Research article

Reversible codes in the Rosenbloom-Tsfasman metric

  • Received: 14 February 2024 Revised: 16 June 2024 Accepted: 08 July 2024 Published: 25 July 2024
  • MSC : 94B05

  • Reversible codes have a range of wide applications in cryptography, data storage, and communication systems. In this paper, we investigated reversible codes under the Rosenbloom-Tsfasman metric (RT-metric). First, some properties of reversible codes in the RT-metric were described. An essential condition for a reversible code to be a maximum distance separable code (MDS code, in short) in the RT-metric was established. A necessary condition for a binary self-dual code to be reversible was proven and the same was generalized for $ q $-ary self-dual reversible codes. Several constructions for reversible RT-metric codes were provided in terms of their generator matrices.

    Citation: Bodigiri Sai Gopinadh, Venkatrajam Marka. Reversible codes in the Rosenbloom-Tsfasman metric[J]. AIMS Mathematics, 2024, 9(8): 22927-22940. doi: 10.3934/math.20241115

    Related Papers:

  • Reversible codes have a range of wide applications in cryptography, data storage, and communication systems. In this paper, we investigated reversible codes under the Rosenbloom-Tsfasman metric (RT-metric). First, some properties of reversible codes in the RT-metric were described. An essential condition for a reversible code to be a maximum distance separable code (MDS code, in short) in the RT-metric was established. A necessary condition for a binary self-dual code to be reversible was proven and the same was generalized for $ q $-ary self-dual reversible codes. Several constructions for reversible RT-metric codes were provided in terms of their generator matrices.



    加载中


    [1] J. L. Massey, Reversible codes, Inform. Control, 7 (1964), 369–380. https://doi.org/10.1016/S0019-9958(64)90438-3 doi: 10.1016/S0019-9958(64)90438-3
    [2] S. K. Muttoo, S. Lal, A reversible code over $ GF (q) $, Kybernetika, 22 (1986), 85–91.
    [3] Y. Takishima, M. Wada, H. Murakami, Reversible variable length codes, IEEE Trans. Commun., 43 (1995), 158–162. https://doi.org/10.1109/26.380026 doi: 10.1109/26.380026
    [4] C. Carlet, S. Guilley, Complementary dual codes for counter-measures to side-channel attacks, Adv. Math. Commun., 10 (2016), 131–150. https://doi.org/10.3934/amc.2016.10.131 doi: 10.3934/amc.2016.10.131
    [5] X. T. Ngo, S. Bhasin, J. L. Danger, S. Guilley, Z. Najm, Linear complementary dual code improvement to strengthen encoded circuit against hardware Trojan horses, 2015 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), 2015. https://doi.org/10.1109/HST.2015.7140242
    [6] F. Gursoy, E. S. Oztas, I. Siap, Reversible DNA codes using skew polynomial rings, Appl. Algebra Eng. Commun. Comput., 28 (2017), 311–320. https://doi.org/10.1007/s00200-017-0325-z doi: 10.1007/s00200-017-0325-z
    [7] H. Mostafanasab, A. Y. Darani, On cyclic DNA codes over $\mathbb {F} _2+ u\mathbb {F} _2+ u^ 2\mathbb {F} _2$, 2016, arXiv: 1603.05894.
    [8] P. Gaborit, O. D. King, Linear constructions for DNA codes, Theor. Comput. Sci., 334 (2005), 99–113. https://doi.org/10.1016/j.tcs.2004.11.004 doi: 10.1016/j.tcs.2004.11.004
    [9] J. L. Massey, Linear codes with complementary duals, Discrete Math., 106-107 (1992), 337–342. https://doi.org/10.1016/0012-365X(92)90563-U doi: 10.1016/0012-365X(92)90563-U
    [10] X. Yang, J. L. Massey, The condition for a cyclic code to have a complementary dual, Discrete Math., 126 (1994), 391–393. https://doi.org/10.1016/0012-365X(94)90283-6 doi: 10.1016/0012-365X(94)90283-6
    [11] M. Yu. Rosenbloom, M. A. Tsfasman, Codes for the $m$ -Metric, Probl. Peredachi Inf., 33 (1997), 55–63. Available from: https://www.mathnet.ru/eng/ppi359.
    [12] M. M. Skriganov, Coding theory and uniform distributions, Algebra i Analiz, 13 (2001), 191–239.
    [13] W. J. Martin, D. R. Stinson, Association schemes for ordered orthogonal arrays and (T, M, S)-nets, Canad. J. Math., 51 (1999), 326–346. https://doi.org/10.4153/CJM-1999-017-5 doi: 10.4153/CJM-1999-017-5
    [14] J. Quistorff, On Rosenbloom and Tsfasman's generalization of the Hamming space, Discrete Math., 307 (2007), 2514–2524. https://doi.org/10.1016/j.disc.2007.01.005 doi: 10.1016/j.disc.2007.01.005
    [15] M. Özen, İ. Şiap, On the structure and decoding of linear codes with respect to the Rosenbloom-Tsfasman metric, Selcuk J. Appl. Math., 5 (2004), 25–31.
    [16] M. Ozen, I. Şiap, Linear codes over $F_{q}[u]/(u^{s})$ with respect to the Rosenbloom-Tsfasman metric, Des. Codes Cryptogr., 38 (2006), 17–29. https://doi.org/10.1007/s10623-004-5658-5 doi: 10.1007/s10623-004-5658-5
    [17] M. Ozen, I. Şiap, Codes over Galois rings with respect to the Rosenbloom-Tsfasman metric, J. Franklin Inst., 344 (2007), 790–799. https://doi.org/10.1016/j.jfranklin.2006.02.001 doi: 10.1016/j.jfranklin.2006.02.001
    [18] I. Siap, M. Ozen, The complete weight enumerator for codes over $M_{n \times s}(R)$, Appl. Math. Lett., 17 (2004), 65–69. https://doi.org/10.1016/S0893-9659(04)90013-4 doi: 10.1016/S0893-9659(04)90013-4
    [19] S. T. Dougherty, M. M. Skriganov, MacWilliams duality and the Rosenbloom-Tsfasman metric, Mosc. Math. J., 2 (2002), 81–97.
    [20] L. Panek, E. Lazzarotto, F. M. Bando, Codes satisfying the chain condition over Rosenbloom-Tsfasman spaces, Int. J. Pure Appl. Math., 48 (2008), 217–222.
    [21] A. K. Sharma, A. Sharma, MacWilliams identities for weight enumerators with respect to the RT metric, Discrete Math. Algorithms Appl., 6 (2014), 1450030. https://doi.org/10.1142/S179383091450030X doi: 10.1142/S179383091450030X
    [22] K. Lee, The automorphism group of a linear space with the Rosenbloom-Tsfasman metric, European J. Combin., 24 (2003), 607–612. https://doi.org/10.1016/S0195-6698(03)00077-5 doi: 10.1016/S0195-6698(03)00077-5
    [23] S. T. Dougherty, M. M. Skriganov, Maximum distance separable codes in the $\rho$ metric over arbitrary alphabets, J. Algebraic Combin., 16 (2002), 71–81. https://doi.org/10.1023/A:1020834531372 doi: 10.1023/A:1020834531372
    [24] S. Jain, CT bursts–from classical to array coding, Discrete Math., 308 (2008), 1489–1499. https://doi.org/10.1016/j.disc.2007.04.010 doi: 10.1016/j.disc.2007.04.010
    [25] S. Jain, Bursts in $m$-metric array codes, Linear Algebra Appl., 418 (2006), 130–141. https://doi.org/10.1016/j.laa.2006.01.022 doi: 10.1016/j.laa.2006.01.022
    [26] I. Siap, CT burst error weight enumerator of array codes, Albanian J. Math., 2 (2008), 171–178. https://doi.org/10.51286/albjm/1229503624 doi: 10.51286/albjm/1229503624
    [27] R. S. Selvaraj, V. Marka, On normal $q$-ary codes in Rosenbloom-Tsfasman metric, Int. Scholarly Res. Notices, 2014. https://doi.org/10.1155/2014/237915
    [28] B. Yildiz, I. Siap, T. Bilgin, G. Yesilot, The covering problem for finite rings with respect to the RT-metric, Appl. Math. Lett., 23 (2010), 988–992. https://doi.org/10.1016/j.aml.2010.04.023 doi: 10.1016/j.aml.2010.04.023
    [29] V. Marka, R. S. Selvaraj, I. Gnanasudha, Self-dual codes in the Rosenbloom-Tsfasman metric, Math. Commun., 22 (2017), 75–87.
    [30] H. Q. Xu, G. K.i Xu, W. Du, Niederreiter-Rosenbloom-Tsfasman LCD codes, Adv. Math. Commun., 16 (2022), 1071–1081. https://doi.org/10.3934/amc.2022065 doi: 10.3934/amc.2022065
    [31] V. Marka, Codes in Rosenbloom-Tsafasman metric: constructions and properties, Ph.D. thesis, National Institute of Technology Warangal, 2015.
    [32] B. S. Gopinadh, V. Marka, Construction of MDS reversible codes in Rosenbloom-Tsfasman metric, In press, 2024.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(514) PDF downloads(29) Cited by(1)

Article outline

Figures and Tables

Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog