In this paper, we consider $ S $-chains of extremal self-dual and self-orthogonal codes and their applications in the construction of quantum codes. Then, by virtue of covering radius, we determine necessary conditions for linear codes to have subcodes with large dual distances and design a new $ S $-chain search method. As computational results, 18 $ S $-chains with large distances are obtained, and many good quantum codes can be derived from those $ S $-chains by Steane construction, some of which improve the previous results.
Citation: Chaofeng Guan, Ruihu Li, Hao Song, Liangdong Lu, Husheng Li. Ternary quantum codes constructed from extremal self-dual codes and self-orthogonal codes[J]. AIMS Mathematics, 2022, 7(4): 6516-6534. doi: 10.3934/math.2022363
In this paper, we consider $ S $-chains of extremal self-dual and self-orthogonal codes and their applications in the construction of quantum codes. Then, by virtue of covering radius, we determine necessary conditions for linear codes to have subcodes with large dual distances and design a new $ S $-chain search method. As computational results, 18 $ S $-chains with large distances are obtained, and many good quantum codes can be derived from those $ S $-chains by Steane construction, some of which improve the previous results.
[1] | P. W. Shor, Scheme for reducing decoherence in quantum computer memory, Phys. Rev. A, 52 (1995), R2493. https://doi.org/10.1103/PhysRevA.52.R2493 doi: 10.1103/PhysRevA.52.R2493 |
[2] | A. Steane, Multiple-particle interference and quantum error correction, Proc. Roy. Soc. A, 452 (1996), 2551–2577. https://doi.org/10.1098/rspa.1996.0136 doi: 10.1098/rspa.1996.0136 |
[3] | A. R. Calderbank, P. W. Shor, Good quantum error-correcting codes exist, Phys. Rev. A, 54 (1996), 1098–1195. https://doi.org/10.1103/PhysRevA.54.1098 doi: 10.1103/PhysRevA.54.1098 |
[4] | A. M. Steane, Enlargement of Calderbank-Shor-Steane quantum codes, IEEE T. Inform. Theory, 45 (1999), 2492–2495. https://doi.org/10.1109/18.796388 doi: 10.1109/18.796388 |
[5] | M. Grassl, T. Beth, M. Rotteler, On optimal quantum codes, Int. Quantum Inf., 2 (2004), 55–64. https://doi.org/10.1142/S0219749904000079 doi: 10.1142/S0219749904000079 |
[6] | A. Ketkar, A. Klappenecker, S. Kumar, P. K. Sarvepalli, Nonbinary stabilizer codes over finite fields, IEEE T. Inform. Theory, 52 (2006), 4892–4914. https://doi.org/10.1109/TIT.2006.883612 doi: 10.1109/TIT.2006.883612 |
[7] | M. Hamada, Concatenated quantum codes constructible in polynomial time: Efficient decoding and error correction, IEEE. Trans. Inform. Theory, 54 (2008), 5689–5704. https://doi.org/10.1109/TIT.2008.2006416 doi: 10.1109/TIT.2008.2006416 |
[8] | S. Ling, J. Q. Luo, C. P. Xing, Generalization of Steane's enlargement construction of quantum codes and applications, IEEE. Trans. Inform. Theory, 56 (2010), 4080–4084. https://doi.org/10.1109/TIT.2010.2050828 doi: 10.1109/TIT.2010.2050828 |
[9] | W. C. Huffman, R. A. Brualdi, V. S. Pless, Self-dual codes, In: Handbook of coding theory, The Netherlands: Elsevier, 1998. |
[10] | M. Grassl, T. A. Gulliver, On circulant self-dual codes over small fields, Des. Codes Cryptogr., 52 (2009), 57. https://doi.org/10.1007/s10623-009-9267-1 doi: 10.1007/s10623-009-9267-1 |
[11] | M. Harada, W. Holzmann, H. Kharaghani, M. Khorvash, Extremal ternary self-dual codes constructed from negacirculant matrices, Graph. Combinator., 23 (2007), 401–417. https://doi.org/10.1007/s00373-007-0731-2 doi: 10.1007/s00373-007-0731-2 |
[12] | M. Harada, A. Munemasa, Database of self-dual codes, Available from: http://www.math.is.tohoku.ac.jp/munemasa/research/codes/sd3.htm. |
[13] | R. Li, Research on additive quantum code, Doctor thesis, Northwest Polytechnical University, Xi'an, 2004. |
[14] | F. Freibert, J. L. Kim, Optimal subcodes and optimum distance profiles of self-dual codes, Finite Fields Th. Appl., 25 (2014), 146–164. https://doi.org/10.1016/j.ffa.2013.09.002 doi: 10.1016/j.ffa.2013.09.002 |
[15] | Y. Y. Fan, W. L. Wang, R. H. Li, Binary construction of pure additive quantum codes with distance five or six, Quantum Inf. Process, 14 (2015), 183–200. https://doi.org/10.1007/s11128-014-0848-1 doi: 10.1007/s11128-014-0848-1 |
[16] | W. L. Wang, Y. Y. Fan, R. H. Li, New binary quantum stabilizer codes from the binary extremal self-dual $[48, 24, 12]$ code, Quantum Inf. Process, 14 (2015), 2761–2774. https://doi.org/10.1007/s11128-015-1018-9 doi: 10.1007/s11128-015-1018-9 |
[17] | Y. Luo, A. J. H. Vinck, Y. L. Chen, On the optimum distance profiles about linear block codes, IEEE Trans. Inform. Theory, 56 (2010), 1007–1014. https://doi.org/10.1109/TIT.2009.2039059 doi: 10.1109/TIT.2009.2039059 |
[18] | K. Q. Feng, Z. Ma, A finite Gilbert-Varshamov bound for pure stabilizer quantum codes, IEEE. Trans. Inform. Theory, 50 (2004), 3323–3325. https://doi.org/10.1109/TIT.2004.838088 doi: 10.1109/TIT.2004.838088 |
[19] | W. C. Huffman, V. Pless, Fundamentals of error-correcting codes, New York: Cambridge University Press, 2003. |
[20] | M. Grassl, Code tables: Bounds on the parameters of various types of codes, 2021. Available from: http://www.codetables.de. |
[21] | M. F. Ezerman, S. Ling, B. Özkaya, P. Solé, Good stabilizer codes from quasi-cyclic codes over $F_4$ and $F_9$, 2019 IEEE International Symposium on Information Theory (ISIT), (2019), 2898–2902. https://doi.org/10.1109/ISIT.2019.8849416 |
[22] | Parameters of some GF(3)-linear quantum twisted codes, Available from: https://www.mathi.uni-heidelberg.de/yves/Matritzen/QTBCH/QTBCHTab3.html. |