Our focus in this study was on examining the convergence problem of a novel method, inspired by the Ulm-Chebyshev-like Cayley transform method, which was designed to solve the inverse eigenvalue problems (IEPs) with multiple eigenvalues. Compared with other existing methods, the proposed method has higher convergence order and/or requires less operations. Under the assumption that the relative generalized Jacobian matrices at a solution are nonsingular, the proposed method was proved to be convergent with cubic convergence. Experimental findings demonstrated the practicality and efficiency of the suggested approaches.
Citation: Wei Ma, Zhenhao Li, Yuxin Zhang. A two-step Ulm-Chebyshev-like Cayley transform method for inverse eigenvalue problems with multiple eigenvalues[J]. AIMS Mathematics, 2024, 9(8): 22986-23011. doi: 10.3934/math.20241117
Our focus in this study was on examining the convergence problem of a novel method, inspired by the Ulm-Chebyshev-like Cayley transform method, which was designed to solve the inverse eigenvalue problems (IEPs) with multiple eigenvalues. Compared with other existing methods, the proposed method has higher convergence order and/or requires less operations. Under the assumption that the relative generalized Jacobian matrices at a solution are nonsingular, the proposed method was proved to be convergent with cubic convergence. Experimental findings demonstrated the practicality and efficiency of the suggested approaches.
[1] | F. Diele, T. Laudadio, N. Mastronardi, On some inverse eigenvalue problems with Toeplitz-related structure, SIAM J. Matrix Anal. Appl., 26 (2004), 285–294. https://doi.org/10.1137/S0895479803430680 doi: 10.1137/S0895479803430680 |
[2] | J. Peinado, A. M. Vidal, A new parallel approach to the Toeplitz inverse eigenproblem using Newton-like methods, In: Vector and parallel processing–VECPAR 2000, Springer, 2001. https://doi.org/10.1007/3-540-44942-6_29 |
[3] | W. F. Trench, Numerical solution of the inverse eigenvalue problem for real symmetric Toeplitz matrices, SIAM J. Sci. Comput., 18 (1997), 1722–1736. https://doi.org/10.1137/S1064827595280673 doi: 10.1137/S1064827595280673 |
[4] | N. Wagner, Inverse eigenvalue problems in structural dynamics, Proc. Appl. Math. Mech., 6 (2006), 339–340. https://doi.org/10.1002/pamm.200610151 doi: 10.1002/pamm.200610151 |
[5] | P. J. Brussard, P. W. M. Glaudemans, Shell model applications in nuclear spectroscopy, North-Holland, 1977. |
[6] | M. S. Ravi, J. Rosenthal, X. A. Wang, On decentralized dynamic pole placement and feedback stabilization, IEEE Trans. Automat. Control, 40 (1995), 1603–1614. https://doi.org/10.1109/9.412629 doi: 10.1109/9.412629 |
[7] | O. Hald, On discrete and numerical Sturm-Liouville problems, New York University, 1972. |
[8] | G. M. L. Gladwell, Inverse problems in vibration, Appl. Mech. Rev., 39 (1986), 1013–1018. https://doi.org/10.1115/1.3149517 doi: 10.1115/1.3149517 |
[9] | G. M. L. Gladwell, Inverse problems in vibration-Ⅱ, Appl. Mech. Rev., 49 (1996), S25–S34. https://doi.org/10.1115/1.3101973 doi: 10.1115/1.3101973 |
[10] | K. T. Joseph, Inverse eigenvalue problem in structural design, AIAA J., 30 (1992), 2890–2896. https://doi.org/10.2514/3.11634 doi: 10.2514/3.11634 |
[11] | R. L. Parker, K. A. Whaler, Numerical methods for establishing solutions to the inverse problem of electromagnetic induction, J. Geophys. Res., 86 (1981), 9574–9584. https://doi.org/10.1029/JB086iB10p09574 doi: 10.1029/JB086iB10p09574 |
[12] | N. Li, A matrix inverse eigenvalue problem and its application, Linear Algebra Appl., 266 (1997), 143–152. https://doi.org/10.1016/S0024-3795(96)00639-8 doi: 10.1016/S0024-3795(96)00639-8 |
[13] | M. Müller, An inverse eigenvalue problem: computing B-stable Runge-Kutta methods having real poles, BIT Numer. Math., 32 (1992), 676–688. https://doi.org/10.1007/BF01994850 doi: 10.1007/BF01994850 |
[14] | S. Elhay, Y. M. Ram, An affine inverse eigenvalue problem, Inverse Problems, 18 (2002), 455. https://doi.org/10.1088/0266-5611/18/2/311 doi: 10.1088/0266-5611/18/2/311 |
[15] | M. T. Chu, Inverse eigenvalue problems, SIAM Rev., 40 (1998), 1–39. https://doi.org/10.1137/S0036144596303984 doi: 10.1137/S0036144596303984 |
[16] | M. T. Chu, G. H. Golub, Structured inverse eigenvalue problems, Acta Numer., 11 (2002), 1–71. https://doi.org/10.1017/S0962492902000016 doi: 10.1017/S0962492902000016 |
[17] | M. T. Chu, G. H. Golub, Inverse eigenvalue problems: theory, algorithms, and applications, Oxford: Oxford University Press, 2005. https://doi.org/10.1093/acprof:oso/9780198566649.001.0001 |
[18] | S. F. Xu, An introduction to inverse algebric eigenvalue problems, Beijing: Peking University Press, 1998. |
[19] | Z. J. Bai, Inexact Newton methods for inverse eigenvalue problems, Appl. Math. Comput., 172 (2006), 682–689. https://doi.org/10.1016/j.amc.2004.11.023 doi: 10.1016/j.amc.2004.11.023 |
[20] | V. N. Kublanovskaja, On one approach to the solution of the inverse eigenvalue problem, In: Automatic programming and numerical methods of analysis, Springer, 1972, 80–86. https://doi.org/10.1007/978-1-4615-8588-6_10 |
[21] | Y. Wang, W. Shen, An extended two-step method for inverse eigenvalue problems with multiple eigenvalues, Numer. Math. Theor. Methods Appl., 16 (2023), 968–992. |
[22] | S. Friedland, J. Nocedal, M. L. Overton, The formulation and analysis of numerical methods for inverse eigenvalue problems, SIAM. J. Numer. Anal., 24 (1987), 634–667. https://doi.org/10.1137/0724043 doi: 10.1137/0724043 |
[23] | Z. J. Bai, R. H. Chan, B. Morini, An inexact Cayley transform method for inverse eigenvalue problems, Inverse Problems, 20 (2004), 1675. https://doi.org/10.1088/0266-5611/20/5/022 doi: 10.1088/0266-5611/20/5/022 |
[24] | R. H. Chan, S. F. Xu, H. M. Zhou, On the convergence rate of a quasi-Newton method for inverse eigenvalue problems, SIAM J. Numer. Anal., 36 (1999), 436–441. https://doi.org/10.1137/S0036142997327051 doi: 10.1137/S0036142997327051 |
[25] | R. H. Chan, H. L. Chung, S. F. Xu, The inexact Newton-like method for inverse eigenvalue problem, BIT Numer. Math., 43 (2003), 7–20. https://doi.org/10.1023/a:1023611931016 doi: 10.1023/a:1023611931016 |
[26] | W. P. Shen, C. Li, X. Q. Jin, A Ulm-like method for inverse eigenvalue problems, Appl. Numer. Math., 61 (2011), 356–367. https://doi.org/10.1016/j.apnum.2010.11.001 doi: 10.1016/j.apnum.2010.11.001 |
[27] | W. P. Shen, C. Li, An Ulm-like Cayley transform method for inverse eigenvalue problems, Taiwanese J. Math., 16 (2012), 367–386. https://doi.org/10.11650/twjm/1500406546 doi: 10.11650/twjm/1500406546 |
[28] | X. S. Chen, C. T. Wen, H. W. Sun, Two-step Newton-type methods for solving inverse eigenvalue problems, Numer. Linear Algebra Appl., 25 (2018), e2185. https://doi.org/10.1002/nla.2185 doi: 10.1002/nla.2185 |
[29] | C. T. Wen, X. S. Chen, H. W. Sun, A two-step inexact Newton-Chebyshev-like method for inverse eigenvalue problems, Linear Algebra Appl., 585 (2020), 241–262. https://doi.org/10.1016/j.laa.2019.10.004 doi: 10.1016/j.laa.2019.10.004 |
[30] | W. Ma, Two-step Ulm-Chebyshev-like Cayley transform method for inverse eigenvalue problems, Int. J. Comput. Math., 99 (2022), 391–406. https://doi.org/10.1080/00207160.2021.1913728 doi: 10.1080/00207160.2021.1913728 |
[31] | G. H. Golub, C. F. Van Loan, Matrix computations, 3 Eds., Johns Hopkins University Press, 1996. |
[32] | L. Q. Qi, Convergence analysis of some algorithms for solving nonsmooth equations, Math. Oper. Res., 18 (1993), 227–244. https://doi.org/10.1287/moor.18.1.227 doi: 10.1287/moor.18.1.227 |
[33] | F. A. Potra, L. Q. Qi, D. F. Sun, Secant methods for semismooth equations, Numer. Math., 80 (1998), 305–324. https://doi.org/10.1007/s002110050369 doi: 10.1007/s002110050369 |
[34] | D. F. Sun, J. Sun, Strong semismoothness of eigenvalues of symmetric matrices and its application to inverse eigenvalue problems, SIAM J. Numer. Anal., 40 (2003), 2352–2367. https://doi.org/10.1137/s0036142901393814 doi: 10.1137/s0036142901393814 |
[35] | W. P. Shen, C. Li, X. Q. Jin, An inexact Cayley transform method for inverse eigenvalue problems with multiple eigenvalues, Inverse Problems, 31 (2015), 085007. https://doi.org/10.1088/0266-5611/31/8/085007 doi: 10.1088/0266-5611/31/8/085007 |
[36] | W. P. Shen, C. Li, X. Q. Jin, An Ulm-like Cayley transform method for inverse eigenvalue problems with multiple eigenvalues, Numer. Math. Theor. Methods Appl., 9 (2016), 664–685. https://doi.org/10.4208/nmtma.2016.y15030 doi: 10.4208/nmtma.2016.y15030 |
[37] | R. W. Freund, N. M. Nachtigal, QMR: a quasi-minimal residual method for non-Hermitian linear systems, Numer. Math., 60 (1991), 315–339. https://doi.org/10.1007/BF01385726 doi: 10.1007/BF01385726 |