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Abstract: This paper was to present a mathematical model of non-integer order and demonstrated the
detrimental consequences of lumpy skin disease (LSD). The LSD model included primarily affected
cattle and other animals, particularly buffalo and cows. Given the significant drop in the number of
livestock and dairy products, it was essential to use mathematical models to raise awareness of this
issue. We examined the suggested LSD model to understand as well as every possible avenue that
could result in the illness spreading throughout the community. Ulam-Hyers stability made it easier
to analyze the stability of the LSD model, and fixed-point theory was a valuable tool for finding the
existence and uniqueness of the solution to the suggested model. We have used new versions of power
law and exponential decay fractional numerical methods. Numerical calculations were showing the
influence of various fractional orders on the spread of disease and provided more informations than
integer orders for the sensitive parameters of the proposed model. The graphical depiction is showed
an understanding of the proposed LSD model.
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1. Introduction

Fractional calculus is an interesting and very famous branch of applied mathematics that deals
with the computation of arbitrary order integrals and derivatives. It is noticed that there was limited
discussion available on the applications of fractional calculus. However, over the past few years, it
has become a most popular subject in academia due to its theoretical advancements and potential
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applications in various fields of engineering and science [1]. A system’s conduct is dictated by its
historical actions and mathematical models of real-world issues [2]. As a result, both the system’s
past and present conditions influence its future. Integer order differential operators do not capture
such inherited properties of systems well. On the other hand, nonlocal fractional order derivatives
provide valuable tools for describing nonlocal occurrences in space and time [3]. Non-integer order
operators are suitable for characterizing a system’s memory and genetic properties because they are
accounted for at every level in the proposed model. The nonlocal character of non-integer order
operators can explain the attraction of fractional calculus. When conceptually describing real-world
systems, many fractional-order differential equation difficulties occur. These equations are typically
impossible to solve analytically and are difficult to compute. Fractional-order systems are better suited
to capture recall and long-range dependence phenomena than integer-order systems. These systems
use fractional calculus to simulate complex dynamic behaviors that involve different time scales and
past states that affect present and future ones. When modeling real-world occurrences, fractional-order
differential equations provide a more adaptable framework. Fractional-order dynamics are present
in many physical and natural systems. The Mittag-Leffler (M-L) function is a valuable weapon
in solving such problems in fractional calculus. Different types of operators exist in the relevant
literature, such as classical operators, operators derived from the power-law process, operators derived
from the generalized M-L function, and operators derived from the exponential decay law. Recently,
researchers have focused on developing new theories, proposing innovative ideas, and highlighting
various applications for the different operators. Nowadays, research revolves around a novel fractal-
fractional (F-F) integral and differential operator category. These novel operators are on the fractal
operator combined with the notion of fractional differ integrals, where the three ways are Caputo,
Caputo-Fabrizio (C-F), and Atangana-Baleanu [4–6]. The C-F derivative operator is commonly used
in various scientific fields to represent systems with fractional-order dynamics. The term “fractal-
fractional” in the context of C-F implies incorporating fractal geometry concepts into the study of
fractional calculus using C-F derivatives. This approach involves integrating fractal characteristics
or principles into formulating and analyzing fractional-order systems within the framework of C-F
calculus.

Researchers have significantly developed for solving differential equations and systems. Due to
the unavailability of analytical solutions or their complexity, numerical and approximative analytical
methods are commonly used [7]. However, the range of numerical approaches for differential
equations is limited, so the researchers have created new numerical techniques. They have found
that the fractional derivatives of the Caputo and Riemann-Liouville (RL) types are particularly
effective and classical [8]. Classical initial conditions in fractional differential equations involving the
Caputo fractional derivative are understandable and can be measured accurately [9]. They have also
helped develop the modified Predictor-Corrector technique for determining the numerical solution of
fractional differential equations. It is an emphatic weapon for analyzing fractional differential equations
the methodologies employed in the numerical simulation of chaotic fractional order systems on two
dis-contiguous perspectives. “Time domain methods” are used to directly approximate the response
of a fractional order system when solving differential equations numerically. The enhanced Adams-
Bashforth Moulton algorithm, presented based on the predictor-corrector scheme, is one of the finest
algorithms in this area. The approach can effectively address the stability of nonlinear systems of
equations that are easy-to-handle chaotic problems, which is highly significant.
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Incorporating strategic delays can enhance the stability of specific control systems. Delay systems
can reduce instability and dampen oscillations by providing stabilizing mechanisms with additional
time to take effect. In signal processing and communication systems, delays can be utilized to adjust for
phase shifts. Controlled delays can help reduce phase distortion, align signals correctly, and improve
overall signal quality. Delays are a common feature of many real-world systems, including biological,
chemical, and transportation systems. Incorporating delay components into the modeling process can
lead to more accurate representation and behavior prediction of these systems. Systems with delays can
withstand some types of disruptions and serve as buffers, reducing oscillations and disruptions in the
inputs or outputs of the system. Based on past performance or projections, adaptive control systems can
modify control operations through delays. In dynamic situations, this adaptive behavior can enhance
system responsiveness and performance. The benefits of a delay system depend on the problem and
application. Delay systems are valuable instruments in many scientific and technical domains because,
when employed correctly, they can improve system robustness, performance, and stability. Therefore,
the primary difference between a general and a delay system is that the latter incorporates time delays as
an essential component of its behavior. However, not all systems include delays; all delay systems are
systems. The Ulam-Hyers stability is concerned with the sensitivity of the functional equation to small
perturbations. It explains how fractional-order differential equations behave in systems with minor
perturbations. These equations use fractional derivatives, which extend the concept of integer-order
derivatives to non-integer orders and are used to describe fractional-order systems. These systems
are helpful in many domains, including control theory, because they can store memory and long-
range dependency events. It is crucial to examine how small changes or perturbations to the system
characteristics or beginning circumstances impact the solutions of the fractional-order differential
equations to understand Ulam-Hyer’s stability of fractional-order systems [10]. This method helps
to clarify the robustness and reliability of fractional-order systems in practical applications.

Science and engineering are seeing a rise in the use of disease modeling, as evidenced by the large
number of research studies published in the literature. The main topics of recent research are analyzing
the food chain system’s global stability and modeling of medical resources, cell wall control, and gut
microbiota [11–13]. Structurally, chemistry studies have also made use of modeling [14]. Lumpy skin
disease (LSD) is a viral illness that harms cattle. The LSD virus causes the disease, and it also affects
other ruminants, such as water buffalo. LSD leads to decreased milk production, weight loss, and,
in severe cases, even death, resulting in significant financial losses. Cows and buffaloes are the main
animals affected by the viral disease known as LSD, which can lead to elevated body temperatures,
skin pimples, swelling in certain places, and overall depression. They may also experience bumps
in their eyes and nose, swollen legs, and difficulty walking. Animals exposed to LSD will begin
displaying symptoms of the sickness after about two to four weeks of incubation. The most effective
way to avoid contracting LSD is to be immunized. Further vector control strategies that can be
employed to stop the spread of LSD include using insecticides and eliminating environments that
support the development of biting insects [15]. The effects of LSD on economies and cultures are
well-established, extending beyond the health and productivity of animals. International trade in cattle
and products generated from animals may be impacted if the disease leads to trade restrictions being
put on affected nations. The clinical symptoms are more severe in young calves and lactating cows.
The disease is widespread in Africa and the Middle East, with recent outbreaks reported in Turkey
and Pakistan. Greece experienced epidemics in 2015 and 2016, which later spread to Bulgaria and
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the former yugoslav republic (FYR) of Macedonia. The virus spreads through insect vectors such
as ticks, flies and mosquitoes, or contaminated needles. Although the specific vectors differ between
nations, they are most active in warm and humid weather, especially during summers and falls when
flies are most bothersome. Contaminated feed, water, and equipment can also transmit the disease. It
is worth noting that humans cannot contract the virus. Remember that each animal may experience a
different level of disease severity. Some may only display minor symptoms, while others may develop
severe symptoms or even die as a result of the illness [16]. The death rate in infected herds can
range from 1% to 20%, depending on the aggressiveness of the virus and the farming practices used.
Early diagnosis and prompt action are crucial to reduce the harmful effects of LSD on animal health,
welfare, and productivity. Effective preventive and control measures are necessary to stop the spread
of LSD. Vaccination, eradicating the disease’s vectors, and quarantining affected animals are some
strategies [17]. To effectively control the spread of LSD and reduce its negative impacts, collaboration
among veterinary authorities, farmers, and other stakeholders is essential.

When preventing the spread of bugs like flies and mosquitoes, we must be mindful of actions around
where animals live. Experts advise against bringing vehicles near animal habitats unless they have been
thoroughly cleaned with specialized products that are safe for animals. To keep insects from bothering
animals, it’s a good idea to use safe bug sprays or move the animals to areas with fewer biting flies,
which can help reduce the risk of infection. It’s also essential to use different needles when treating
animals and to take general preventative measures such as disinfecting stable entrances and wearing
disposable suits and boot covers when visiting. Cleaning and disinfecting vehicles before and after
use is also crucial. To prevent infection from spreading, it’s best to avoid contact with animals from
different herds and grazing regions with a high fly population and share trucks, equipment, animals, and
employees with other farms. The most effective way to prevent LSD in animals is through vaccination.
In areas where the disease is prevalent, various immunization options are available. Mosquitoes, ticks,
and other biting insects primarily transmit LSD. Implementing vector control measures such as using
insecticides, managing the environment carefully, and creating physical barriers can help reduce the
number of biting insects and prevent the spread of the disease. If an animal becomes ill, it should be
quarantined and isolated to prevent the illness from spreading to other animals. Maintaining proper
biosecurity is essential to prevent the disease from spreading externally. This involves cleaning and
disinfecting all farm equipment to avoid contact between animals from different farms. Early detection
and immediate response are crucial in preventing the spread of the disease.

Over 570 cows have died because of the LSD illness that has been detected in Pakistan, which
is why it was first recognized in Pakistan. This disease has primarily affected Sindh province. At
some time, animals throughout the province of Punjab were infected. LSD has been a major issue for
Pakistani livestock. For several months, the nation struggled with an LSD virus and suffered significant
financial losses as Eid-ul-Adha approached. The costs of other healthy animals were discovered to be
exorbitant, rendering them unaffordable to the public. Farms run by small farmers with 50 animals
or fewer are vulnerable to danger because of loss of income and poverty. There have been reports of
LSD infections in Khyber Pakhtunkhwa districts, where multiple animals have perished. According
to records, the Punjab livestock department notified them that they lacked the funds to vaccinate their
livestock against the infection. The Pakistani government, particularly the livestock department, should
step up and support farmers who have been unable to vaccinate their animals. Since farming is the sole
source of income for these small farmers, finding solutions to their issues is essential.
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Mathematical modeling plays a crucial role when studying disease epidemiology and disease
control. According to these papers, the analysis of human disease dynamics and diseases of animals
and plants uses mathematical models [18, 19]. Based on the optimal control theory technique, the
work’s results demonstrate the elimination of sickness. In the literature, not much has been written
about the dynamics of LSD. To discover various modes of transmission, a statistical model for the
LSD virus was developed [20]. To illustrate their findings, the authors cited the 2006 outbreak in Ein-
Zurim. Recently, researchers in [21] examined LSD infection throughout Europe, Asia, and Africa.
The outcome was analyzed by the writers using statistical theory. For the dynamics of LSD and their
controls, they employed an SEIR model (susceptible (S), exposed (E), infectious (I), and recovered
(R)) [22]. The authors only addressed the population of cattle. Examining the 2021–2022 LSD
outbreak [23], the authors gave their findings using an assortment of Gaussian mathematical models.
By considering every potential pathway for transmission that could cause LSD, the current work
examines a comprehensive mathematical model. Environmental transmission, vector transmission,
and direct transmission from cattle to another are the three main transmission methods.

Since ancient times, people have grappled with illnesses and worked to find solutions within their
communities. Despite the convenience and comfort that science and technology have brought us, they
have also contributed to the deterioration of the natural environment worldwide [24]. While genetic
modification of food products has become possible through technological advancements, humans’
overuse of natural resources has led to the extinction of many plant and animal species. It wouldn’t be
fair to attribute all of the world’s problems to pandemics alone, as seasonal changes can significantly
impact different species populations. The research examines the link between the COVID-19 pandemic
and Alzheimer’s disease using a C-F fractional-order epidemiological model [25]. The authors discuss
glucose-insulin levels in the human body in the paper, demonstrating how humans are connected [26].
This research focuses on the chaotic behavior of a fish farm model that includes the population of
nutrients and mussels with varying kernels, focusing on the fractal-fractional operator insight [27].
To prevent the unpredictable behavior of the fractional-order Jerk system, the authors suggest a new
system and create two control mechanisms [28]. The authors of this paper aim to study a fractional
SHTR model (nondrinkers (S), heavy drinkers (H), drinkers in treatment (T), and recovered drinkers
(R)) for a nonlinear drinking pandemic in the context of a constant proportional Caputo operator [29].
The authors of this paper have investigated the infectious chronic wasting disease model in deer [30].
In this paper, the authors analyze the spread of malaria and filariasis [31].

We divide the article into seven sections that summarize the whole paper logically. Basic definitions
of fractional calculus are presented in Section 2, and the LSD non-integer model is covered in Section 3.
Section 4, further broken down into Sections 4.1 and 4.2, explores the model solution’s existence,
uniqueness, and stability. Section 5 describes the numerical methodologies for a fractional-order LSD
model. The graphical representation and comments are described in full in Section 6. Finally, the
conclusion is given in Section 7.

2. Preliminaries

In this section, we have discussed a few required definitions, theorems and results related to
fractional operators.

Definition 2.1. [32,33] Let W (t) be a continuous and differentiable function in the open interval (a, b)
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with fractional order σ1 and fractal dimension σ2. Then, the fractal-fractional derivative with power
law kernel of W (t) in RL sense is given as:

FFP
0+D

σ1,σ2
t W (t) =

1
Γ(k − σ1)

d
dtσ2

∫ t

0
(t − z)k−σ1−1W (z)dz, (2.1)

with k − 1 < σ1, σ2 ≤ k ∈ N, and dW (z)
dzσ2 = lim

t→z

W (t)−W (z)
tσ2−zσ2 .

Definition 2.2. [32, 33] Let W (t) be a continuous and differentiable function in the open interval
(a, b) with fractional order σ1 and fractal dimension σ2. Then, the fractal-fractional derivative with
exponentially decaying kernel of W (t) in RL sense is given as:

FFE
0+D

σ1,σ2
t W (t) =

M(σ1)
1 − σ1

d
dtσ2

∫ t

0
exp

(
−σ1

1 − σ1
(t − z)

)
W (z)dz, (2.2)

and the normalized constant is M(0) = 1 and M(1) = 1.

Definition 2.3. [32,33] Let W (t) be a continuous and differentiable function in the open interval (a, b)
with fractional order σ1 and fractal dimension σ2. Then, the fractal-fractional integral with power law
kernel of W (t) in RL sense is given as:

FFP
0+I

σ1,σ2
t W (t) =

σ2

Γ(σ1)

∫ t

0
(t − z)σ1−1zσ2−1W (z)dz. (2.3)

Definition 2.4. [32, 33] Let W (t) be a continuous and differentiable function in the open interval
(a, b) with fractional order σ1 and fractal dimension σ2. Then, the fractal-fractional integral with
exponential decay kernel of W (t) in RL sense is given as:

FFE
0+I

σ1,σ2
t W (t) =

σ2(1 − σ1)tσ2−1W (t)
M(σ1)

+
σ1σ2

M(σ1)

∫ t

0
zσ2−1W (z)dz. (2.4)

Definition 2.5. Let W (t) ∈ H1(a, b), a < b, andσ1 ∈ [0, 1], then the C-F fractional differential operator
of W (t) is given as:

CF
aDσ1

t W (t) =
M(σ1)
1 − σ1

∫ t

a
W

′

(z)exp
[
−σ1

t − z
1 − σ1

]
dz, (2.5)

where M(σ1) is the normalization function which satisfies the condition M(0) = M(1) = 1.
But, if W < H1(a, b) and W ∈ L1(−∞, b), then the derivative is given as

CF Dσ1
t W (t) =

σ1M(σ1)
1 − σ1

∫ b

−∞

(W (t) −W (z)) exp
[
−σ1

t − z
1 − σ1

]
dz. (2.6)

Theorem 2.1. [34, 35] Suppose that Ω : Θ→ Θ is an operator and completely continuous. Let

C(Ω) = {Ha ∈ Θ : Ha = %Ω(Ha), % ∈ [0, 1]} .

The operator Ω has at least one fixed point or the set C(Ω) is not bounded.
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Lemma 2.1. [36] This perturbed problem has a solution
FFE

0+D
σ1,σ2
t W (t) = G(t,W (t)) + κ(t),

W (0) = W0,

if the following condition is true:∣∣∣∣∣∣W (t) −
{
W (0) + (G(t,W (t)) − κ0(t))

σ2(1 − σ1)
M(σ1)

tσ2−1 +
σ1σ2

M(σ1)

∫ t

0
zσ1−1G(z,W (z))dz

}∣∣∣∣∣∣
≤

(
σ2(1 − σ1)Tσ2−1

M(σ1)
+
σ2T

σ1

M(σ1)

)
NG. (2.7)

3. The mathematical formulation of the LSD

There have been early attempts to establish mathematical biology as a new field of study.
Mathematical methods are used to create models of biological phenomena in this field. Despite the
importance and necessity of mathematics in biological sciences, the number of research groups and
individuals working in this area is currently limited. However, modern applications of mathematics
in mathematical biology are fascinating, well-known, and rapidly increasing. As biology is becoming
more quantitative, using mathematics in this field is crucial.

An infectious viral disease is called LSD, which affects cattle, causing lameness, swellings in the
legs, nasal and ocular discharges, nodules on the mucous membranes, and skin edema and nodules. We
are defining the total population of cattle as Nc at any given time t and further dividing it into susceptible
cattle S c(t), infected cattle Ic(t), and recovered cattle Rc(t) (i.e., Nc(t) = S c(t) + Ic(t) + Rc(t)). The
infection is caused by insect vectors such as other ticks, mosquitoes, or flies. These insect populations
are denoted by Nν, and further divided into susceptible and infected insects represented by S ν and Iν,
respectively (i.e., Nν(t) = S ν(t) + Iν(t)). The variable R(t) indicates the presence of a contaminated
environment. Some viruses can spread through the wind or transportation in vehicles from one region
to another. The virus can also be transmitted through contaminated needles, feed, equipment, and
water. The spread of the illness is likely to happen rapidly during the warm and humid seasons of
summer and fall, especially when flies are prevalent. Π1 represents the population growth of healthy
cattle and µ represents the natural death rate of the cattle.

The parameter λ indicates the effective contact rate at which healthy cattle become infected. This
rate comprises three factors: β1, which is the contact rate resulting from insects biting healthy animals
and transmitting the virus; β2, which is the contact rate resulting from vehicles and other objects
carrying the virus from the stable or environment and infecting other healthy cattle; and β3, which
is the direct transmission of the virus from infected cattle to healthy ones. Because the virus can linger
in the semen of infected bulls, it’s important to remember that female cattle may also get infected
through natural mating or artificial insemination. It is known that calves born to cows infected with
this virus may have skin lesions. The virus can be passed to nursing calves through the skin sores in
the teats or from contaminated milk. The recovery rate of the infected cattle is denoted by the symbol
δ. The growth rate of the insects (which act as vectors for the virus) is denoted by the parameter Π2,
while their natural death rate is shown by µν. The contact rate between healthy insects and infected
cattle is given by β4. The rate of virus transmission from contaminated cattle, vehicles, and stables is
denoted by φ, while ω represents virus disinfection. Figure 1 explains the system (3.1) flow rate.
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Figure 1. A diagrammatic graph representing the LSD relations of the given system is shown
above.

The proposed model is described as [37] :

dS c

dt
= Π1 − λS c − µS c,

dIc

dt
= λS c − µIc − δIc,

dRc

dt
= δIc − µRc, (3.1)

dS ν

dt
= Π2 − µνS ν −

β4S νIc

Nc
,

dIν
dt

=
β4S νIc

Nc
− µνIν,

dE
dt

= φIc − ωE,

with the following initial conditions:

S c(0) ≥ 0, Ic(0) ≥ 0,Rc(0) ≥ 0, S ν(0) ≥ 0, Iν(0) ≥ 0, E(0) ≥ 0,

where λ(t) =
β1Iν+β2E+β3Ic

Nc
.

Further, we are applying the F-F derivative in the C-F sense to the system (3.1), and then we get

FFE
0+D

σ1,σ2
t S c(t) = Π1 − λS c − µS c,
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FFE
0+D

σ1,σ2
t Ic(t) = λS c − µIc − δIc,

FFE
0+D

σ1,σ2
t Rc(t) = δIc − µRc, (3.2)

FFE
0+D

σ1,σ2
t S ν(t) = Π2 − µνS ν −

β4S νIc

Nc
,

FFE
0+D

σ1,σ2
t Iν(t) =

β4S νIc

Nc
− µνIν,

FFE
0+D

σ1,σ2
t E(t) = φIc − ωE.

3.1. Stability analysis

Now, we have calculated the fundamental reproduction number R0 for the LSD module (3.1) by
applying the method described in paper [37]. The matrices below are acquired to accomplish this:

V =


δ + µ 0 0

0 µν 0

−φ 0 ω


, F =


β3 β1 β2

β4Π2µ

Π1µν
0 0

0 0 0


.

Once we calculated the ρ(FV−1), then we obtain

R0 = R1 + R2 =
β2φ + β3ω

2ω(µ + δ)
+

√
(β2φ + β3ω)2

4ω2(µ + δ)2 +
µΠ2β1β4

µ2
νΠ1(µ + δ)

,

and

R?
1 =

β2φ + β3ω

ω(µ + δ)
, R?

2 =
µΠ2β1β4

µ2
νΠ1(µ + δ)

.

In the following examination of the model (3.1), R0 is obtained by adjusting the expressions R1 and R2.
Equilibrium points:

This subsection analyzes the potential equilibrium points of the LSD model (3.1), including a
disease-free equilibrium represented byW0. To find this equilibrium, follow these steps:

W0 =
(
S 0

c , I
0
c ,R

0
c , S

0
ν , I

0
ν , E

0
c

)
=

(
Π1

µ
, 0, 0,

Π2

µν
, 0, 0

)
.

The theorem below demonstrates the local asymptotic stability (LAS) of the LSD model (3.1) at the
equilibriumW0.

Theorem 3.1. The equilibrium pointW0 =
(
S 0

c , I
0
c ,R

0
c , S

0
ν , I

0
ν , E

0
c

)
of the LSD system is LAS, if R?

0 < 1.
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Proof. The Jacobian matrix is obtained using the equilibrium point W0 of the LSD system (3.1),

J(W0) =



µ −β3 0 0 −β1 −β2

0 −δ − µ + β3 0 0 β1 β2

0 δ −µ 0 0 0

0 −
µβ4Π2
Π1µν

0 −µν 0 0

0 µβ4Π2
Π1µν

0 0 −µε 0

0 φ 0 0 0 −ω



. (3.3)

Therefore, the J(W0) characteristic equation is as follows:

(λ̃ + µ)(λ̃ + µ)(λ̃ + µν)(λ̃3 + b1λ̃
2 + b2λ̃ + b3) = 0, (3.4)

where

b1 = µν + ω + (µ + δ)
(
1 −

β3

µ + δ

)
,

b2 = ω(µ + δ)(1 − R?
1 ) + µν(µ + δ)(1 − R?

2 ) + µν(ω − β3),
b3 = ωµν(µ + δ)(1 − R?

0 ),

where

R?
0 = R2

0 + 2R1(1 − R0).

We clearly see in characteristic equation (3.4) that the three eigenvalues are −µ,−µ, and −µν. The
cubic equation shows that for all related coefficients, bi > 0 for i = 1, 2, 3. Additionally, it is simple
to demonstrate that b1b2 − b3 > 0. Therefore, if R?

0 < 1, the LSD system (3.1) at the disease-free
equilibriumW0 is LAS. �

Theorem 3.2. The equilibrium point W0 =
(
S 0

c , I
0
c ,R

0
c , S

0
ν , I

0
ν , E

0
c

)
of the LSD system is GAS (global

asymptotically stability), if R?
0 < 1.

Proof. We created the Lyapunov function that is displayed below,

L(t) = a1

(
S c − S 0

c − S 0ln
S c

S 0
c

)
+ a2Ic + a3

(
S ν − S 0

ν − S 0ln
S ν

S 0
ν

)
+ a4Iν + a5E, (3.5)

where a1, a2, a3, a4, a5 are positive constants and differentiating the Eq (3.5), then we get

L′(t) = a1

(
1 −

S 0
c

S c

)
S
′

c + a2I
′

c + a3

(
1 −

S 0
ν

S ν

)
S
′

c + a4I
′

ν + a5E
′

. (3.6)
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With help of system (3.1) in Eq (3.6), we get

L′(t) =a1

(
1 −

S 0
c

S c

)
(Π1 − λS c − µS c) + a2 (λS c − µIc − δIc)

+ a3

(
1 −

S 0
ν

S ν

) (
Π2 − µνS ν −

β4S νIc

Nc

)
+ a4

(
β4S νIc

Nc
− µνIν

)
+ a5 (φIc − ωE) . (3.7)

Rearranging the above equation a few times, we obtain

L′(t) =a1

(
1 −

S 0
c

S c

)
(Π1 − µS c) − λa1S c + λa2S c + λa1S 0

c − a2 (µ + δ) Ic

+ a3

(
1 −

S 0
ν

S ν

)
(Π2 − µνS ν) − a3

β4S νIc

Nc
+ a3

β4S 0
ν Ic

Nc
+ a4

β4S νIc

Nc
− a4µνIν + a5 (φIc − ωE)

=a1µ

(
1 −

S 0
c

S c

) (
S 0

c − S c

)
+ a3µ

(
1 −

S 0
c

S c

) (
S 0

c − S c

)
+ λ (a2 − a1) S c

+ (a4 − a3)
β4S νIc

Nc
+

(
a1β3 +

a3β4Π2µ

µνΠ1
− a2(δ + µ) + a5φ

)
Ic

+ (a1β1 − a4µν) Iν + (a1β2 − a5ω) E.

Let a1 = µν, a2 = µν, a3 = β1, a4 = β1, a5 =
β2µν
ω

, then we obtain

L′(t) = −µνµ
(S c − S 0

c)2

S c
− β1µν

(S c − S 0
c)2

S c
+ µν(µ + δ)(R?

0 − 1)Ic.

It is evident that S c = 0, Ic = 0 and S ν = 0 if, and only if, L′(t) ≤ 0, if R?
0 < 1 and L′(t) = 0. It

appears that the outcomes are situated within the feasible region. Thus, the LSD system is GAS atW0,
if R?

0 < 1. �

4. Existence and uniqueness of the solution

Here, we provide the existence and uniqueness theorem for the LSD model. We now rewrite
system (3.2) using this structure, looking like this:

CF
0+D

σ1
t S c(t) = σ2tσ2−1 [G1(t, S c, Ic,Rc, S ν, Iν, E)] ,

CF
0+D

σ1
t Ic(t) = σ2tσ2−1 [G2(t, S c, Ic,Rc, S ν, Iν, E)] ,

CF
0+D

σ1
t Rc(t) = σ2tσ2−1 [G3(t, S c, Ic,Rc, S ν, Iν, E)] , (4.1)

CF
0+D

σ1
t S ν(t) = σ2tσ2−1 [G4(t, S c, Ic,Rc, S ν, Iν, E)] ,

CF
0+D

σ1
t Iν(t) = σ2tσ2−1 [G5(t, S c, Ic,Rc, S ν, Iν, E)] ,

CF
0+D

σ1
t E(t) = σ2tσ2−1 [G6(t, S c, Ic,Rc, S ν, Iν, E)] ,

where
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

G1(t, S c, Ic,Rc, S ν, Iν, E) = Π1 − λS c − µS c,

G2(t, S c, Ic,Rc, S ν, Iν, E) = λS c − µIc − δIc,

G3(t, S c, Ic,Rc, S ν, Iν, E) = δIc − µRc,

G4(t, S c, Ic,Rc, S ν, Iν, E) = Π2 − µνS ν −
β4S νIc

Nc
,

G5(t, S c, Ic,Rc, S ν, Iν, E) =
β4S νIc

Nc
− µνIν,

G6(t, S c, Ic,Rc, S ν, Iν, E) = φIc − ωE.

Further, we rewrite the system (4.1) as follows:

CF
0+D

σ1
t E(t) = σ2tσ2−1G(t,E(t)),
E(0) = E0.

(4.2)

We apply the F-F integral in the C-F sense, then we obtain

E(t) = E(0) +
σ2tσ2−1(1 − σ1)

M(σ1)
G(t,E(t)) +

σ1σ2

M(σ1)

∫ t

0
zσ2−1G(z,E(z))dz,

where

E(t) =



S c(t)
Ic(t)
Rc(t)
S ν(t)
Iν(t)
E(t)

, G(t,E(t)) =



G1(t, S c, Ic,Rc, S ν, Iν, E)
G2(t, S c, Ic,Rc, S ν, Iν, E)
G3(t, S c, Ic,Rc, S ν, Iν, E)
G4(t, S c, Ic,Rc, S ν, Iν, E)
G5(t, S c, Ic,Rc, S ν, Iν, E)
G6(t, S c, Ic,Rc, S ν, Iν, E)

.

We are applying the F-F integral in the C-F sense in the system (4.1), then we get

S c(t) =S c(0) +
σ2(1 − σ1)

M(σ1)
tσ2−1G1(t, S c, Ic,Rc, S ν, Iν, E)

+
σ1σ2

M(σ1)

∫ t

0
zσ2−1G1(z, S c, Ic,Rc, S ν, Iν, E)dz,

Ic(t) =Ic(0) +
σ2(1 − σ1)

M(σ1)
tσ2−1G2(t, S c, Ic,Rc, S ν, Iν, E)

+
σ1σ2

M(σ1)

∫ t

0
zσ2−1G2(z, S c, Ic,Rc, S ν, Iν, E)dz,

Rc(t) =Rc(0) +
σ2(1 − σ1)

M(σ1)
tσ2−1G3(t, S c, Ic,Rc, S ν, Iν, E)

+
σ1σ2

M(σ1)

∫ t

0
zσ2−1G3(z, S c, Ic,Rc, S ν, Iν, E)dz, (4.3)

S ν(t) =S ν(0) +
σ2(1 − σ1)

M(σ1)
tσ2−1G4(t, S c, Ic,Rc, S ν, Iν, E)
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+
σ1σ2

M(σ1)

∫ t

0
zσ2−1G4(z, S c, Ic,Rc, S ν, Iν, E)dz,

Iν(t) =Iν(0) +
σ2(1 − σ1)

M(σ1)
tσ2−1G5(t, S c, Ic,Rc, S ν, Iν, E)

+
σ1σ2

M(σ1)

∫ t

0
zσ2−1G5(z, S c, Ic,Rc, S ν, Iν, E)dz,

R(t) =R(0) +
σ2(1 − σ1)

M(σ1)
tσ2−1G6(t, S c, Ic,Rc, S ν, Iν, E)

+
σ1σ2

M(σ1)

∫ t

0
zσ2−1G6(z, S c, Ic,Rc, S ν, Iν, E)dz.

In this section, we examine the existence and uniqueness of the solution in the LSD model. To show
the proposed model’s existence and uniqueness solution, consider defining a Banach space as follows:
Θn = F[0,T] is the space of all functions S c, Ic,Rc, S ν, Iν, E, respectively, to n = 1, 2, 3, 4, 5, 6. Θn

generates a Banach space when provided with the norm ‖S c‖ = maxt∈[0,T] |S c(t)|, ‖Ic‖ = maxt∈[0,T] |Ic(t)|,
‖Rc‖ = maxt∈[0,T] |R(t)|, ‖S ν‖ = maxt∈[0,T] |S ν(t)|, ‖Iν‖ = maxt∈[0,T] |Iν(t)|, and ‖E‖ = maxt∈[0,T] |E(t)|,
respectively, to n = 1, 2, 3, 4, 5, 6. Consequently, the norm is applied in the product space as

‖(S c, Ic,Rc, S ν, Iν, E)‖ = ‖S c‖ + ‖Ic‖ + ‖Rc‖ + ‖S ν‖ + ‖Iν‖ + ‖E‖.

Banach spaces are defined as

Θ = (Θ1 × Θ2 × Θ3 × Θ4 × Θ5 × Θ6, ‖(S c, Ic,Rc, S ν, Iν, E)‖) .

Assuming the system (4.3), which defines the operator Ω : Θ→ Θ, we obtain

Ω(S c, Ic,Rc, S ν, Iν, E) =



Ω1(S c, Ic,Rc, S ν, Iν, E)(t)
Ω2(S c, Ic,Rc, S ν, Iν, E)(t)
Ω3(S c, Ic,Rc, S ν, Iν, E)(t)
Ω4(S c, Ic,Rc, S ν, Iν, E)(t)
Ω5(S c, Ic,Rc, S ν, Iν, E)(t)
Ω6(S c, Ic,Rc, S ν, Iν, E)(t)


, (4.4)

where

Ω1(S c, Ic,Rc, S ν, Iν, E)(t) =S c(0) +
σ2(1 − σ1)

M(σ1)
tσ2−1G1(t, S c, Ic,Rc, S ν, Iν, E)

+
σ1σ2

M(σ1)

∫ t

0
zσ2−1G1(z, S c, Ic,Rc, S ν, Iν, E)dz,

Ω2(S c, Ic,Rc, S ν, Iν, E)(t) =Ic(0) +
σ2(1 − σ1)

M(σ1)
tσ2−1G2(t, S c, Ic,Rc, S ν, Iν, E)

+
σ1σ2

M(σ1)

∫ t

0
zσ2−1G2(z, S c, Ic,Rc, S ν, Iν, E)dz,
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Ω3(S c, Ic,Rc, S ν, Iν, E)(t) =Rc(0) +
σ2(1 − σ1)

M(σ1)
tσ2−1G3(t, S c, Ic,Rc, S ν, Iν, E)

+
σ1σ2

M(σ1)

∫ t

0
zσ2−1G3(z, S c, Ic,Rc, S ν, Iν, E)dz, (4.5)

Ω4(S c, Ic,Rc, S ν, Iν, E)(t) =S ν(0) +
σ2(1 − σ1)

M(σ1)
tσ2−1G4(t, S c, Ic,Rc, S ν, Iν, E)

+
σ1σ2

M(σ1)

∫ t

0
zσ2−1G4(z, S c, Ic,Rc, S ν, Iν, E)dz,

Ω5(S c, Ic,Rc, S ν, Iν, E)(t) =Iν(0) +
σ2(1 − σ1)

M(σ1)
tσ2−1G5(t, S c, Ic,Rc, S ν, Iν, E)

+
σ1σ2

M(σ1)

∫ t

0
zσ2−1G5(z, S c, Ic,Rc, S ν, Iν, E)dz,

Ω6(S c, Ic,Rc, S ν, Iν, E)(t) =E(0) +
σ2(1 − σ1)

M(σ1)
tσ2−1G6(t, S c, Ic,Rc, S ν, Iν, E)

+
σ1σ2

M(σ1)

∫ t

0
zσ2−1G6(z, S c, Ic,Rc, S ν, Iν, E)dz.

Theorem 4.1. Let assume that Gr : J ×R6 → R are continuous functions and these constants are
P1,Gr , P2,Gr , ..., and P6,Gr > 0, such that ∀ S c, S̆ c, Ic, Ĭc, Rc, R̆c, S ν, S̆ ν, Iν, Ĭν, E, Ĕ ∈ Θ, where J =

[0,T] and r = 1, 2, 3, 4, 5, 6, then we get∥∥∥Gr(t, S c, Ic,Rc, S ν, Iν, E) − Gr(t, S̆ c, Ĭc, R̆c, S̆ ν, Ĭν, Ĕ)
∥∥∥ ≤P1,Gr

∥∥∥S c − S̆ c

∥∥∥ + P2,Gr

∥∥∥Ic − Ĭc

∥∥∥
+ P3,Gr

∥∥∥Rc − R̆c

∥∥∥ + P4,Gr

∥∥∥S ν − S̆ ν

∥∥∥
+ P5,Gr

∥∥∥Iν − Ĭν
∥∥∥ + P6,Gr

∥∥∥E − Ĕ
∥∥∥ .

If the condition ∆ΩΠG1 + ∆ΩΠG2 + ∆ΩΠG3 + ∆ΩΠG4 + ∆ΩΠG5 + ∆ΩΠG6 < 1 is fulfilled, then system (3.2)
has a unique solution, where

∆Ω =

{
σ2(1 − σ1)

M(σ1)
Tσ2−1 +

σ1T
σ2

M(σ1)

}
,

ΠG1 = P1,G1 + P2,G1 + P3,G1 + P4,G1 + P5,G1 + P6,G1 ,

ΠG2 = P1,G2 + P2,G2 + P3,G2 + P4,G2 + P5,G2 + P6,G2 ,

ΠG3 = P1,G3 + P2,G3 + P3,G3 + P4,G3 + P5,G3 + P6,G3 ,

ΠG4 = P1,G4 + P2,G4 + P3,G4 + P4,G4 + P5,G4 + P6,G4 ,

ΠG5 = P1,G5 + P2,G5 + P3,G5 + P4,G5 + P5,G5 + P6,G5 ,

ΠG6 = P1,G6 + P2,G6 + P3,G6 + P4,G6 + P5,G6 + P6,G6 .

Proof. We suppose that supt∈J G1(t, 0, 0, 0, 0, 0, 0) = ℵG1 < ∞, supt∈J G2(t, 0, 0, 0, 0, 0, 0) =

ℵG2 < ∞, supt∈J G3(t, 0, 0, 0, 0, 0, 0) = ℵG3 < ∞, supt∈J G4(t, 0, 0, 0, 0, 0, 0) = ℵG4 < ∞,
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supt∈J G5(t, 0, 0, 0, 0, 0, 0) = ℵG5 < ∞, and supt∈J G6(t, 0, 0, 0, 0, 0, 0) = ℵG6 < ∞. First,
we prove that Ω(Wκ) ⊂ Wκ and we assume that Wκ is a closed convex ball (i.e.,Wκ =

{(S c, Ic,Rc, S ν, Iν, E) ∈ Θ : ‖(S c, Ic,Rc, S ν, Iν, E)‖ ≤ κ}). We suppose that S c, Ic,Rc, S ν, Iν, E ∈ Wκ, and
we have

‖Ω1(S c, Ic,Rc, S ν, Iν, E)‖ ≤
σ2(1 − σ1)

M(σ1)
Tσ2−1 max

t∈J
(|G1(t, S c, Ic,Rc, S ν, Iν, E)

−G1(t, 0, 0, 0, 0, 0, 0)| + |G1(t, 0, 0, 0, 0, 0, 0)|)

+
σ1σ2

M(σ1)
max
t∈J

∫ t

0
zσ2−1 (|G1(z, S c, Ic,Rc, S ν, Iν, E)

−G1(z, 0, 0, 0, 0, 0, 0)| + |G1(z, 0, 0, 0, 0, 0, 0)|) dz

≤
σ2(1 − σ1)

M(σ1)
Tσ2−1 (

P1,G1‖S c‖ + P2,G1‖Ic‖

+P3,G1‖Rc‖ + P4,G1‖S ν‖ + P5,G1‖Iν‖ + P6,G1‖E‖ + ℵG1

)
+

σ1

M(σ1)
Tσ2

(
P1,G1‖S c‖ + P2,G1‖Ic‖

+P3,G1‖Rc‖ + P4,G1‖S ν‖ + P5,G1‖Iν‖ + P6,G1‖E‖ + ℵG1

)
≤ ∆ΩΠG1

(
κ

6
+ ℵG1

)
≤
κ

6
. (4.6)

In this process, we apply the same steps to another one, and then we will obtain the outcome.

‖Ω2(S c, Ic,Rc, S ν, Iν, E)‖ ≤
κ

6
,

‖Ω3(S c, Ic,Rc, S ν, Iν, E)‖ ≤
κ

6
,

‖Ω4(S c, Ic,Rc, S ν, Iν, E)‖ ≤
κ

6
, (4.7)

‖Ω5(S c, Ic,Rc, S ν, Iν, E)‖ ≤
κ

6
,

‖Ω6(S c, Ic,Rc, S ν, Iν, E)‖ ≤
κ

6
.

We use the Θ definition and Eqs (4.6) and (4.7), then we get

‖Ω(S c, Ic,Rc, S ν, Iν, E)‖ ≤ κ, (4.8)

and when (S c, Ic,Rc, S ν, Iν, E), (S̆ c, Ĭc, R̆c, S̆ ν, Ĭν, Ĕ) ∈ Θ, for each t ∈J , we get

‖Ω1(S c, Ic,Rc, S ν, Iν, E) −Ω1(S̆ c, Ĭc, R̆c, S̆ ν, Ĭν, Ĕ)‖

≤
σ2(1 − σ1)

M(σ1)
Tσ2−1 max

t∈J

(∣∣∣G1(t, S c, Ic,Rc, S ν, Iν, E) − G1(t, S̆ c, Ĭc, R̆c, S̆ ν, Ĭν, Ĕ)
∣∣∣)

+
σ1σ2

M(σ1)
max
t∈J

∫ t

0
zσ2−1

(∣∣∣G1(z, S c, Ic,Rc, S ν, Iν, E) − G1(z, S̆ c, Ĭc, R̆c, S̆ ν, Ĭν, Ĕ)
∣∣∣) dz
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≤ ∆ΩΠG1

∥∥∥(S c, Ic,Rc, S ν, Iν, E) − (S̆ c, Ĭc, R̆c, S̆ ν, Ĭν, Ĕ)
∥∥∥ . (4.9)

In this process, we apply the same steps to another one, and then we will obtain the outcome.

‖Ω2(S c, Ic,Rc, S ν, Iν, E) −Ω2(S̆ c, Ĭc, R̆c, S̆ ν, Ĭν, Ĕ)‖

≤ ∆ΩΠG2

∥∥∥(S c, Ic,Rc, S ν, Iν, E) − (S̆ c, Ĭc, R̆c, S̆ ν, Ĭν, Ĕ)
∥∥∥ ,

‖Ω3(S c, Ic,Rc, S ν, Iν, E) −Ω3(S̆ c, Ĭc, R̆c, S̆ ν, Ĭν, Ĕ)‖

≤ ∆ΩΠG3

∥∥∥(S c, Ic,Rc, S ν, Iν, E) − (S̆ c, Ĭc, R̆c, S̆ ν, Ĭν, Ĕ)
∥∥∥ ,

‖Ω4(S c, Ic,Rc, S ν, Iν, E) −Ω4(S̆ c, Ĭc, R̆c, S̆ ν, Ĭν, Ĕ)‖

≤ ∆ΩΠG4

∥∥∥(S c, Ic,Rc, S ν, Iν, E) − (S̆ c, Ĭc, R̆c, S̆ ν, Ĭν, Ĕ)
∥∥∥ , (4.10)

‖Ω5(S c, Ic,Rc, S ν, Iν, E) −Ω5(S̆ c, Ĭc, R̆c, S̆ ν, Ĭν, Ĕ)‖

≤ ∆ΩΠG5

∥∥∥(S c, Ic,Rc, S ν, Iν, E) − (S̆ c, Ĭc, R̆c, S̆ ν, Ĭν, Ĕ)
∥∥∥ ,

‖Ω6(S c, Ic,Rc, S ν, Iν, E) −Ω6(S̆ c, Ĭc, R̆c, S̆ ν, Ĭν, Ĕ)‖

≤ ∆ΩΠG6

∥∥∥(S c, Ic,Rc, S ν, Iν, E) − (S̆ c, Ĭc, R̆c, S̆ ν, Ĭν, Ĕ)
∥∥∥ .

Using Eqs (4.9) and (4.10), we get

‖Ω(S c, Ic,Rc, S ν, Iν, E) −Ω(S̆ c, Ĭc, R̆c, S̆ ν, Ĭν, Ĕ)‖
≤

(
∆ΩΠG1 + ∆ΩΠG2 + ∆ΩΠG3 + ∆ΩΠG4 + ∆ΩΠG5 + ∆ΩΠG6

)
×

∥∥∥(S c, Ic,Rc, S ν, Iν, E) − (S̆ c, Ĭc, R̆c, S̆ ν, Ĭν, Ĕ)
∥∥∥ . (4.11)

Since ∆ΩΠG1 + ∆ΩΠG2 + ∆ΩΠG3 + ∆ΩΠG4 + ∆ΩΠG5 + ∆ΩΠG6 < 1, then Ω(S c, Ic,Rc, S ν, Iν, E) is a
contraction operator. With the use of the Banach contraction theorem, Ω(S c, Ic,Rc, S ν, Iν, E) has a
unique fixed point. Hence, the proposed model (3.2) has a unique solution. �

Theorem 4.2. We suppose that Ψ1,Gr , Ψ2,Gr , Ψ3,Gr , Ψ4,Gr , Ψ5,Gr , Ψ6,Gr , Ψ7,Gr , (r = 1, 2, 3, 4, 5, 6) : J →

R+ such that ∀ S c, Ic,Rc, S ν, Iν, E ∈ Θ, and we get

|Gr(t, S c, Ic,Rc, S ν, Iν, E)| ≤Ψ1,Gr (t) + Ψ2,Gr (t) |S c(t)| + Ψ3,Gr (t) |Ic(t)| + Ψ4,Gr (t) |Rc(t)|
+ Ψ5,Gr (t) |S ν(t)| + Ψ6,Gr (t) |Iν(t)| + Ψ7,Gr (t) |E(t)| ,

with supt∈J Ψ1,Gr (t) = Ψ̃1,Gr , supt∈J Ψ2,Gr (t) = Ψ̃2,Gr , supt∈J Ψ3,Gr (t) = Ψ̃3,Gr , supt∈J Ψ4,Gr (t) = Ψ̃4,Gr ,

supt∈J Ψ5,Gr (t) = Ψ̃5,Gr , supt∈J Ψ6,Gr (t) = Ψ̃6,Gr , supt∈J Ψ7,Gr (t) = Ψ̃7,Gr and Ψ̃1,G1 , Ψ̃1,G2 , Ψ̃1,G3 , Ψ̃1,G4 ,

Ψ̃1,G5 , Ψ̃1,G6 > 0.
Other assumptions are ∆Ω

(
Ψ̃r,G1 + Ψ̃r,G2 + Ψ̃r,G3 + Ψ̃r,G4 + Ψ̃r,G5 + Ψ̃r,G6

)
< 1 where r = 2, 3, ..., 7,

and

∆0 = min
{
1 − ∆Ω

(
Ψ̃2,G1 + Ψ̃2,G2 + Ψ̃2,G3 + Ψ̃2,G4 + Ψ̃2,G5 + Ψ̃2,G6

)
1 − ∆Ω

(
Ψ̃3,G1 + Ψ̃3,G2 + Ψ̃3,G3 + Ψ̃3,G4 + Ψ̃3,G5 + Ψ̃3,G6

)
1 − ∆Ω

(
Ψ̃4,G1 + Ψ̃4,G2 + Ψ̃4,G3 + Ψ̃4,G4 + Ψ̃4,G5 + Ψ̃4,G6

)
1 − ∆Ω

(
Ψ̃5,G1 + Ψ̃5,G2 + Ψ̃5,G3 + Ψ̃5,G4 + Ψ̃5,G5 + Ψ̃5,G6

)
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1 − ∆Ω

(
Ψ̃6,G1 + Ψ̃6,G2 + Ψ̃6,G3 + Ψ̃6,G4 + Ψ̃6,G5 + Ψ̃6,G6

)
1 − ∆Ω

(
Ψ̃7,G1 + Ψ̃7,G2 + Ψ̃7,G3 + Ψ̃7,G4 + Ψ̃7,G5 + Ψ̃7,G6

)}
,

and the system (3.2) has at least one solution.

Proof. First, we suppose that Ω : Θ→ Θ is an operator and completely continuous. We can say that the
Ω operator is continuous becauseGr, (r = 1, 2, 3, 4, 5, 6) is continuous. Let C ⊆ Θ be a bounded set and
there is ∃ constants FGr > 0, such that maxt∈J |Gr(t, S c, Ic,Rc, S ν, Iν, E)| ≤ FGr ,∀ (S c, Ic,Rc, S ν, Iν, E)
∈ C. We have

‖Ω1(S c, Ic,Rc, S ν, Iν, E)‖ ≤
σ2(1 − σ1)

M(σ1)
Tσ2−1 max

t∈J
|G1(t, S c, Ic,Rc, S ν, Iν, E)|

+
σ1σ2

M(σ1)
max
t∈J

∫ t

0
zσ2−1 |G1(z, S c, Ic,Rc, S ν, Iν, E)| dz

≤ ∆ΩFG1 . (4.12)

In this process, we apply the same steps to another one, and then we will obtain the outcome.

‖Ω2(S c, Ic,Rc, S ν, Iν, E)‖ ≤ ∆ΩFG2 ,

‖Ω3(S c, Ic,Rc, S ν, Iν, E)‖ ≤ ∆ΩFG3 ,

‖Ω4(S c, Ic,Rc, S ν, Iν, E)‖ ≤ ∆ΩFG4 , (4.13)
‖Ω5(S c, Ic,Rc, S ν, Iν, E)‖ ≤ ∆ΩFG5 ,

‖Ω6(S c, Ic,Rc, S ν, Iν, E)‖ ≤ ∆ΩFG6 .

We proved that Ω(S c, Ic,Rc, S ν, Iν, E) is uniformly bounded with the use of Eqs (4.12) and (4.13).
Now, we show that Ω is equi-continuous. First, we suppose that 0 ≤ t1 ≤ t2 ≤ T, therefore

‖Ω1(S c, Ic,Rc, S ν, Iν, E)(t2) −Ω1(S c, Ic,Rc, S ν, Iν, E)(t1)‖

≤

[∣∣∣∣∣σ2(1 − σ1)
M(σ1)

(
t2
σ2−1 − t1

σ2−1
)
× {G1(t2, S c, Ic,Rc, S ν, Iν, E)

− G1(t1, S c, Ic,Rc, S ν, Iν, E)}| +
∣∣∣∣∣σ1FG1

M(σ1)

(
t2
σ2−1 − t1

σ2−1
)∣∣∣∣∣] −→ 0 when t2 −→ t1. (4.14)

In this process, we apply the same steps to another one, and then we will obtain the outcome.

‖Ω2(S c, Ic,Rc, S ν, Iν, E)(t2) −Ω2(S c, Ic,Rc, S ν, Iν, E)(t1)‖

≤

[∣∣∣∣∣σ2(1 − σ1)
M(σ1)

(
t2
σ2−1 − t1

σ2−1
)
× {G2(t2, S c, Ic,Rc, S ν, Iν, E)

− G2(t1, S c, Ic,Rc, S ν, Iν, E)}| +
∣∣∣∣∣σ1FG2

M(σ1)

(
t2
σ2−1 − t1

σ2−1
)∣∣∣∣∣]

−→ 0 when t2 −→ t1. (4.15)

‖Ω3(S c, Ic,Rc, S ν, Iν, E)(t2) −Ω3(S c, Ic,Rc, S ν, Iν, E)(t1)‖
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≤

[∣∣∣∣∣σ2(1 − σ1)
M(σ1)

(
t2
σ2−1 − t1

σ2−1
)
× {G3(t2, S c, Ic,Rc, S ν, Iν, E)

− G3(t1, S c, Ic,Rc, S ν, Iν, E)}| +
∣∣∣∣∣σ1FG3

M(σ1)

(
t2
σ2−1 − t1

σ2−1
)∣∣∣∣∣]

−→ 0 when t2 −→ t1. (4.16)

‖Ω4(S c, Ic,Rc, S ν, Iν, E)(t2) −Ω4(S c, Ic,Rc, S ν, Iν, E)(t1)‖

≤

[∣∣∣∣∣σ2(1 − σ1)
M(σ1)

(
t2
σ2−1 − t1

σ2−1
)
× {G4(t2, S c, Ic,Rc, S ν, Iν, E)

− G4(t1, S c, Ic,Rc, S ν, Iν, E)}| +
∣∣∣∣∣σ1FG4

M(σ1)

(
t2
σ2−1 − t1

σ2−1
)∣∣∣∣∣]

−→ 0 when t2 −→ t1. (4.17)

‖Ω5(S c, Ic,Rc, S ν, Iν, E)(t2) −Ω5(S c, Ic,Rc, S ν, Iν, E)(t1)‖

≤

[∣∣∣∣∣σ2(1 − σ1)
M(σ1)

(
t2
σ2−1 − t1

σ2−1
)
× {G5(t2, S c, Ic,Rc, S ν, Iν, E)

− G5(t1, S c, Ic,Rc, S ν, Iν, E)}| +

∣∣∣∣∣∣σ1FG5

M(σ1)

(
t2
σ2−1 − t1

σ2−1
)∣∣∣∣∣∣
]

−→ 0 when t2 −→ t1. (4.18)

‖Ω6(S c, Ic,Rc, S ν, Iν, E)(t2) −Ω6(S c, Ic,Rc, S ν, Iν, E)(t1)‖

≤

[∣∣∣∣∣σ2(1 − σ1)
M(σ1)

(
t2
σ2−1 − t1

σ2−1
)
× {G6(t2, S c, Ic,Rc, S ν, Iν, E)

− G6(t1, S c, Ic,Rc, S ν, Iν, E)}| +

∣∣∣∣∣∣σ1FG6

M(σ1)

(
t2
σ2−1 − t1

σ2−1
)∣∣∣∣∣∣
]

−→ 0 when t2 −→ t1. (4.19)

Thus, Ω(S c, Ic,Rc, S ν, Iν, E) is equi-continuous. Therefore, Ω(S c, Ic,Rc, S ν, Iν, E) is completely
continuous. Now, we prove that

C = {(S c, Ic,Rc, S ν, Iν, E) ∈ Θ : (S c, Ic,Rc, S ν, Iν, E) = %Ω(S c, Ic,Rc, S ν, Iν, E), % ∈ [0, 1]}

is bounded. Let (S c, Ic,Rc, S ν, Iν, E) ∈ C, then (S c, Ic,Rc, S ν, Iν, E) = %Ω(S c, Ic,Rc, S ν, Iν, E).
When t ∈J , then S c(t) = %Ω1(S c, Ic,Rc, S ν, Iν, E)(t), Ic(t) = %Ω2(S c, Ic,Rc, S ν, Iν, E)(t), Rc(t) =

%Ω3(S c, Ic,Rc, S ν, Iν, E)(t), S ν(t) = %Ω4(S c, Ic,Rc, S ν, Iν, E)(t), Iν(t) = %Ω5(S c, Ic,Rc, S ν, Iν, E)(t), and
E(t) = %Ω6(S c, Ic,Rc, S ν, Iν, E)(t). Then,

|S c(t)| ≤
[
σ2(1 − σ1)

M(σ1)
Tσ2−1 +

σ1T
σ2

M(σ1)

] (
Ψ1,G1(t) + Ψ2,G1(t) |S c(t)| + Ψ3,G1(t) |Ic(t)|

+Ψ4,G1(t) |Rc(t)| + Ψ5,G1(t) |S ν(t)| + Ψ6,G1(t) |Iν(t)| + Ψ7,G1(t) |E(t)|
)
. (4.20)
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Simplifying Eq (4.20), we have

‖S c‖ ≤∆Ω

(
Ψ̃1,G1 + Ψ̃2,G1 ‖S c‖ + Ψ̃3,G1 ‖Ic‖

+Ψ̃4,G1 ‖Rc‖ + Ψ̃5,G1 ‖S ν‖ + Ψ̃6,G1 ‖Iν‖ + Ψ̃7,G1 ‖E‖
)
. (4.21)

In this process, we apply the same steps to another one, and then we will obtain the outcome.

‖Ic‖ ≤∆Ω

(
Ψ̃1,G2 + Ψ̃2,G2 ‖S c‖ + Ψ̃3,G2 ‖Ic‖

+Ψ̃4,G2 ‖Rc‖ + Ψ̃5,G2 ‖S ν‖ + Ψ̃6,G2 ‖Iν‖ + Ψ̃7,G2 ‖E‖
)
,

‖Rc‖ ≤∆Ω

(
Ψ̃1,G3 + Ψ̃2,G3 ‖S c‖ + Ψ̃3,G3 ‖Ic‖

+Ψ̃4,G3 ‖Rc‖ + Ψ̃5,G3 ‖S ν‖ + Ψ̃6,G3 ‖Iν‖ + Ψ̃7,G3 ‖E‖
)
,

‖S ν‖ ≤∆Ω

(
Ψ̃1,G4 + Ψ̃2,G4 ‖S c‖ + Ψ̃3,G4 ‖Ic‖

+Ψ̃4,G4 ‖Rc‖ + Ψ̃5,G4 ‖S ν‖ + Ψ̃6,G4 ‖Iν‖ + Ψ̃7,G4 ‖E‖
)
, (4.22)

‖Iν‖ ≤∆Ω

(
Ψ̃1,G5 + Ψ̃2,G5 ‖S c‖ + Ψ̃3,G5 ‖Ic‖

+Ψ̃4,G5 ‖Rc‖ + Ψ̃5,G5 ‖S ν‖ + Ψ̃6,G5 ‖Iν‖ + Ψ̃7,G5 ‖E‖
)
,

‖E‖ ≤∆Ω

(
Ψ̃1,G6 + Ψ̃2,G6 ‖S c‖ + Ψ̃3,G6 ‖Ic‖

+Ψ̃4,G6 ‖Rc‖ + Ψ̃5,G6 ‖S ν‖ + Ψ̃6,G6 ‖Iν‖ + Ψ̃7,G6 ‖E‖
)
.

Now, we add the Eqs (4.21) and (4.22), then we get

‖S c‖ + ‖Ic‖ + ‖Rc‖ + ‖S ν‖ + ‖Iν‖ + ‖E‖

≤∆Ω

(
Ψ̃1,G1 + Ψ̃1,G2 + Ψ̃1,G3 + Ψ̃1,G4 + Ψ̃1,G5 + Ψ̃1,G6

)
+ ∆Ω

(
Ψ̃2,G1 + Ψ̃2,G2 + Ψ̃2,G3 + Ψ̃2,G4 + Ψ̃2,G5 + Ψ̃2,G6

)
‖S c‖

+ ∆Ω

(
Ψ̃3,G1 + Ψ̃3,G2 + Ψ̃3,G3 + Ψ̃3,G4 + Ψ̃3,G5 + Ψ̃3,G6

)
‖Ic‖

+ ∆Ω

(
Ψ̃4,G1 + Ψ̃4,G2 + Ψ̃4,G3 + Ψ̃4,G4 + Ψ̃4,G5 + Ψ̃4,G6

)
‖Rc‖

+ ∆Ω

(
Ψ̃5,G1 + Ψ̃5,G2 + Ψ̃5,G3 + Ψ̃5,G4 + Ψ̃5,G5 + Ψ̃5,G6

)
‖S ν‖

+ ∆Ω

(
Ψ̃6,G1 + Ψ̃6,G2 + Ψ̃6,G3 + Ψ̃6,G4 + Ψ̃6,G5 + Ψ̃6,G6

)
‖Iν‖

+ ∆Ω

(
Ψ̃7,G1 + Ψ̃7,G2 + Ψ̃7,G3 + Ψ̃7,G4 + Ψ̃7,G5 + Ψ̃7,G6

)
‖E‖ . (4.23)

Thus, we obtain

‖S c, Ic,Rc, S ν, Iν, E‖ ≤
∆Ω

(
Ψ̃1,G1 + Ψ̃1,G2 + Ψ̃1,G3 + Ψ̃1,G4 + Ψ̃1,G5 + Ψ̃1,G6

)
∆0

.

Hence, C is bounded. Ω has at least one fixed point by the Theorem 2.1, therefore the proposed
model (3.2) has a solution. �
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4.1. Ulam-Hyer stability condtion

In this section, we establish stability conditions for the LSD model. Let κ(t) be a perturbed
parameter,

(i) |κ(t)| ≤ ε, for ε > 0,
(ii) FFE

0+D
σ1,σ2
t E(t) = G(t,E(t)) + κ(t).

Theorem 4.3. [36] If the following condition holds, Q < 1, where Q =
(
σ2(1−σ1)Tσ2−1

M(σ1) + σ2T
σ1

M(σ1)

)
NG, and

with use of systems (4.1), (4.2), and Lemma 2.1, then Ulam-Hyers stability exists for the solution of the
proposed model.

Proof. We have demonstrated that the LSD model has a unique solution. Let E ∈ Θ be a solution and
Ē ∈ Θ be a unique solution of the system (3.2). We have∣∣∣E(t) − Ē(t)

∣∣∣ =

∣∣∣∣∣∣E(t) −
{

¯E(0) +
(
G(t, Ē(t)) − G0(t)

) σ2(1 − σ1)
M(σ1)

tσ2−1 +
σ1σ2

M(σ1)

∫ t

0
zσ2−1G(z, Ē(z))dz

}∣∣∣∣∣∣
≤

∣∣∣∣∣∣E(t) −
{
E(0) + (G(t,E(t)) − G0(t))

σ2(1 − σ1)
M(σ1)

tσ2−1 +
σ1σ2

M(σ1)

∫ t

0
zσ2−1G(z,E(z))dz

}∣∣∣∣∣∣
+

∣∣∣∣∣∣
{
E(0) + (G(t,E(t)) − G0(t))

σ2(1 − σ1)
M(σ1)

tσ2−1 +
σ1σ2

M(σ1)

∫ t

0
zσ2−1G(z,E(z))dz

}∣∣∣∣∣∣
−

∣∣∣∣∣∣
{
Ē(0) +

(
G(t, Ē(t)) − G0(t)

) σ2(1 − σ1)
M(σ1)

tσ2−1 +
σ1σ2

M(σ1)

∫ t

0
zσ2−1G(z, Ē(z))dz

}∣∣∣∣∣∣
≤ iσ1,σ2 +

σ2(1 − σ1)Tσ2−1NG
M(σ1)

∥∥∥E − Ē∥∥∥ +
σ2T

σ1NG
M(σ1)

∥∥∥E − Ē∥∥∥
≤ iσ1,σ2 + Q

∥∥∥E − Ē∥∥∥ .
Based on the result mentioned above, we have∥∥∥E − Ē∥∥∥ ≤ iσ1,σ2

1 − Q

∥∥∥E − Ē∥∥∥ .
We can conclude that the system’s solution is stable. So, the proof is finished. �

5. Numerical schemes

Dealing with nonlinearity in a biological model using fractional derivatives is challenging.
Researchers have recently developed some novel numerical algorithms to solve biological models.
These numerical methods play a significant role in determining the numerical solution to our problem.
This process is essential to dealing with nonlinearity in our models.

5.1. Numerical scheme with fractal fractional in C-F sense

The LSD model in terms of F-F in the sense of C-F. Consequently, the numerical technique in the
context of C-F is with the following structure:

CF
0+D

σ1
t S c(t) = σ2tσ2−1 [G1(t, S c, Ic,Rc, S ν, Iν, E)] ,
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CF
0+D

σ1
t Ic(t) = σ2tσ2−1 [G2(t, S c, Ic,Rc, S ν, Iν, E)] ,

CF
0+D

σ1
t Rc(t) = σ2tσ2−1 [G3(t, S c, Ic,Rc, S ν, Iν, E)] , (5.1)

CF
0+D

σ1
t S ν(t) = σ2tσ2−1 [G4(t, S c, Ic,Rc, S ν, Iν, E)] ,

CF
0+D

σ1
t Iν(t) = σ2tσ2−1 [G5(t, S c, Ic,Rc, S ν, Iν, E)] ,

CF
0+D

σ1
t E(t) = σ2tσ2−1 [G6(t, S c, Ic,Rc, S ν, Iν, E)] .

We apply the C-F integral in system (5.1), then we get

S c(t) − S c(0) =
σ2tσ2−1(1 − σ1)

M(σ1)
G1(t, S c, Ic,Rc, S ν, Iν, E)

+
σ1σ2

M(σ1)

∫ t

0
zσ2−1G1(z, S c, Ic,Rc, S ν, Iν, E)dz,

Ic(t) − Ic(0) =
σ2tσ2−1(1 − σ1)

M(σ1)
G2(t, S c, Ic,Rc, S ν, Iν, E)

+
σ1σ2

M(σ1)

∫ t

0
zσ2−1G2(z, S c, Ic,Rc, S ν, Iν, E)dz,

Rc(t) − Rc(0) =
σ2tσ2−1(1 − σ1)

M(σ1)
G3(t, S c, Ic,Rc, S ν, Iν, E)

+
σ1σ2

M(σ1)

∫ t

0
zσ2−1G3(z, S c, Ic,Rc, S ν, Iν, E)dz, (5.2)

S ν(t) − S ν(0) =
σ2tσ2−1(1 − σ1)

M(σ1)
G4(t, S c, Ic,Rc, S ν, Iν, E)

+
σ1σ2

M(σ1)

∫ t

0
zσ2−1G4(z, S c, Ic,Rc, S ν, Iν, E)dz,

Iν(t) − Iν(0) =
σ2tσ2−1(1 − σ1)

M(σ1)
G5(t, S c, Ic,Rc, S ν, Iν, E)

+
σ1σ2

M(σ1)

∫ t

0
zσ2−1G5(z, S c, Ic,Rc, S ν, Iν, E)dz,

E(t) − E(0) =
σ2tσ2−1(1 − σ1)

M(σ1)
G6(t, S c, Ic,Rc, S ν, Iν, E)

+
σ1σ2

M(σ1)

∫ t

0
zσ2−1G6(z, S c, Ic,Rc, S ν, Iν, E)dz.

Initially, we merely solve the system (5.2) first equation. After that, other equations also follow similar
analogous processes to the first equation.

S c(t) − S c(0) =
σ2tσ2−1(1 − σ1)

M(σ1)
G1(t, S c, Ic,Rc, S ν, Iν, E)
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+
σ1σ2

M(σ1)

∫ t

0
zσ2−1G1(z, S c, Ic,Rc, S ν, Iν, E)dz. (5.3)

We put t = tn+1 in Eq (5.3), then we get

S c(tn+1) − S c(0) =
σ2tσ2−1

n (1 − σ1)
M(σ1)

G1(tn, S n
c , I

n
c ,R

n
c , S

n
ν , I

n
ν , E

n)

+
σ1σ2

M(σ1)

∫ tn+1

0
zσ2−1G1(z, S c, Ic,Rc, S ν, Iν, E)dz. (5.4)

Now, we simplified Eq (5.4), and we get

S c(tn+1) =S c(0) +
σ2tσ2−1

n (1 − σ1)
M(σ1)

G1(tn, S n
c , I

n
c ,R

n
c , S

n
ν , I

n
ν , E

n)

−
σ2tσ2−1

n−1 (1 − σ1)
M(σ1)

G1(tn−1, S n−1
c , In−1

c ,Rn−1
c , S n−1

ν , In−1
ν , En−1)

+
σ1σ2

M(σ1)

∫ tn+1

tn
zσ2−1G1(z, S c, Ic,Rc, S ν, Iν, E)dz. (5.5)

The following outcome is obtained using the Lagrange polynomial concept:

S c(tn+1) =S c(0) +
σ2tσ2−1

n (1 − σ1)
M(σ1)

G1(tn, S n
c , I

n
c ,R

n
c , S

n
ν , I

n
ν , E

n)

−
σ2tσ2−1

n−1 (1 − σ1)
M(σ1)

G1(tn−1, S n−1
c , In−1

c ,Rn−1
c , S n−1

ν , In−1
ν , En−1)

+
σ1σ2h
M(σ1)

[
3tσ2−1

n

2
G1(tn, S n

c , I
n
c ,R

n
c , S

n
ν , I

n
ν , E

n)

−
tσ2−1
n−1

2
G1(tn−1, S n−1

c , In−1
c ,Rn−1

c , S n−1
ν , In−1

ν , En−1)

 . (5.6)

Further, we simplify the Eq (5.6), then we get

S n+1
c =S c(tn+1)

=S c(0) + σ2tσ2−1
n

(
1 − σ1

M(σ1)
+

3σ1h
2M(σ1)

)
G1(tn, S n

c , I
n
c ,R

n
c , S

n
ν , I

n
ν , E

n)

− σ2tσ2−1
n−1

(
1 − σ1

M(σ1)
+

σ1h
2M(σ1)

)
G1(tn−1, S n−1

c , In−1
c ,Rn−1

c , S n−1
ν , In−1

ν , En−1). (5.7)

The previous similar process applies to other equations, then we get

In+1
c =Ic(tn+1)

=Ic(0) + σ2tσ2−1
n

(
1 − σ1

M(σ1)
+

3σ1h
2M(σ1)

)
G2(tn, S n

c , I
n
c ,R

n
c , S

n
ν , I

n
ν , E

n)

− σ2tσ2−1
n−1

(
1 − σ1

M(σ1)
+

σ1h
2M(σ1)

)
G2(tn−1, S n−1

c , In−1
c ,Rn−1

c , S n−1
ν , In−1

ν , En−1),
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Rn+1
c =Rc(tn+1)

=Rc(0) + σ2tσ2−1
n

(
1 − σ1

M(σ1)
+

3σ1h
2M(σ1)

)
G3(tn, S n

c , I
n
c ,R

n
c , S

n
ν , I

n
ν , E

n)

− σ2tσ2−1
n−1

(
1 − σ1

M(σ1)
+

σ1h
2M(σ1)

)
G3(tn−1, S n−1

c , In−1
c ,Rn−1

c , S n−1
ν , In−1

ν , En−1),

S n+1
ν =S ν(tn+1)

=S ν(0) + σ2tσ2−1
n

(
1 − σ1

M(σ1)
+

3σ1h
2M(σ1)

)
G4(tn, S n

c , I
n
c ,R

n
c , S

n
ν , I

n
ν , E

n)

− σ2tσ2−1
n−1

(
1 − σ1

M(σ1)
+

σ1h
2M(σ1)

)
G4(tn−1, S n−1

c , In−1
c ,Rn−1

c , S n−1
ν , In−1

ν , En−1), (5.8)

In+1
ν = Iν(tn+1)

= Iν(0) + σ2tσ2−1
n

(
1 − σ1

M(σ1)
+

3σ1h
2M(σ1)

)
G5(tn, S n

c , I
n
c ,R

n
c , S

n
ν , I

n
ν , E

n)

− σ2tσ2−1
n−1

(
1 − σ1

M(σ1)
+

σ1h
2M(σ1)

)
G5(tn−1, S n−1

c , In−1
c ,Rn−1

c , S n−1
ν , In−1

ν , En−1),

En+1 = E(tn+1)

= E(0) + σ2tσ2−1
n

(
1 − σ1

M(σ1)
+

3σ1h
2M(σ1)

)
G6(tn, S n

c , I
n
c ,R

n
c , S

n
ν , I

n
ν , E

n)

− σ2tσ2−1
n−1

(
1 − σ1

M(σ1)
+

σ1h
2M(σ1)

)
G6(tn−1, S n−1

c , In−1
c ,Rn−1

c , S n−1
ν , In−1

ν , En−1).

5.2. Numerical scheme with fractal fractional in Caputo sense

We begin with a power-law scenario and use numerical techniques based on the proposed model.

FFP
0+D

σ1,σ2
t S c(t) = Π1 − λS c − µS c,

FFP
0+D

σ1,σ2
t Ic(t) = λS c − µIc − δIc,

FFP
0+D

σ1,σ2
t Rc(t) = δIc − µRc, (5.9)

FFP
0+D

σ1,σ2
t S ν(t) = Π2 − µνS ν −

β4S νIc

Nc
,

FFP
0+D

σ1,σ2
t Iν(t) =

β4S νIc

Nc
− µνIν,

FFP
0+D

σ1,σ2
t E(t) = φIc − ωE.

To express the LSD model before implementing the scheme, we employ the RL notion of Volterra
representation [38],

FFP
0+D

σ1,σ2
t E(t) =

1
Γ(1 − σ1)

d
dt

∫ t

0

(t − z)−σ1

σ2tσ2−1 E(z)dz.
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The fractional order system is under consideration, with the following results shown:

RL
0+D

σ1
t S c(t) = σ2tσ2−1 [G1(t, S c, Ic,Rc, S ν, Iν, E)] ,

RL
0+D

σ1
t Ic(t) = σ2tσ2−1 [G2(t, S c, Ic,Rc, S ν, Iν, E)] ,

RL
0+D

σ1
t Rc(t) = σ2tσ2−1 [G3(t, S c, Ic,Rc, S ν, Iν, E)] , (5.10)

RL
0+D

σ1
t S ν(t) = σ2tσ2−1 [G4(t, S c, Ic,Rc, S ν, Iν, E)] ,

RL
0+D

σ1
t Iν(t) = σ2tσ2−1 [G5(t, S c, Ic,Rc, S ν, Iν, E)] ,

RL
0+D

σ1
t E(t) = σ2tσ2−1 [G6(t, S c, Ic,Rc, S ν, Iν, E)] ,

where

G1(t, S c, Ic,Rc, S ν, Iν, E) = Π1 − λS c − µS c,

G2(t, S c, Ic,Rc, S ν, Iν, E) = λS c − µIc − δIc,

G3(t, S c, Ic,Rc, S ν, Iν, E) = δIc − µRc,

G4(t, S c, Ic,Rc, S ν, Iν, E) = Π2 − µνS ν −
β4S νIc

Nc
, (5.11)

G5(t, S c, Ic,Rc, S ν, Iν, E) =
β4S νIc

Nc
− µνIν,

G6(t, S c, Ic,Rc, S ν, Iν, E) = φIc − ωE.

The F-F LSD model is numerically forged by applying the RL fractional integral to the system (5.10),
which yields the following results:

S c(t) − S c(0) =
σ2

Γ(σ1)

∫ t

0
zσ2−1(t − z)σ1−1G1(z, S c, Ic,Rc, S ν, Iν, E)dz,

Ic(t) − Ic(0) =
σ2

Γ(σ1)

∫ t

0
zσ2−1(t − z)σ1−1G2(z, S c, Ic,Rc, S ν, Iν, E)dz,

Rc(t) − Rc(0) =
σ2

Γ(σ1)

∫ t

0
zσ2−1(t − z)σ1−1G3(z, S c, Ic,Rc, S ν, Iν, E)dz, (5.12)

S ν(t) − S ν(0) =
σ2

Γ(σ1)

∫ t

0
zσ2−1(t − z)σ1−1G4(z, S c, Ic,Rc, S ν, Iν, E)dz,

Iν(t) − Iν(0) =
σ2

Γ(σ1)

∫ t

0
zσ2−1(t − z)σ1−1G5(z, S c, Ic,Rc, S ν, Iν, E)dz,

E(t) − E(0) =
σ2

Γ(σ1)

∫ t

0
zσ2−1(t − z)σ1−1G6(z, S c, Ic,Rc, S ν, Iν, E)dz.

Initially, we merely solve the system (5.12) first equation. After that, other equations also follow
similar analogous processes to the first equation.

S c(t) − S c(0) =
σ2

Γ(σ1)

∫ t

0
zσ2−1(t − z)σ1−1G1(z, S c, Ic,Rc, S ν, Iν, E)dz. (5.13)

Put t = tn+1 in Eq (5.13), then we get

S c(tn+1) − S c(0) =
σ2

Γ(σ1)

∫ tn+1

0
zσ2−1(tn+1 − z)σ1−1G1(z, S c, Ic,Rc, S ν, Iν, E)dz. (5.14)
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We simplify the Eq (5.14), and we have

S c(tn+1) = S c(0) +
σ2

Γ(σ1)

n∑
r=0

∫ tr+1

tr
zσ2−1(tn+1 − z)σ1−1G1(z, S c, Ic,Rc, S ν, Iν, E)dz, (5.15)

with the help of the Lagrangian interpolation technique for finding the approximate function
zσ2−1G1(z, S c, Ic,Rc, S ν, Iν, E) in the interval [tr, tr+1] into Eq (5.15), then we get

A 1
r (z) =

z − tr−1

tr − tr−1
tσ2−1
r G1(tr, S rc, I

r
c,R

r
c, S

r
ν, I
r
ν, E

r)

−
z − tr

tr − tr−1
tσ2−1
r−1 G1(tr−1, S r−1

c , Ir−1
c ,Rr−1

c , S r−1
ν , Ir−1

ν , Er−1). (5.16)

We apply Eq (5.16) into Eq (5.15), then we get

S n+1
c = S c(tn+1) = S c(0) +

σ2

Γ(σ1)

n∑
r=0

∫ tr+1

tr
zσ2−1(tn+1 − z)σ1−1A 1

r (z)dz, (5.17)

Eq (5.17) can be solved further to produce the following results,

S n+1
c =S c(0) +

hσ1σ2

Γ(σ1 + 2)

n∑
r=1

[
tσ2−1
r G1(tr, S rc, I

r
c,R

r
c, S

r
ν, I
r
ν, E

r)an,r (5.18)

−tσ2−1
r−1 G1(tr−1, S r−1

c , Ir−1
c ,Rr−1

c , S r−1
ν , Ir−1

ν , Er−1)bn,r
]
,

where

an,r = [(n − r + 1)σ1(n − r + σ1 + 2) − (n − r)σ1(n − r + 2σ1 + 2)] ,

bn,r =
[
(n − r + 1)σ1+1 − (n − r)σ1(n − r + σ1 + 1)

]
,

n = 0, 1, 2, ...,N, and r = 1, 2, 3, ..., n.
The previous similar process applies to other equations, then we get

In+1
c =Ic(0) +

hσ1σ2

Γ(σ1 + 2)

n∑
r=1

[
tσ2−1
r G2(tr, S rc, I

r
c,R

r
c, S

r
ν, I
r
ν, E

r)an,r

−tσ2−1
r−1 G2(tr−1, S r−1

c , Ir−1
c ,Rr−1

c , S r−1
ν , Ir−1

ν , Er−1)bn,r
]
,

Rn+1
c =Rc(0) +

hσ1σ2

Γ(σ1 + 2)

n∑
r=1

[
tσ2−1
r G3(tr, S rc, I

r
c,R

r
c, S

r
ν, I
r
ν, E

r)an,r

−tσ2−1
r−1 G3(tr−1, S r−1

c , Ir−1
c ,Rr−1

c , S r−1
ν , Ir−1

ν , Er−1)bn,r
]
,

S n+1
ν =S ν(0) +

hσ1σ2

Γ(σ1 + 2)

n∑
r=1

[
tσ2−1
r G4(tr, S rc, I

r
c,R

r
c, S

r
ν, I
r
ν, E

r)an,r

−tσ2−1
r−1 G4(tr−1, S r−1

c , Ir−1
c ,Rr−1

c , S r−1
ν , Ir−1

ν , Er−1)bn,r
]
, (5.19)

In+1
ν =Iν(0) +

hσ1σ2

Γ(σ1 + 2)

n∑
r=1

[
tσ2−1
r G5(tr, S rc, I

r
c,R

r
c, S

r
ν, I
r
ν, E

r)an,r
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−tσ2−1
r−1 G5(tr−1, S r−1

c , Ir−1
c ,Rr−1

c , S r−1
ν , Ir−1

ν , Er−1)bn,r
]
,

En+1 =E(0) +
hσ1σ2

Γ(σ1 + 2)

n∑
r=1

[
tσ2−1
r G6(tr, S rc, I

r
c,R

r
c, S

r
ν, I
r
ν, E

r)an,r

−tσ2−1
r−1 G6(tr−1, S r−1

c , Ir−1
c ,Rr−1

c , S r−1
ν , Ir−1

ν , Er−1)bn,r
]
.

6. Numerical simulation and result discussion

The integral and differential operators with an exponential kernel and a power law kernel are used
instead of classical operators. The F-F derivative has been used to analyze and describe the revised
LSD model, improving its understanding of qualitative and numerical components. To demonstrate
the effectiveness of the suggested strategy, simulations have been performed using MATLAB [39].
The Adam-Bashborth scheme has been used to calculate the numerical solution for the proposed
LSD model. The effectiveness and applicability of this technique have been established through the
numerical solution of the LSD model using the F-F derivative. The parameter values and initial
conditions used for simulation are derived as follows: S c(0) = 5000, Rc(0) = 0, Ic(0) = 50,
S v(0) = 10000, E(0) = 500, Iv(0) = 100, Π1 = 0.8, δ = 0.008, µ = 1

6×365 , Π2 = 0.1, β1 = 0.030013,
µv = 0.004, β2 = 0.1010, β3 = 0.01120, β4 = 0.03, ω = 0.001013, and φ = 0.001.

Table 1 represents a source of the parameters and stationary variables. Consideration has been given
to significant factors and how they can contribute to the control of diseases. Figures 2 and 3 show the
time series plot of the LSD model (3.2) at different fractional orders σ1 and fixed fractal dimensions
σ2 = 1 using the F-F C-F operator. These graphs show a better understanding about the behavior of the
proposed LSD model compared to the classical derivative. Figures 4 and 5 show the time series plot of
the LSD model (3.2) at different fractal dimensions σ2 and fixed fractional orders σ1 = 1 using the F-F
C-F operator. Figures 6 and 7 exhibit other time series diagrams of the LSD model (3.2) at different
fractional orders σ1 and fractal dimensions σ2 using the F-F Caputo operator. Figures 2 through 5
demonstrate the numerical simulation of the proposed model, considering fractional order variations.
It is important to reduce the vector to manage the infection in the cattle population, as the contact
between the vector and cattle can further promote the spread of the virus in the community. Our data
shows that reducing the fractional order number has led to a decrease in the population of infected
classes. Furthermore, we have also investigated the effect of some parameters on the population
of the LSD model such that we analyzed the effect of parameters in Figure 8 to Figure 15 in the
susceptible cattle S c, infected cattle Ic, recovered cattle Rc, susceptible insects S v, infected insects Iv,
and contaminated environment E populations. Figures 8 and 9 depict the population behavior of the
LSD model at different parameter values δ when σ1, σ2 = 0.99. Figures 10 and 11 show the population
behavior of the LSD model at different parameter values β1 when σ1, σ2 = 0.99. To illustrate this,
Figures 10 and 11 demonstrate the dynamics of lumpy skin conditions with various β1 values taken
into account. To prevent the disease from spreading to other animals, it is important to make efforts to
eliminate the mosquitoes, flies, and other ticks that cause the disease in cattle. As shown in Figure 10,
reducing the value of β1 (spraying on flies, mosquitoes, and ticks) has helped reduce the population of
infected classes. Similarly, by lowering the value of β1 (as shown in Figure 11), it is possible to reduce
the infection in the environment and the infected vector. LSD, a disease that affects farm animals,
is primarily spread through the bites of flies, mosquitoes, and ticks. To safeguard cattle, it is crucial
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to develop and execute an integrated insect control plan. This plan should include comprehensive
measures to disrupt the breeding cycle of stable flies and mosquitoes at every stage of their life cycle.
Tick control measures should also be taken into account. Figures 12 and 13 depict the population
behavior of the LSD model at different parameter values β2 when σ1, σ2 = 0.99. Figures 12 and 13
show how the dynamics of the LSD vary with different values of the parameter β2. This disease has
spread among animals because of viral pollution in the atmosphere. To reduce the infection rate among
cattle, it’s essential to decrease the level of contamination in their surroundings, such as factors and
other areas they come into contact with. Proper environmental management can help achieve this by
reducing the number of insect breeding grounds and roosting places. To prevent mosquito breeding,
ensure that there is no standing water in containers and check that drains are not obstructed. You can
also use techniques like residual spraying and fogging to prevent the use of adulthood. It’s important
to maintain documentation of chemical and mosquito control measures. Figures 14 and 15 describe
the population behavior of the LSD model at different parameter values β3 when σ1, σ2 = 0.98.
Figures 14 and 15 illustrate the changes in LSD dynamics because of the β3 variant. The transmission
of this disease directly from cattle to cattle is a significant threat to our cattle population. As we can
observe from the figures, reducing the value of β3 is crucial in minimizing the spread of the infected
compartments.

Table 1. Source.

Parameters Source
S c(t) [37]
Ic(t) [37]
Rc(t) [37]
S v(t) [37]
Iv(t) [37]
E(t) [37]
Π1 [37]
µ [37]
δ [37]
Π2 [37]
µv [37]
β1 [37]
β2 [37]
β3 [37]
β4 [37]
φ [37]
ω [37]
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Figure 2. Time series plot for LSD model (3.2) with F-F C-F operator at varying fractional
order σ1 and fixed fractal dimensional σ2 = 1.

AIMS Mathematics Volume 9, Issue 8, 22941–22985.



22969

0 50 100 150

Time(t)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

S
v
(t
)

σ1 = 1
σ1 = 0.95
σ1 = 0.90
σ1 = 0.85
σ1 = 0.80

22 24 26 28
8000

8500

(a) Plot for susceptible insects S v.

0 50 100 150

Time(t)

0

1000

2000

3000

4000

5000

6000

I
v
(t
)

σ1 = 1
σ1 = 0.95
σ1 = 0.90
σ1 = 0.85
σ1 = 0.80

115 120

4800

5000

5200

(b) Plot for infected insects Iv.

0 50 100 150

Time(t)

450

500

550

600

650

700

750

800

E
(t
)

σ1 = 1
σ1 = 0.95
σ1 = 0.90
σ1 = 0.85
σ1 = 0.80

35 40
505
510
515
520
525

(c) Plot for contaminated environment E.

Figure 3. Time series plot for LSD model (3.2) with F-F C-F operator at varying fractional
order σ1 and fixed fractal dimensional σ2 = 1.
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Figure 4. Time series plot for LSD model (3.2) with F-F C-F operator at varying fractal
dimensional σ2 and fixed fractional order σ1 = 1.
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Figure 5. Time series plot for LSD model (3.2) with F-F C-F operator at varying fractal
dimensional σ2 and fixed fractional order σ1 = 1.
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Figure 6. Time series plot for LSD model (3.2) with F-F C-F operator at varying fractional
order σ1 and fractal dimensional σ2.
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Figure 7. Time series plot for LSD model (3.2) with F-F Caputo operator at varying
fractional order σ1 and fractal dimensional σ2.
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Figure 8. Time series plot for LSD model (5.9) with F-F Caputo operator at varying recovery
rate of the infected cattle δ when σ1 = 0.99 and σ2 = 0.99.
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Figure 9. Time series plot for LSD model (5.9) with F-F Caputo operator at varying recovery
rate of the infected cattle δ when σ1 = 0.99 and σ2 = 0.99.
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Figure 10. Time series plot for LSD model (5.9) with F-F Caputo operator at varying
parameter β1 when σ1 = 0.99 and σ2 = 0.99.
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Figure 11. Time series plot for LSD model (5.9) with F-F Caputo operator at varying
parameter β1 when σ1 = 0.99 and σ2 = 0.99.
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Figure 12. Time series plot for LSD model (5.9) with F-F Caputo operator at varying
parameter β2 when σ1 = 0.99 and σ2 = 0.99.
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Figure 13. Time series plot for LSD model (5.9) with F-F Caputo operator at varying
parameter β2 when σ1 = 0.99 and σ2 = 0.99.
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Figure 14. Time series plot for LSD model (5.9) with F-F Caputo operator at varying
parameter β3 when σ1 = 0.98 and σ2 = 0.98.
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Figure 15. Time series plot for LSD model (5.9) with F-F Caputo operator at varying
parameter β2 when σ3 = 0.98 and σ2 = 0.98.

7. Conclusions

In this research, we examine a fascinating mathematical model to examine the dynamics of the
cattle population. The LSD model predominantly affects the cattle animal population more than the
human population. We have identified the crucial pathway of transmission of LSD in cattle in the
model. The primary routes of disease transmission from the environment are direct transmission
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from healthy cattle to diseased cattle and illness contracted from susceptible cattle through vectors.
To establish the existence and uniqueness of the disease model, we used fixed point theory and its
fundamentals. For the proposed model, we have the numerical results with the help of the fractal
fractional operator. After considering sensitive parameters essential for treating diseases and factors
such as βi, i = 1, 2, 3, graphical results are produced. An arbitrary-order model is capable of displaying
more complex nonlinear dynamics. By examining the graphical representations of such models, we
can observe the impact of derivative order and parameters on arbitrary-order LSD systems. Based
on the graphical analysis, cattle-to-cattle, environmental, and reducing vector transmission can help
effectively manage the spread of infection within the cattle herd. We found that sanitizing and washing
the surroundings created by human foot traffic and moving vehicles can stop the virus from spreading
across the community. In the future we will focus on analyzing the delay and Hopf bifurcation of the
LSD system as well. It can provide valuable insights for future exploration and implementation of the
proposed system.
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