10.1007/s00521-020-05355-y doi: 10.1007/s00521-020-05355-y
    [46] S. Zhou, M. Bilal, M. A. Khan, T. Muhammad, Numerical analysis of thermal radiative maxwell nanofluid flow over-stretching porous rotating disk, Micromachines, 12 (2021), 540. https://doi.org/10.1140/epjp/s13360-020-00910-x doi: 10.1140/epjp/s13360-020-00910-x
    [47] I. Ahmad, M. A. Z. Raja, H. Ramos, M. Bilal, M. Shoaib, Integrated neuro-evolution-based computing solver for dynamics of nonlinear corneal shape model numerically, Neural. Comput. Appl., 33 (2021), 5753−5769.
    [48] T. N. Cheema, M. A. Z. Raja, I. Ahmad, S. Naz, H. Ilyas, M. Shoaib, Intelligent computing with levenberg–marquardt artificial neural networks for nonlinear system of covid-19 epidemic model for future generation disease control, Eur. Phys. J. Plus, 135 (2020), 1−35. https://doi.org/10.1016/j.cmpb.2021.105973 doi: 10.1016/j.cmpb.2021.105973
    [49] M. Umar, M. A. Z. Raja, Z. Sabir, A. S. Alwabli, M. Shoaib, A stochastic computational intelligent solver for numerical treatment of mosquito dispersal model in a heterogeneous environment, Eur. Phys. J. Plus, 135 (2020), 565. https://doi.org/10.1140/epjp/s13360-020-00557-8 doi: 10.1140/epjp/s13360-020-00557-8
    [50] M. Umar, Z. Sabir, M. A. Z. Raja, M. Shoaib, M. Gupta, Y. G. Sánchez, A stochastic intelligent computing with neuro-evolution heuristics for nonlinear sitr system of novel covid-19 dynamics, Symmetry, 12 (2020), 1628. https://doi.org/10.1007/s00521-019-04203-y doi: 10.1007/s00521-019-04203-y
    [51] M. Shoaib, M. A. Z. Raja, M. T. Sabir, A. H. Bukhari, H. Alrabaiah, Z. Shah, et al., A stochastic numerical analysis based on hybrid nar-rbfs networks nonlinear sitr model for novel covid-19 dynamics, Comput. Meth. Prog. Bio., 202 (2021), 105973. https://doi.org/10.1016/j.ijhydene.2020.11.097 doi: 10.1016/j.ijhydene.2020.11.097
    [52] I. Ahmad, H. Ilyas, A. Urooj, M. S. Aslam, M. Shoaib, M. A. Z. Raja, Novel applications of intelligent computing paradigms for the analysis of nonlinear reactive transport model of the fluid in soft tissues and microvessels, Neural. Comput. Appl., 31 (2019), 9041−9059. https://doi.org/10.1016/j.ijhydene.2021.02.108 doi: 10.1016/j.ijhydene.2021.02.108
    [53] H. Ilyas, I. Ahmad, M. A. Z. Raja, M. B. Tahir, M. Shoaib, A novel design of Gaussian WaveNets for rotational hybrid nanofluidic flow over a stretching sheet involving thermal radiation, Int. Commun. Heat Mass Transf., 123 (2021), 105196. https://doi.org/10.1016/j.icheatmasstransfer.2021.105196 doi: 10.1016/j.icheatmasstransfer.2021.105196
    [54] H. Ilyas, I. Ahmad, M. A. Z. Raja, M. B. Tahir, M. Shoaib, Intelligent computing for the dynamics of fluidic system of electrically conducting Ag/Cu nanoparticles with mixed convection for hydrogen possessions, Int. J. Hydrogen Energ., 46 (2021), 4947−4980. https://doi.org/10.1016/j.ijhydene.2020.11.097 doi: 10.1016/j.ijhydene.2020.11.097
    [55] H. Ilyas, I. Ahmad, M. A. Z. Raja, M. B. Tahir, M. Shoaib, Intelligent networks for crosswise stream nanofluidic model with Cu-H2O over porous stretching medium, Int. J. Hydrogen Energ., 2021. https://doi.org/10.1016/j.ijhydene.2021.02.108 doi: 10.1016/j.ijhydene.2021.02.108
    [56] W. Waseem, M. Sulaiman, S. Islam, P. Kumam, R. Nawaz, M. A. Z. Raja, et al., A Study of Changes in Temperature Profile of Porous Fin Model Using Cuckoo Search Algorithm, Alex. Eng. J., 59 (2020), 11−24. https://doi.org/10.1016/j.aej.2019.12.001 doi: 10.1016/j.aej.2019.12.001
    [57] A. H. Bukhari, M. Sulaiman, M. A. Z. Raja, S. Islam, M. Shoaib, P. Kumam, Design of a Hybrid Nar-Rbfs Neural Network for Nonlinear Dusty Plasma System, Alex. Eng. J., 59 (2020), 3325−3345. https://doi.org/10.1016/j.aej.2020.04.051 doi: 10.1016/j.aej.2020.04.051
    [58] M. M. Almalki, E. S. Alaidarous, D. Maturi, M. A. Z. Raja, M. Shoaib, A Levenberg-Marquardt backpropagation neural network for the numerical treatment of squeezing flow with heat transfer model, IEEE Access, 6 (2020), 227340−227348.
    [59] Z. Shah, M. A. Z. Raja, Y. M. Chu, W. A. Khan, M. Waqas, M. Shoaib, et al., Design of neural network based intelligent computing for neumerical treatment of unsteady 3d flow of Eyring-powell Magneto-nanofluidic model, J. Mater. Res. Technol., 9 (2020), 14372−14387. https://doi.org/10.1016/j.jmrt.2020.09.098 doi: 10.1016/j.jmrt.2020.09.098
    [60] Z. Sabir, M. A. Z. Raja, M. Umar, M. Shoaib, Design of Neuro-Swarming-based heuristics to solve the third-order nonlinear multi-singular Emden-Fowler equation, Eur. Phys. J. Plus, 135 (2020), 410.
    [61] Z. Sabir, M. A. Z. Raja, M. Umar, M. Shoaib, Neuro-Swarm intelligent computing to solve the second-order singular functional differential model, Eur. Phys. J. Plus, 135 (2020), 1−19. https://doi.org/10.1140/epjp/s13360-020-00440-6 doi: 10.1140/epjp/s13360-020-00440-6
    [62] Z. Sabir, M. A. Z. Raja, J. L. G. Guirao, M. Shoaib, Integrated intelligent computing with neuro-swarming solver for multi-singular fourth-order nonlinear Emden-Fowler equation, Comput. Appl. Math., 39 (2020), 1−18.
    [63] Z. Sabir, M. A. Z. Raja, M. Shoaib, J. F. Gómez Aguilar, FMNEICS: Fractional meyer neuro-evolution-based intelligent computing solver for doubly singular multi-fractional order Lane-Emden system, Comp. Appl. Math., 39 (2020). https://doi.org/10.1007/s40314-020-01350-0 doi: 10.1007/s40314-020-01350-0
    [64] Z. Sabir, M. Umar, J. L. G. Guirao, M. Shoaib, M. A. Z. Raja, Integrated intelligent computing paradigm for nonlinear multi-singular third-order Emden-fowler equation, Neural. Comput. Appl., 33 (2021), 3417−3436.
    [65] Z. Sabir, M. A. Z. Raja, J. L. G. Guirao, M. Shoaib, A novel design of fractional meyer wavelet neural networks with application to the nonlinear singular fractional Lane-Emden systems, Alex. Eng. J., 60 (2021), 2641−2659. https://doi.org/10.1016/j.aej.2021.01.004 doi: 10.1016/j.aej.2021.01.004
    [66] A. H. Bukhari, M. A. Z. Raja, M. Sulaiman, S. Islam, M. Shoaib, P. Kumam, Fractional neuro-sequential ARFIMA-LSTM for financial market forecasting, IEEE Access, 8 (2020), 71326−71338.
    [67] M. Ramzan, J. D. Chung, N. Ullah, Partial slip effect in the flow of MHD micropolar nanofluid flow due to a rotating disk-A numerical approach, Results Phys., 7 (2017), 3557−3566. https://doi.org/10.1016/j.rinp.2017.09.002 doi: 10.1016/j.rinp.2017.09.002
    [68] M. Shoaib, M. A. Z. Raja, M. A. R. Khan, I. Farhat, S. E. Awan, Neuro-computing networks for entropy generation under the influence of MHD and thermal radiation, Surf. Interfaces, 25 (2021), 101243. https://doi.org/10.1016/j.surfin.2021.101243 doi: 10.1016/j.surfin.2021.101243
    [69] N. Anwar, I. Ahmad, A. K. Kiani, S. Naz, M. Shoaib, M. A. Z. Raja, Intelligent predictive stochastic computing for nonlinear differential delay computer virus model, Wave Random Complex, 2022, https://doi.org/10.1080/17455030.2022.2155327 doi: 10.1080/17455030.2022.2155327
    [70] M. Shoaib, A. Z. Abbasi, M. A. Z. Raja, K. S. Nisar, A design of predictive computational network for the analysis of fractional epidemical predictor-prey model, Chaos Solitons Fractals, 165 (2022), 112812. https://doi.org/10.1016/j.chaos.2022.112812 doi: 10.1016/j.chaos.2022.112812
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1327) PDF downloads(69) Cited by(16)

Article outline

Figures and Tables

Figures(25)  /  Tables(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog