Research article Special Issues

Computational simulation of cross-flow of Williamson fluid over a porous shrinking/stretching surface comprising hybrid nanofluid and thermal radiation

  • Received: 26 November 2021 Revised: 28 December 2021 Accepted: 04 January 2022 Published: 20 January 2022
  • MSC : 76D05, 76A02, 65L10

  • Recent nanotechnology advancements have created a remarkable platform for the development of a better performance of ultrahigh coolant acknowledged as nanofluid for numerous industrial and engineering technologies. The current study aims to examine the boundary-layer cross-flow of Williamson fluid through a rotational stagnation point towards either a shrinking or stretching permeable wall incorporated by a hybrid nanofluid. The shape factors along with the radiation effect are also taken into account. The contained boundary layers are the type of stream-wise by shrinking/stretching process along with the sheet. Employing the suitable transformations, the partial differential equations (PDEs) are transmuted to similarity (ordinary) differential equations (ODEs). The transmuted system of ODEs is worked out by using a built-in package bvp4c in MATLAB for distinct values of pertaining parameters. Dual (first and second branch) outcomes are found for the shrinking surface. The results suggest that the inclusion of hybrid particles uplifts the drag force as well as the heat transfer in both solutions. In addition, the Weissenberg number accelerates the separation. Moreover, the effect of suction permits the friction factor and heat transfer to improve significantly at the porous shrinking/stretching sheet of hybrid nanofluid.

    Citation: Umair Khan, Aurang Zaib, Sakhinah Abu Bakar, Anuar Ishak, Dumitru Baleanu, El-Sayed M Sherif. Computational simulation of cross-flow of Williamson fluid over a porous shrinking/stretching surface comprising hybrid nanofluid and thermal radiation[J]. AIMS Mathematics, 2022, 7(4): 6489-6515. doi: 10.3934/math.2022362

    Related Papers:

  • Recent nanotechnology advancements have created a remarkable platform for the development of a better performance of ultrahigh coolant acknowledged as nanofluid for numerous industrial and engineering technologies. The current study aims to examine the boundary-layer cross-flow of Williamson fluid through a rotational stagnation point towards either a shrinking or stretching permeable wall incorporated by a hybrid nanofluid. The shape factors along with the radiation effect are also taken into account. The contained boundary layers are the type of stream-wise by shrinking/stretching process along with the sheet. Employing the suitable transformations, the partial differential equations (PDEs) are transmuted to similarity (ordinary) differential equations (ODEs). The transmuted system of ODEs is worked out by using a built-in package bvp4c in MATLAB for distinct values of pertaining parameters. Dual (first and second branch) outcomes are found for the shrinking surface. The results suggest that the inclusion of hybrid particles uplifts the drag force as well as the heat transfer in both solutions. In addition, the Weissenberg number accelerates the separation. Moreover, the effect of suction permits the friction factor and heat transfer to improve significantly at the porous shrinking/stretching sheet of hybrid nanofluid.



    加载中


    [1] S. R. E. Koumy, E. S. I. Barakat, S. I. Abdelsalam, Hall and porous boundaries effects on peristaltic transport through porous medium of a Maxwell model, Transp. Porous Med., 94 (2012), 643-658. https://doi.org/10.1007/s11242-012-0016-y doi: 10.1007/s11242-012-0016-y
    [2] Y. A. Elmaboud, S. I. Abdelsalam, DC/AC magnetohydrodynamic-micropump of a generalized Burger's fluid in an annulus, Phys. Scr., 94 (2019), 115209. https://doi.org/10.1088/1402-4896/ab206d doi: 10.1088/1402-4896/ab206d
    [3] R. V. Williamson, The flow of pseudoplastic materials, Ind. Eng. Chem., 21 (1929), 1108-1111. https://doi.org/10.1021/ie50239a035 doi: 10.1021/ie50239a035
    [4] S. Nadeem, S. T. Hussain, C. Lee, Flow of a Williamson fluid over a stretching sheet, Braz. J. Chem. Eng., 30 (2013), 619-625. https://doi.org/10.1590/S0104-66322013000300019 doi: 10.1590/S0104-66322013000300019
    [5] S. Nadeem, S. T. Hussain, Heat transfer analysis of Williamson fluid over exponentially stretching surface, Appl. Math. Mech. Engl. Ed., 35 (2014), 489-502. https://doi.org/10.1007/s10483-014-1807-6 doi: 10.1007/s10483-014-1807-6
    [6] N. A. Khan, H. Khan, A boundary layer flows of non-Newtonian Williamson fluid, Nonlinear Eng., 3 (2014), 107-115. https://doi.org/10.1515/nleng-2014-0002 doi: 10.1515/nleng-2014-0002
    [7] T. Hayat, U. Khalid, M. Qasim, Steady flow of a Williamson fluid past a porous plate, Asia-Pac. J. Chem. Eng., 7 (2012), 302-306. https://doi.org/10.1002/apj.496 doi: 10.1002/apj.496
    [8] M. R. Krishnamurthy, K. G. Kumar, B. J. Gireesha, N. G. Rudraswamy, MHD flow and heat transfer (PST and PHF) of dusty fluid suspended with alumina nanoparticles over a stretching sheet embedded in a porous medium under the influence of thermal radiation, J. Nanofluids, 7 (2018), 527-535. https://doi.org/10.1166/jon.2018.1473 doi: 10.1166/jon.2018.1473
    [9] K. G. Kumar, R. U. Haq, N. G. Rudraswamy, B. J. Gireesha, Effects of mass transfer on MHD three dimensional flow of a Prandtl liquid over a flat plate in the presence of chemical reaction, Results Phys., 7 (2017), 3465-3471. https://doi.org/10.1016/j.rinp.2017.08.060 doi: 10.1016/j.rinp.2017.08.060
    [10] A. Zaib, R. U. Haq, A. J. Chamkha, M. M. Rashidi, Impact of nonlinear radiative nanoparticles on an unsteady flow of a Williamson fluid toward a permeable convectively heated shrinking sheet, World J. Eng., 15 (2018), 731-742. https://doi.org/10.1108/WJE-02-2018-0050 doi: 10.1108/WJE-02-2018-0050
    [11] U. Khan, A. Zaib, I. Khan, K. S. Nisar, Dual solutions of nanomaterial flow comprising titanium alloy (Ti6Al4V) suspended in Williamson fluid through a thin moving needle with nonlinear thermal radiation: Stability scrutinization, Sci. Rep., 10 (2020), 20933. https://doi.org/10.1038/s41598-020-77996-x doi: 10.1038/s41598-020-77996-x
    [12] M. A. Qureshi, Numerical simulation of heat transfer flow subject to MHD of Williamson nanofluid with thermal radiation, Symmetry, 13 (2021), 1-22. https://doi.org/10.3390/sym13010010 doi: 10.3390/sym13010010
    [13] R. Raza, F. Mabood, R. Naz, S. I. Abdelsalam, Thermal transport of radiative Williamson fluid over stretchable curved surface, Therm. Sci. Eng. Prog., 23 (2021), 100887. https://doi.org/10.1016/j.tsep.2021.100887 doi: 10.1016/j.tsep.2021.100887
    [14] S. Jana, A. Salehi-Khojin, W. H. Zhong, Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives, Thermochim. Acta, 462 (2007), 45-55. https://doi.org/10.1016/j.tca.2007.06.009 doi: 10.1016/j.tca.2007.06.009
    [15] N. Jha, S. Ramaprabhu, Thermal conductivity studies of metal dispersed multiwalled carbon nanotubes in water and ethylene glycol based nanofluids, J. Appl. Phys., 106 (2009), 084317. https://doi.org/10.1063/1.3240307 doi: 10.1063/1.3240307
    [16] D. Madhesh, S. Kalaiselvam, Experimental analysis of hybrid nanofluid as a coolant, Procedia Eng., 97 (2014), 1667-1675. https://doi.org/10.1016/j.proeng.2014.12.317 doi: 10.1016/j.proeng.2014.12.317
    [17] S. P. A. Devi, S. S. U. Devi, Numerical investigation of hydromagnetic hybrid Cu-Al2O3/water nanofluid flow over a permeable stretching sheet with suction, Int. J. Nonlinear Sci. Numer. Simul., 17 (2016), 249-257. https://doi.org/10.1515/ijnsns-2016-0037 doi: 10.1515/ijnsns-2016-0037
    [18] S. U. Devi, S. P. A. Devi, Heat transfer enhancement of Cu-Al2O3/water hybrid nanofluid flow over a stretching sheet, J. Niger Math. Soc., 36 (2017), 419-433. https://ojs.ictp.it/jnms/index.php/jnms/article/view/147
    [19] J. Sarkar, P. Ghosh, A. Adil, A review on hybrid nanofluids: Recent research, development and applications, Renew. Sust. Energ. Rev., 43 (2015), 164-177. https://doi.org/10.1016/j.rser.2014.11.023 doi: 10.1016/j.rser.2014.11.023
    [20] N. A. C. Sidik, I. M. Adamu, M. M. Jamil, G. H. R. Kefayati, R. Mamat, G. Najafi, Recent progress on hybrid nanofluids in heat transfer applications: A comprehensive review, Int. Commun. Heat Mass Transf., 78 (2016), 68-79. https://doi.org/10.1016/j.icheatmasstransfer.2016.08.019 doi: 10.1016/j.icheatmasstransfer.2016.08.019
    [21] J. A. Ranga Babu, K. K. Kumar, S. S. Rao, State-of-art review on hybrid nanofluids, Renew. Sust. Energ. Rev., 77 (2017), 551-565. https://doi.org/10.1016/j.rser.2017.04.040 doi: 10.1016/j.rser.2017.04.040
    [22] M. U. Sajid, H. M. Ali, Thermal conductivity of hybrid nanofluids: A critical review, Int. J. Heat Mass Transf., 126 (2018), 211-234. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.021 doi: 10.1016/j.ijheatmasstransfer.2018.05.021
    [23] S. K. Singh, J. Sarkar, Energy, exergy and economic assessments of shell and tube condenser using hybrid nanofluid as coolant, Int. Commun. Heat Mass Transf., 98 (2018), 41-48. https://doi.org/10.1016/j.icheatmasstransfer.2018.08.005 doi: 10.1016/j.icheatmasstransfer.2018.08.005
    [24] M. Sheikholeslami, M. B. Gerdroodbary, A. Shafee, I. Tlili, Hybrid nanoparticles dispersion into water inside a porous wavy tank involving magnetic force, J. Therm. Anal. Calorim., 141 (2020), 1993-1999. https://doi.org/10.1007/s10973-019-08858-6 doi: 10.1007/s10973-019-08858-6
    [25] M. Gholinia, M. Armin, A. A. Ranjbar, D. D. Ganji, Numerical thermal study on CNTs/ C2H6O2-H2O hybridbase nanofluid upon a porous stretching cylinder under impact of magnetic source, Case Stud. Therm. Eng., 14 (2019), 100490. https://doi.org/10.1016/j.csite.2019.100490 doi: 10.1016/j.csite.2019.100490
    [26] U. Khan, A. Zaib, F. Mebarek-Oudina, Mixed convective magneto flow of SiO2-MoS2/C2H6O2 hybrid nanoliquids through a vertical stretching/shrinking wedge: Stability analysis, Arab. J. Sci. Eng., 45 (2020), 9061-9073. https://doi.org/10.1007/s13369-020-04680-7 doi: 10.1007/s13369-020-04680-7
    [27] I. Waini, A. Ishak, I. Pop, MHD flow and heat transfer of a hybrid nanofluid past a permeable stretching/shrinking wedge, Appl. Math. Mech., 41 (2020), 507-520. https://doi.org/10.1007/s10483-020-2584-7 doi: 10.1007/s10483-020-2584-7
    [28] A. Wakif, A. Chamkha, T. Thumma, I. L. Animasaun, R. Sehaqui, Thermal radiation and surface roughness effects on the thermo‑magneto‑hydrodynamic stability of alumina-copper oxide hybrid nanofluids utilizing the generalized Buongiorno's nanofluid model, J. Therm. Anal. Calorim., 143 (2021), 1201-1220. https://doi.org/10.1007/s10973-020-09488-z doi: 10.1007/s10973-020-09488-z
    [29] N. A. Zainal, R. Nazar, K. Naganthran, I. Pop, Unsteady MHD stagnation point flow induced by exponentially permeable stretching/shrinking sheet of hybrid nanofluid, Eng. Sci. Tech. Int. J., 24 (2021), 1201-1210. https://doi.org/10.1016/j.jestch.2021.01.018 doi: 10.1016/j.jestch.2021.01.018
    [30] I. Waini, A. Ishak, I. Pop, Hybrid nanofluid flow towards a stagnation point on an exponentially stretching/shrinking vertical sheet with buoyancy effects, Int. J. Numer. Meth. Heat Fluid Flow, 31 (2021), 216-235. https://doi.org/10.1108/HFF-02-2020-0086 doi: 10.1108/HFF-02-2020-0086
    [31] M. M. Bhatti, S. I. Abdelsalam, Bio-inspired peristaltic propulsion of hybrid nanofluid flow with Tantalum (Ta) and Gold (Au) nanoparticles under magnetic effects, Waves Random Complex Media, 2021, 1-26. https://doi.org/10.1080/17455030.2021.1998728 doi: 10.1080/17455030.2021.1998728
    [32] L. J. Zhang, T. Nazar, M. M. Bhatti, E. E. Michaelides, Stability analysis on the kerosene nanofluid flow with hybrid zinc/aluminum-oxide (ZnO-Al2O3) nanoparticles under Lorentz force, Int. J. Numer. Meth. Heat Fluid Flow, 32 (2021), 740-760. https://doi.org/10.1108/HFF-02-2021-0103 doi: 10.1108/HFF-02-2021-0103
    [33] L. J. Zhang, M. M. Bhatti, A. Shahid, R. Ellahi, O. A. Bég, S. M. Sait, Nonlinear nanofluid fluid flow under the consequences of Lorentz forces and Arrhenius kinetics through a permeable surface: A robust spectral approach, J. Taiwan Inst. Chem. Eng., 124 (2021), 98-105. https://doi.org/10.1016/j.jtice.2021.04.065 doi: 10.1016/j.jtice.2021.04.065
    [34] M. M. Bhatti, M. B. Arain, A. Zeeshan, R. Ellahi, M. H. Doranehgard, Swimming of gyrotactic microorganism in MHD Williamson nanofluid flow between rotating circular plates embedded in porous medium: Application of thermal energy storage, J. Energy Storage, 45 (2022), 103511. https://doi.org/10.1016/j.est.2021.103511 doi: 10.1016/j.est.2021.103511
    [35] W. Tollmien, H. Schlichting, H. Görtler, F. W. Riegels, Über Flüssigkeitsbewegung bei sehr kleiner Reibung, In: Ludwig Prandtl Gesammelte Abhandlungen, Berlin, Heidelberg: Springer, 1961,575-584. https://doi.org/10.1007/978-3-662-11836-8_43
    [36] H. Blasius, Grenzschichten in flüssigkeiten mit kleiner Reibung, Z. Math. Phys., 56 (1908), 1-37.
    [37] L. Prandtl, On boundary layers in three-dimensional flow, Rep. Aero. Res. Coun. London, 1946.
    [38] J. C. Cooke, M. G. Hall, Boundary layers in three-dimensional, Prog. Aerosp. Sci., 2 (1962), 222-282. https://doi.org/10.1016/0376-0421(62)90008-8 doi: 10.1016/0376-0421(62)90008-8
    [39] E. A. Eichelbrenner, Three-dimensional boundary layers, Annu. Rev. Fluid Mech., 5 (1973), 339-360. https://doi.org/10.1146/annurev.fl.05.010173.002011 doi: 10.1146/annurev.fl.05.010173.002011
    [40] P. Weidman, Further solutions for laminar boundary layers with cross flows driven by boundary motion, Acta Mech., 228 (2017), 1979-1991. https://doi.org/10.1007/s00707-017-1810-y doi: 10.1007/s00707-017-1810-y
    [41] N. C. Roşca, A. V. Roşca, A. Jafarimoghaddam, I. Pop, Cross flow and heat transfer past a permeable stretching/shrinking sheet in a hybrid nanofluid, Int. J. Numer. Meth. Heat Fluid Flow, 31 (2021), 1295-1319. https://doi.org/10.1108/HFF-05-2020-0298 doi: 10.1108/HFF-05-2020-0298
    [42] R. Viskanta, R. J. Grosh, Boundary layer in thermal radiation absorbing and emitting media, Int. J. Heat Mass Transf., 5 (1962), 795-806.https://doi.org/10.1016/0017-9310(62)90180-1 doi: 10.1016/0017-9310(62)90180-1
    [43] E. M. A. Elbashbeshy, Radiation effect on heat transfer over a stretching surface, Can. J. Phys., 78 (2000), 1107-1112. https://doi.org/10.1139/p00-085 doi: 10.1139/p00-085
    [44] M. A. El-Aziz, Radiation effect on the flow and heat transfer over an unsteady stretching sheet, Int. Commun. Heat Mass Transf., 36 (2009), 521-524. https://doi.org/10.1016/j.icheatmasstransfer.2009.01.016 doi: 10.1016/j.icheatmasstransfer.2009.01.016
    [45] T. Hayat, M. Qasim, Z. Abbas, Radiation and mass transfer effects on the magnetohydrodynamic unsteady flow induced by a stretching sheet, Z. Naturforsch. A, 65 (2010), 231-239. https://doi.org/10.1515/zna-2010-0312 doi: 10.1515/zna-2010-0312
    [46] A. Zaib, S. Shafie, Thermal diffusion and diffusion thermo effects on unsteady MHD free convection flow over a stretching surface considering Joule heating and viscous dissipation with thermal stratification, chemical reaction and Hall current, J. Franklin Inst., 351 (2014), 1268-1287. https://doi.org/10.1016/j.jfranklin.2013.10.011 doi: 10.1016/j.jfranklin.2013.10.011
    [47] U. Khan, A. Zaib, A. Ishak, S. A. Bakar, I. L. Animasaun, S. J. Yook, Insights into the dynamics of blood conveying gold nanoparticles on a curved surface when suction, thermal radiation, and Lorentz force are significant: The case of non-Newtonian Williamson fluid, Math. Comput. Simulat., 193 (2022), 250-268. https://doi.org/10.1016/j.matcom.2021.10.014 doi: 10.1016/j.matcom.2021.10.014
    [48] B. C. Sakiadis, Boundary-layer behavior on continuous solid surfaces: I. Boundary layer equations for two-dimensional and axisymmetric flow, AIChE J., 7 (1961), 26-28. https://doi.org/10.1002/aic.690070108 doi: 10.1002/aic.690070108
    [49] L. J. Crane, Flow past a stretching plate, Z. Angew. Math. Phys., 21 (1970), 645-647. https://doi.org/10.1007/BF01587695 doi: 10.1007/BF01587695
    [50] C. Y. Wang, Liquid film on an unsteady stretching surface, Q. Appl. Math., 48 (1990), 601-610. http://www.jstor.org/stable/43637666
    [51] S. Goldstein, On backward boundary layers and flow in converging passages, J. Fluid Mech., 21 (1965), 33-45. https://doi.org/10.1017/S0022112065000034 doi: 10.1017/S0022112065000034
    [52] M. Miklavčič, C. Y. Wang, Viscous flow due to a shrinking sheet, Q. Appl. Math., 64 (2006), 283-290. http://www.jstor.org/stable/43638726
    [53] T. G. Fang, J. Zhang, S. S. Yao, Viscous flow over an unsteady shrinking sheet with mass transfer, Chin. Phys. Lett., 26 (2009), 014703. https://doi.org/10.1088/0256-307X/26/1/014703 doi: 10.1088/0256-307X/26/1/014703
    [54] I. Waini, A. Ishak, I. Pop, Unsteady flow and heat transfer past a stretching/shrinking sheet in a hybrid nanofluid, Int. J. Heat Mass Transf., 136 (2019), 288-297. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.101 doi: 10.1016/j.ijheatmasstransfer.2019.02.101
    [55] U. Khan, A. Zaib, S. A. Bakar, A. Ishak, Stagnation-point flow of a hybrid nanoliquid over a non-isothermal stretching/shrinking sheet with characteristics of inertial and microstructure, Case Stud. Therm. Eng., 26 (2021), 101150. https://doi.org/10.1016/j.csite.2021.101150 doi: 10.1016/j.csite.2021.101150
    [56] N. H. A. Norzawary, N. Bachok, F. M. Ali, Stagnation point flow over a stretching/shrinking sheet in a carbon nanotubes with suction/injection effects, CFD Lett., 12 (2021), 106-114. https://akademiabaru.com/submit/index.php/cfdl/article/view/3217
    [57] P. D. Weidman, D. G. Kubitschek, S. N. Brown, Boundary layer similarity flow driven by power-law shear, Acta Mech., 120 (1997), 199-215. https://doi.org/10.1007/BF01174324 doi: 10.1007/BF01174324
    [58] K. S. Nisar, U. Khan, A. Zaib, I. Khan, D. Baleanu, Exploration of aluminum and titanium alloys in the stream-wise and secondary flow directions comprising the significant impacts of magnetohydrodynamic and hybrid nanofluid, Crystals, 10 (2020), 679. https://doi.org/10.3390/cryst10080679 doi: 10.3390/cryst10080679
    [59] U. Khan, A. Zaib, M. Sheikholeslami, A. Wakif, D. Baleanu, Mixed convective radiative flow through a slender revolution bodies containing molybdenum-disulfide graphene oxide along with generalized hybrid nanoparticles in porous media, Crystals, 10 (2020), 771. https://doi.org/10.3390/cryst10090771 doi: 10.3390/cryst10090771
    [60] Y. M. Chu, K. S. Nisar, U. Khan, H. D. Kasmaei, M. Malaver, A. Zaib, et al., Mixed convection in MHD water-based molybdenum disulfide-graphene oxide hybrid nanofluid through an upright cylinder with shape factor, Water, 12 (2020), 1723. https://doi.org/10.3390/w12061723 doi: 10.3390/w12061723
    [61] L. F. Shampine, I. Gladwell, S. Thompson, Solving ODEs with matlab, Cambridge University Press, 2003.
    [62] L. F. Shampine, J. Kierzenka, M. W. Reichelt, Solving boundary value problems for ordinary differential equations in MATLAB with bvp4c, Tutorial Notes, 2000 (2000), 1-27.
    [63] Y. M. Chu, U. Khan, A. Shafiq, A. Zaib, Numerical simulations of time-dependent micro-rotation blood flow induced by a curved moving surface through conduction of gold particles with non-uniform heat sink/source, Arab. J. Sci. Eng., 46 (2021), 2413-2427. https://doi.org/10.1007/s13369-020-05106-0 doi: 10.1007/s13369-020-05106-0
    [64] J. H. Merkin, On dual solutions occurring in mixed convection in a porous medium, J. Eng. Math., 20 (1986), 171-179. https://doi.org/10.1007/BF00042775 doi: 10.1007/BF00042775
    [65] P. D. Weidman, D. G. Kubitschek, A. M. J. Davis, The effect of transpiration on self-similar boundary layer flow over moving surfaces, Int. J. Eng. Sci., 44 (2006), 730-737. https://doi.org/10.1016/j.ijengsci.2006.04.005 doi: 10.1016/j.ijengsci.2006.04.005
    [66] A. Ridha, M. Curie, Aiding flows non-unique similarity solutions of mixed-convection boundary-layer equations, Z. Angew. Math. Phys., 47 (1996), 341-352. https://doi.org/10.1007/BF00916642 doi: 10.1007/BF00916642
    [67] A. Ishak, J. H. Merkin, R. Nazar, I. Pop, Mixed convection boundary layer flow over a permeable vertical surface with prescribed wall heat flux, Z. Angew. Math. Phys., 59 (2008), 100-123. https://doi.org/10.1007/s00033-006-6082-7 doi: 10.1007/s00033-006-6082-7
    [68] I. Waini, A. Ishak, I. Pop, Transpiration effects on hybrid nanofluid flow and heat transfer over a stretching/shrinking sheet with uniform shear flow, Alex. Eng. J., 59 (2020), 91-99. https://doi.org/10.1016/j.aej.2019.12.010 doi: 10.1016/j.aej.2019.12.010
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3819) PDF downloads(222) Cited by(18)

Article outline

Figures and Tables

Figures(17)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog