This paper was to present a mathematical model of non-integer order and demonstrated the detrimental consequences of lumpy skin disease (LSD). The LSD model included primarily affected cattle and other animals, particularly buffalo and cows. Given the significant drop in the number of livestock and dairy products, it was essential to use mathematical models to raise awareness of this issue. We examined the suggested LSD model to understand as well as every possible avenue that could result in the illness spreading throughout the community. Ulam-Hyers stability made it easier to analyze the stability of the LSD model, and fixed-point theory was a valuable tool for finding the existence and uniqueness of the solution to the suggested model. We have used new versions of power law and exponential decay fractional numerical methods. Numerical calculations were showing the influence of various fractional orders on the spread of disease and provided more informations than integer orders for the sensitive parameters of the proposed model. The graphical depiction is showed an understanding of the proposed LSD model.
Citation: Parveen Kumar, Sunil Kumar, Badr Saad T. Alkahtani, Sara S. Alzaid. A robust numerical study on modified Lumpy skin disease model[J]. AIMS Mathematics, 2024, 9(8): 22941-22985. doi: 10.3934/math.20241116
This paper was to present a mathematical model of non-integer order and demonstrated the detrimental consequences of lumpy skin disease (LSD). The LSD model included primarily affected cattle and other animals, particularly buffalo and cows. Given the significant drop in the number of livestock and dairy products, it was essential to use mathematical models to raise awareness of this issue. We examined the suggested LSD model to understand as well as every possible avenue that could result in the illness spreading throughout the community. Ulam-Hyers stability made it easier to analyze the stability of the LSD model, and fixed-point theory was a valuable tool for finding the existence and uniqueness of the solution to the suggested model. We have used new versions of power law and exponential decay fractional numerical methods. Numerical calculations were showing the influence of various fractional orders on the spread of disease and provided more informations than integer orders for the sensitive parameters of the proposed model. The graphical depiction is showed an understanding of the proposed LSD model.
[1] | R. Hilfer, Applications of fractional calculus in physics, World Scientific, 2000. https://doi.org/10.1142/3779 |
[2] | J. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1140–1153. https://doi.org/10.1016/j.cnsns.2010.05.027 doi: 10.1016/j.cnsns.2010.05.027 |
[3] | J. Sabatier, O. P. Agrawal, J. A. T. Machado, Advances in fractional calculus, Dordrecht: Springer, 2007. https://doi.org/10.1007/978-1-4020-6042-7 |
[4] | A. Akgül, A novel method for a fractional derivative with non-local and non-singular kernel, Chaos Solitons Fract., 114 (2018), 478–482. https://doi.org/10.1016/j.chaos.2018.07.032 doi: 10.1016/j.chaos.2018.07.032 |
[5] | E. K. Akgül, Solutions of the linear and nonlinear differential equations within the generalized fractional derivatives, Chaos, 29 (2019), 023108. https://doi.org/10.1063/1.5084035 doi: 10.1063/1.5084035 |
[6] | E. Addai, L. Zhang, J. Ackora-Prah, J. F. Gordon, J. K. Asamoah, J. F. Essel, Fractal-fractional order dynamics and numerical simulations of a Zika epidemic model with insecticide-treated nets, Phys. A, 603 (2022), 127809. https://doi.org/10.1016/j.physa.2022.127809 doi: 10.1016/j.physa.2022.127809 |
[7] | S. Das, Functional fractional calculus, Heidelberg: Springer Berlin, 2011. https://doi.org/10.1007/978-3-642-20545-3 |
[8] | A. Kumar, S. Kumar, A study on eco-epidemiological model with fractional operators, Chaos Solitons Fract., 156 (2022), 111697. https://doi.org/10.1016/j.chaos.2021.111697 doi: 10.1016/j.chaos.2021.111697 |
[9] | S. Kumar, A. Kumar, B. Samet, J. F. Gómez-Aguilar, M. S. Osman, A chaos study of tumor and effector cells in fractional tumor-immune model for cancer treatment, Chaos Solitons Fract., 141 (2020), 110321. https://doi.org/10.1016/j.chaos.2020.110321 doi: 10.1016/j.chaos.2020.110321 |
[10] | E. Addai, A. Adeniji, O. J. Peter, J. O. Agbaje, K. Oshinubi, Dynamics of age-structure smoking models with government intervention coverage under fractal-fractional order derivatives, Fractal Fract., 7 (2023), 370. https://doi.org/10.3390/fractalfract7050370 doi: 10.3390/fractalfract7050370 |
[11] | H. Y. Jin, Z. A. Wang, L. Wu, Global dynamics of a three-species spatial food chain model, J. Differ. Equ., 333 (2022), 144–183. https://doi.org/10.1016/j.jde.2022.06.007 doi: 10.1016/j.jde.2022.06.007 |
[12] | Z. Lv, D. Chen, H. Feng, H. Zhu, H. Lv, Digital twins in unmanned aerial vehicles for rapid medical resource delivery in epidemics, IEEE Trans. Intell. Transport. Syst., 23 (2022), 25106–25114. https://doi.org/10.1109/TITS.2021.3113787 doi: 10.1109/TITS.2021.3113787 |
[13] | X. Qin, K. Zhang, Y. Fan, H. Fang, Y. Nie, X. L. Wu, The bacterial MtrAB two-component system regulates the cell wall homeostasis responding to environmental alkaline stress, Microbiol. Spectr., 10 (2022), e02311–22. https://doi.org/10.1128/spectrum.02311-22 doi: 10.1128/spectrum.02311-22 |
[14] | R. Zhang, Y. Zheng, T. Liu, N. Tang, L. Mao, L. Lin, et al., The marriage of sealant agent between structure transformable silk fibroin and traditional Chinese medicine for faster skin repair, Chinese Chem. Lett., 33 (2022), 1599–1603. https://doi.org/10.1016/j.cclet.2021.09.018 doi: 10.1016/j.cclet.2021.09.018 |
[15] | A. Elsonbaty, M. Alharbi, A. El-Mesady, W. Adel, Dynamical analysis of a novel discrete fractional lumpy skin disease model, Partial Differ. Equ. Appl. Math., 9 (2024), 100604. https://doi.org/10.1016/j.padiff.2023.100604 doi: 10.1016/j.padiff.2023.100604 |
[16] | L. Whittle, R. Chapman, A. L. Williamson, Lumpy skin disease—An emerging cattle disease in Europe and Asia, Vaccines, 11 (2023), 578. https://doi.org/10.3390/vaccines11030578 doi: 10.3390/vaccines11030578 |
[17] | N. Smaraki, H. R. Jogi, D. J. Kamothi, H. H. Savsani, An insight into emergence of lumpy skin disease virus: A threat to Indian cattle, Arch. Microbiol., 206 (2024), 210. https://doi.org/10.1007/s00203-024-03932-6 doi: 10.1007/s00203-024-03932-6 |
[18] | M. A. Khan, A. Atangana, Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative, Alex. Eng. J., 59 (2020), 2379–2389. https://doi.org/10.1016/j.aej.2020.02.033 doi: 10.1016/j.aej.2020.02.033 |
[19] | S. Ullah, M. A. Khan, Modeling the impact of non-pharmaceutical interventions on the dynamics of novel coronavirus with optimal control analysis with a case study, Chaos Solitons Fract., 139 (2020), 110075. https://doi.org/10.1016/j.chaos.2020.110075 doi: 10.1016/j.chaos.2020.110075 |
[20] | R. Magori-Cohen, Y. Louzoun, Y. Herziger, E. Oron, A. Arazi, E. Tuppurainen, et al., Mathematical modelling and evaluation of the different routes of transmission of lumpy skin disease virus, Vet. Res., 43 (2012), 1. https://doi.org/10.1186/1297-9716-43-1 doi: 10.1186/1297-9716-43-1 |
[21] | A. Anwar, K. Na-Lampang, N. Preyavichyapugdee, V. Punyapornwithaya, Lumpy skin disease outbreaks in Africa, Europe, and Asia (2005–2022): Multiple change point analysis and time series forecast, Viruses, 14 (2022), 2203. https://doi.org/10.3390/v14102203 doi: 10.3390/v14102203 |
[22] | O. O. Onyejekwe, A. Alemu, B. Ambachew, A. Tigabie, Epidemiological study and optimal control for Lumpy Skin Disease (LSD) in Ethiopia, Adv. Infect. Dis., 9 (2019), 8–24. https://doi.org/10.4236/aid.2019.91002 doi: 10.4236/aid.2019.91002 |
[23] | S. Moonchai, A. Himakalasa, T. Rojsiraphisal, O. Arjkumpa, P. Panyasomboonying, N. Kuatako, et al., Modelling epidemic growth models for lumpy skin disease cases in Thailand using nationwide outbreak data, 2021–2022, Infect. Dis. Modell., 8 (2023), 282–293. https://doi.org/10.1016/j.idm.2023.02.004 doi: 10.1016/j.idm.2023.02.004 |
[24] | R. Magin, Fractional calculus in bioengineering, part 1, Crit. Rev. Biomed. Eng., 32 (2004), 104. https://doi.org/10.1615/critrevbiomedeng.v32.i1.10 doi: 10.1615/critrevbiomedeng.v32.i1.10 |
[25] | E. Addai, L. Zhang, A. K. Preko, J. K. Asamoah, Fractional order epidemiological model of SARS-CoV-2 dynamism involving Alzheimer's disease, Healthc. Anal., 2 (2022), 100114. https://doi.org/10.1016/j.health.2022.100114 doi: 10.1016/j.health.2022.100114 |
[26] | K. Agrawal, R. Kumar, S. Kumar, S. Hadid, S. Momani, Bernoulli wavelet method for non-linear fractional Glucose–Insulin regulatory dynamical system, Chaos Solitons Fract., 164 (2022), 112632. https://doi.org/10.1016/j.chaos.2022.112632 doi: 10.1016/j.chaos.2022.112632 |
[27] | C. Xu, M. Farman, A. Shehzad, Analysis and chaotic behavior of a fish farming model with singular and non-singular kernel, Int. J. Biomath., 2023, 2350105. https://doi.org/10.1142/S179352452350105X doi: 10.1142/S179352452350105X |
[28] | C. Xu, M. Liao, P. Li, L. Yao, Q. Qin, Y. Shang, Chaos control for a fractional-order Jerk system via time delay feedback controller and mixed controller, Fractal Fract., 5 (2021), 257. https://doi.org/10.3390/fractalfract5040257 doi: 10.3390/fractalfract5040257 |
[29] | C. Xu, M. Farman, Z. Liu, Y. Pang, Numerical approximation and analysis of epidemic model with constant proportional Caputo operator, Fractals, 32 (2024), 2440014. https://doi.org/10.1142/S0218348X24400140 doi: 10.1142/S0218348X24400140 |
[30] | P. Kumar, A. Kumar, S. Kumar, A study on fractional order infectious chronic wasting disease model in deers, Arab J. Basi Appl. Sci., 30 (2023), 601–625. https://doi.org/10.1080/25765299.2023.2270229 doi: 10.1080/25765299.2023.2270229 |
[31] | P. Kumar, A. Kumar, S. Kumar, D. Baleanu, A fractional order co-infection model between malaria and filariasis epidemic, Arab J. Basi Appl. Sci., 31 (2024), 132–153. https://doi.org/10.1080/25765299.2024.2314376 doi: 10.1080/25765299.2024.2314376 |
[32] | A. Atangana, S. Qureshi, Modeling attractors of chaotic dynamical systems with fractal-fractional operators, Chaos Solitons Fract., 123 (2019), 320–337. https://doi.org/10.1016/j.chaos.2019.04.020 doi: 10.1016/j.chaos.2019.04.020 |
[33] | Z. Li, Z. Liu, M. A. Khan, Fractional investigation of bank data with fractal-fractional Caputo derivative, Chaos Solitons Fract., 131 (2020), 109528. https://doi.org/10.1016/j.chaos.2019.109528 doi: 10.1016/j.chaos.2019.109528 |
[34] | Z. Ali, K. Shah, A. Zada, P. Kumam, Mathematical analysis of coupled systems with fractional order boundary conditions, Fractals, 28 (2020), 2040012. https://doi.org/10.1142/S0218348X20400125 doi: 10.1142/S0218348X20400125 |
[35] | A. Granas, J. Dugundji, Fixed point theory, New York: Springer, 2003. https://doi.org/10.1007/978-0-387-21593-8 |
[36] | C. Xu, S. Saifullah, A. Ali, Adnan, Theoretical and numerical aspects of Rubella disease model involving fractal fractional exponential decay kernel, Results Phys., 34 (2022), 105287. https://doi.org/10.1016/j.rinp.2022.105287 doi: 10.1016/j.rinp.2022.105287 |
[37] | W. F. Alfwzan, M. H. DarAssi, F. M. Allehiany, M. A. Khan, M. Y. Alshahrani, E. M. Tag-eldin, A novel mathematical study to understand the Lumpy skin disease (LSD) using modified parameterized approach, Results Phys., 51 (2023), 106626. https://doi.org/10.1016/j.rinp.2023.106626 doi: 10.1016/j.rinp.2023.106626 |
[38] | M. A. Khan, A. Atangana, T. Muhammad, E. Alzahrani, Numerical solution of a fractal-fractional order chaotic circuit system, Rev. Mex. Fís., 67 (2021), 051401. https://doi.org/10.31349/revmexfis.67.051401 doi: 10.31349/revmexfis.67.051401 |
[39] | The MathWorks Inc., MATLAB version: 9.0 (R2016a), Available from: https://www.mathworks.com |