Research article

Heat transport and magnetohydrodynamic hybrid micropolar ferrofluid flow over a non-linearly stretching sheet

  • Received: 24 July 2022 Revised: 28 August 2022 Accepted: 15 September 2022 Published: 27 September 2022
  • MSC : 76D05, 76A02, 65L10

  • A stable colloid called ferrofluid is made up of tiny magnetic particles, often magnetite (Fe3O4), that have been bonded with an amphiphilic dispersion layer and are then suspended in a suitable liquid solvent carrier. Current industrial uses for ferrofluid include dynamic sealing, inertial and viscous damping, magnetic drug targeting, liquid microrobots, etc. In this article, we studied the heat transfer and MHD micropolar ferrofluid flow caused by non-linearly stretching surface. The results are presented for hybrid alumina- copper/ethylene glycol (${Al}_2 {O}_3$-Cu/EG) nanofluid. The governing non-linear equations describing flow are transformed into a system of ordinary differential equations using similarity transformations. Using the BVp4c method, the microstructure and inertial properties of a magnetite ferrofluid across a non-linear stretched sheet are studied. The influence of relevant parameters on stream function, velocity, micro-rotation velocity, and temperature are obtained and represented graphically. The computed results are original, and it has been observed that if we increase the magnetic parameter, the stream function and the velocity decrease, while the temperature and micro-rotation velocity increase. As the Prandtl number increases, the temperature profile decreases. It has been observed that the Nusselt number or heat transfer rate of hybrid nanofluid is better as compared to nanofluid flow.

    Citation: Abdul Rauf, Nehad Ali Shah, Aqsa Mushtaq, Thongchai Botmart. Heat transport and magnetohydrodynamic hybrid micropolar ferrofluid flow over a non-linearly stretching sheet[J]. AIMS Mathematics, 2023, 8(1): 164-193. doi: 10.3934/math.2023008

    Related Papers:

  • A stable colloid called ferrofluid is made up of tiny magnetic particles, often magnetite (Fe3O4), that have been bonded with an amphiphilic dispersion layer and are then suspended in a suitable liquid solvent carrier. Current industrial uses for ferrofluid include dynamic sealing, inertial and viscous damping, magnetic drug targeting, liquid microrobots, etc. In this article, we studied the heat transfer and MHD micropolar ferrofluid flow caused by non-linearly stretching surface. The results are presented for hybrid alumina- copper/ethylene glycol (${Al}_2 {O}_3$-Cu/EG) nanofluid. The governing non-linear equations describing flow are transformed into a system of ordinary differential equations using similarity transformations. Using the BVp4c method, the microstructure and inertial properties of a magnetite ferrofluid across a non-linear stretched sheet are studied. The influence of relevant parameters on stream function, velocity, micro-rotation velocity, and temperature are obtained and represented graphically. The computed results are original, and it has been observed that if we increase the magnetic parameter, the stream function and the velocity decrease, while the temperature and micro-rotation velocity increase. As the Prandtl number increases, the temperature profile decreases. It has been observed that the Nusselt number or heat transfer rate of hybrid nanofluid is better as compared to nanofluid flow.



    加载中


    [1] S. U. S. Choi, J. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, Asme Fed, 231 (1995), 99–103.
    [2] J. Buongiorno, D. C. Venerus, N. Prabhat, T. McKrell, J. Townsend, R. Christianson, et al., A benchmark study on the thermal conductivity of nanofluids, J. Appl. Phys., 106 (2009), 094312. https://doi.org/10.1063/1.3245330 doi: 10.1063/1.3245330
    [3] K. R. Singh, P. R. Solanki, B. D. Malhotra, A. C. Pandey, R. P. Singh, Introduction to nanomaterials: An overview toward broad spectrum applications, nanomaterials in bionanotechnology, CRC Press: Boca Raton, FL, USA, 2021. https://doi.org/10.1201/9781003139744-1
    [4] K. Suvardhan, C. Rajasekhar, R. Mashallah, Smart nanodevices for point-of-care applications, CRC Press: Boca Raton, FL, USA, 2021.
    [5] S. Upadhya, S. V. Mamatha, S. R. Raju, C. S. R. Raju, N. A. Shah, J. D. Chung, Importance of entropy generation on Casson, Micropolar and Hybrid magneto-nanofluids in a suspension of cross diffusion, Chinese J. Phys., 77 (2022), 1080–1101. https://doi.org/10.1016/j.cjph.2021.10.016 doi: 10.1016/j.cjph.2021.10.016
    [6] Q. Lou, B. Ali, S. U. Rehman, D. Habib, S. Abdal, N. A. Shah, et al., Micropolar dusty fluid: Coriolis force effects on dynamics of MHD rotating fluid when Lorentz force is significant, Mathematics, 10 (2022), 2630. https://doi.org/10.3390/math10152630 doi: 10.3390/math10152630
    [7] Y. Li, M. Zhou, B. Cheng, Y. Shao, Recent advances in g-C3N4-based heterojunction photocatalysts, J. Mater. Sci. Technol., 56 (2020), 1–17. https://doi.org/10.1016/j.jmst.2020.04.028 doi: 10.1016/j.jmst.2020.04.028
    [8] N. A. Shah, A. Wakif, E. R. El-Zahar, S. Ahmad, S-J. Yook, Numerical simulation of a thermally enhanced EMHD flow of a heterogeneous micropolar mixture comprising (60%)-ethylene glycol (EG), (40%)-water (W), and copper oxide nanomaterials (CuO), Case Stud. Therm. Eng., 2022, 102046. https://doi.org/10.1016/j.csite.2022.102046 doi: 10.1016/j.csite.2022.102046
    [9] R. E. Rosensweig, Ferrohydrodynamics, Cambridge University Press, Cambridge, England, 1985.
    [10] S. U. S. Choi, D. A. Singer, H. P. Wang, Developments and applications of non-Newtonian flows, Asme Fed, 66 (1995), 99–105.
    [11] M. Hidetoshi, A. Ebata, K. Teramae, N. Hishiunma, Conductivity and viscosity of liquid by dispersed ultra-fine particles (dispersion of Al2O3, SiO2, and TiO2 ultra-fine particles), Netsu Bussei, 7 (1993). https://doi.org/10.2963/jjtp.7.227 doi: 10.2963/jjtp.7.227
    [12] M. Z. Ashraf, S. U. Rehman, S. Farid, A. K. Hussein, B. Ali, N. A. Shah, et al., Insight into significance of bioconvection on MHD tangent hyperbolic nanofluid flow of irregular thickness across a slender elastic surface, Mathematics, 10 (2022), 2592. https://doi.org/10.3390/math10152592 doi: 10.3390/math10152592
    [13] H. I. Andersson, O. A. Valnes, Flow of a heated ferrofluid over a stretching sheet in the presence of a magnetic dipole, Acta Mech., 128 (1998), 39–47. https://doi.org/10.1007/BF01463158 doi: 10.1007/BF01463158
    [14] H. I. Andersson, MHD flow of a viscoelastic fluid past a stretching surface, Acta Mech., 95 (1992), 227–230. https://doi.org/10.1007/BF01170814 doi: 10.1007/BF01170814
    [15] B. Gabriella, On similarity solutions of MHD flow over a nonlinear stretching surface in non-Newtonian power-law fluid, Electron. J. Qual. Theo., 6 (2016), 1–12.
    [16] C. Fetecau, N. A. Shah, D. Vieru, General solutions for hydromagnetic free convection flow over an infinite plate with Newtonian heating, mass diffusion and chemical reaction, Commun. Theor. Phys., 68 (2017), 768–782. https://doi.org/10.1088/0253-6102/68/6/768 doi: 10.1088/0253-6102/68/6/768
    [17] A. S. Sabu, A. Wakif, S. Areekara, A. Mathew, N. A. Shah, Significance of nanoparticles' shape and thermo-hydrodynamic slip constraints on MHD alumina-water nanoliquid flows over a rotating heated disk: The passive control approach, Int. Commun. Heat Mass Tran., 129 (2021), 105711. https://doi.org/10.1016/j.icheatmasstransfer.2021.105711. doi: 10.1016/j.icheatmasstransfer.2021.105711
    [18] G. Bognár, K. Hriczó, Ferrofluid flow in the presence of magnetic dipole, Tech. Mech., 39 (2019), 3–15. https://doi.org/10.24874/ti.2019.41.03.12 doi: 10.24874/ti.2019.41.03.12
    [19] I. A. Abdallah, Analytic solution of heat and mass transfer over a permeable stretching plate affected by chemical reaction, internal heating, Dufour-Soret effect and Hall effect, Therm. Sci., 13 (2009), 183–197. https://doi.org/10.2298/TSCI0902183A doi: 10.2298/TSCI0902183A
    [20] A. Zeeshan, A. Majeed, R. Ellahi, Effect of magnetic dipole on viscous ferrofluid past a stretching surface with thermal radiation, J. Mol. Liq., 215 (2016), 549–554. https://doi.org/10.1016/j.molliq.2015.12.110 doi: 10.1016/j.molliq.2015.12.110
    [21] M. Nawaz, A. Zeeshan, R. Ellahi, S. Abbasbandy, S. Rashidi, Joules and Newtonian heating effects on stagnation point flow over a stretching surface by means of genetic algorithm and Nelder-Mead method, Int. J. Numer. Method. H., 25 (2015), 665–684. https://doi.org/10.1108/HFF-04-2014-0103 doi: 10.1108/HFF-04-2014-0103
    [22] K. Saeed, M. Shaban, S. Abbasbandy, Improved analytical solutions to a stagnation-point flow past a porous stretching sheet with heat generation, J. Franklin I., 348 (2011), 2044–2058. https://doi.org/10.1016/j.jfranklin.2011.05.020 doi: 10.1016/j.jfranklin.2011.05.020
    [23] T. Hayat, T. Javed, Z. Abbas, Slip flow and heat transfer of a second-grade fluid past a stretching sheet through a porous space, Int. J. Heat Mass Tran., 51 (2008), 4528–4534. https://doi.org/10.1016/j.ijheatmasstransfer.2007.12.022 doi: 10.1016/j.ijheatmasstransfer.2007.12.022
    [24] J. M. Martin, I. D. Boyd, Momentum and heat transfer in a laminar boundary layer with slip flow, J. Thermophysics Heat Tr., 20 (2006), 710–719. https://doi.org/10.2514/1.22968 doi: 10.2514/1.22968
    [25] M. E. Ali, The effect of variable viscosity on mixed convection heat transfer along a vertical moving surface, Int. J. Therm. Sci., 45 (2006), 60–69. https://doi.org/10.1016/j.ijthermalsci.2005.04.006 doi: 10.1016/j.ijthermalsci.2005.04.006
    [26] Q. Li, Y. Xuan, Experimental investigation on heat transfer characteristics of magnetic fluid flow around a fine wire under the influence of an external magnetic field, Exp. Therm. Fluid Sci., 33 (2009), 591–596. https://doi.org/10.1016/j.expthermflusci.2008.12.003 doi: 10.1016/j.expthermflusci.2008.12.003
    [27] H. Yamaguchi, Z. Zhang, S. Shuchi, K. Shimada, Heat transfer characteristics of magnetic fluid in a partitioned rectangular box, J. Magn. Magn. Mater., 252 (2002), 203–205. https://doi.org/10.1016/S0304-8853(02)00731-X doi: 10.1016/S0304-8853(02)00731-X
    [28] M. Motozawa, J. Chang, T. Sawada, Y. Kawaguchi, Effect of magnetic field on heat transfer in rectangular duct flow of a magnetic fluid, Phys. Procedia, 9 (2010) 190–193. https://doi.org/10.1016/j.phpro.2010.11.043 doi: 10.1016/j.phpro.2010.11.043
    [29] J. Bahram, S. Sadighi, P. Jalili, D. D. Ganji, Characteristics of ferrofluid flow over a stretching sheet with suction and injection, Case Stud. Therm. Eng., 14 (2019), 100470. https://doi.org/10.1016/j.csite.2019.100470 doi: 10.1016/j.csite.2019.100470
    [30] Z. Ziabakhsh, G. Domairry, H. Bararnia, Analytical solution of non-Newtonian micropolar fluid flow with uniform suction/blowing and heat generation, J. Taiwan Inst. Chem. E., 40 (2009), 443–451. https://doi.org/10.1016/j.jtice.2008.12.005 doi: 10.1016/j.jtice.2008.12.005
    [31] M. Ramzan, M. Farooq, T. Hayat, J. D. Chung, Radiative and Joule heating effects in the MHD flow of a micropolar fluid with partial slip and convective boundary condition, J. Mol. Liq., 221 (2016), 394–400. https://doi.org/10.1016/j.molliq.2016.05.091 doi: 10.1016/j.molliq.2016.05.091
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1863) PDF downloads(191) Cited by(77)

Article outline

Figures and Tables

Figures(31)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog