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1. Introduction

Let A0, A1, . . . , An be n + 1 real symmetric n-by-n matrices. For any c = (c1, c2, . . . , cn)T ∈ Rn such
that the eigenvalues {λi(A(c))}ni=1 of the matrices

A(c) ≡ A0 +

n∑
i=1

ciAi (1.1)

with the order λ1(A(c)) ≤ λ2(A(c)) ≤ · · · ≤ λn(A(c)). In this note, the inverse eigenvalue problem (IEP)
defined here is, for the given n real numbers {λ∗i }

n
i=1 with the order λ∗1 ≤ λ

∗
2 ≤ · · · ≤ λ

∗
n, to find a vector

c∗ ∈ Rn such that
λi(A(c∗)) = λ∗i , i = 1, . . . , n. (1.2)
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The IEP is utilized in a wide range of fields including the inverse Toeplitz eigenvalue problem [1–3],
structural dynamics [4], molecular spectroscopy [5], the pole assignment problem [6], the inverse
Sturm-Liouville problem [7], and also problems in mechanics applications [8, 9], structural integrity
assessments [10], geophysical studies [11], particle physics research [12], numerical analysis [13], and
dynamics systems [14]. For further insights into the diverse practical uses, underlying mathematical
principles, and computational techniques of general IEPs, readers may consult the comprehensive
review articles [15, 16] and the relevant literature [17, 18].

The IEP (1.2) can be represented mathematically through a set of non-linear equations:

f(c) := (λ1(A(c)) − λ∗1, λ2(A(c)) − λ∗2, . . . , λn(A(c)) − λ∗n)T = 0. (1.3)

In situations where the given eigenvalues are distinct, i.e.,

λ∗1 < λ
∗
2 < · · · < λ

∗
n. (1.4)

Newton’s method can be applied to nonlinear equation (1.3) with (1.4). However, as noted
in [19–21], Newton’s method has the following two disadvantages: (i) It requires computing the exact
eigenvectors at each iteration; (ii) It requires solving a Jacobian equation at each iteration. These two
facts make it inefficient from the point of numerical computations especially when the problem size n
is large. Thus, a focus was placed on avoiding on the disadvantages: (i) The Newton-like method was
proposed in [22, 23] which computed the approximate eigenvectors instead of the exact eigenvectors.
The quadratic convergence rate of this type of Newton-like method was re-proved in [24]. To alleviate
the over-solving problem, Chen et al. proposed in [25] an inexact Newton-like method, which stopped
the inner iterations before convergence. (ii) Shen et al. proposed in [26, 27] an Ulm-type method,
which avoided solving approximate Jacobian equation at each outer iteration and hence could reduce
the instability problem caused by the possible ill-conditioning in solving an approximate Jacobian
equation.

Note that all of the methods mentioned above are quadratically convergent. In order to speed up
the convergence rate of the methods, Chen et al. [28] proposed a super quadratic convergent two-step
Newton-type method where the approximate Jacobian equations are solved by inexact methods. In
view of this difficulty, Wen et al. proposed, in [29], a two-step inexact Newton-Chebyshev-like method
with cubic root-convergence rate, in which the approximate eigenvectors were obtained by applying
the one-step inverse power method and avoided solving the approximate Jacobian equations by using
the Chebyshev method to approach the inverse of the Jacobian matrix. In 2022, Wei Ma designed
a two-step Ulm-Chebyshev-like Cayley transform method [30] which utilized a Cayley transform to
find the approximate eigenvectors. However, the convergence analysis for the above methods became
ineffective in the absence of distinct eigenvalues, due to the breakdown of f ′s differentiability and the
eigenvectors’ continuity for multiple eigenvalues [22]. When multiple eigenvalues are present, all of
the numerical methods in the mentioned references above are quadratic convergent, which extends to
the case of multiples.

In this paper, motivated by [30], we propose a two-step Ulm-Chebyshev-like Cayley transform
method for solving the IEP (1.2). Further exploration involves analyzing the performance of the newly
introduced two-step Ulm-Chebyshev-like method in the presence of multiple eigenvalues. Under the
assumption similar to the one used in a previous study, by the Rayleigh quotient as an approximate
eigenvalue of the symmetric matrix and the estimates of eigenvalues, eigenvectors, and the relative
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generalized Jacobian, we show that the proposed method is still cubically convergent. Numerical
experiments show the efficiency of our method and comparisons with some known methods are made.

The structure of this paper is as follows. We give some notations and preliminary results of the
relative generalized Jacobian and some useful lemmas in Section 2. A novel method, the two-step
Ulm-Chebyshev-like Cayley transform approach, is introduced in Section 3 and our main convergence
theorems are established for the new method in Section 4. Experimental results are presented in the
final section.

2. Preliminaries

Let n be a positive integer. Let Rn represent an n-dimensional Euclidean space, S be a subset
of Rn, and clS represent the closure of S . Usually, we use B(x, δ1) to represent the empty sphere of Rn

center x ∈ Rn and radius δ1 > 0. Let ∥ · ∥ and ∥ · ∥F represent the Euclidean vector norms or their
corresponding induced matrix norms and Frobenius norms, respectively. I is the identity matrix of
appropriate dimensions. Then, by (2.3.7) in [31], we have

∥A∥ ≤ ∥A∥F ≤
√

n∥A∥, for each A ∈ Rn.

We define

K = 6β2∥λ∗∥, N = (n2 − t2) max
i∈[1,n−1]

1
λ∗i+1 − λ

∗
i
, H1 =

8n
3
2 ξβρ0 max

1≤ j≤n
∥A j∥

1 −
(
δ
τ

)2 , (2.1)

C = max
{
2 + 2β + 12Nβ∥λ∗∥, 2N max

1≤ j≤n
∥A j∥

}
, ρ = max{2

√
n(2β + β2 + 2NK +

1
2
βC), 3

√
nC}, (2.2)

α1 = 8n
3
2βρ0 max

1≤ j≤n
∥A j∥, γ =

K
1 − H1δ

, α2 = 1 + 8n
3
2γKρ2

0, (2.3)

α3 = ρ(α2 + 4nρ2
0), α4 = α3 + ρ0α2, α6 = 1 + 2γα1,

α5 = 6
√

nβ2
(√

n max
1≤ j≤n
∥A j∥ + K

√
n + ∥λ∗∥

)
α2

3,

α7 = 2γα5 + α2α6, δ2 = min
{
ϵ0,

1
ρ
,

1
β

}
, (2.4)

τ = min
{
1,

1
α7
,

√
nρ0

ρ3(α7 + α
2
3)
,

1
(1 + 2γα1)3 ,

2
H1

}
(2.5)

and

0 < δ = min
{
µ, δ0, δ2,

τ

2
,

δ2

2
√

nρ0
,
δ2

α2
,
δ2

α3
,
δ2

α7
,

1
γα1

}
, (2.6)

where δ0 and ρ0 are defined in Lemma 2.1, β and ϵ0 are defined in Lemma 2.2, and λ∗ is defined in (2.9).

AIMS Mathematics Volume 9, Issue 8, 22986–23011.



22989

2.1. Relative generalized Jacobian

A locally Lipschitz continuous function h : Rn → Rm is considered. The Jacobian of h, denoted
as h′, whenever it exists, and Dh represents the set of differentiable points of h. Moreover, the B-
differential Jacobian of h at x ∈ Rn is denoted according to [32].

∂Bh(x) :=
{
U ∈ Rm×n

∣∣∣U = lim
xk→x

h′(xk), xk ∈ Dh
}
.

Considering the composite nonsmooth function h := φ ◦ ψ, in which φ : Rt → Rm is nonsmooth
and ψ : Rn → Rt is continuously differentiable, the generalized Jacobian ∂Qh(x) [33] and relative
generalized Jacobian ∂Q|S h(x) [34] are respectively defined by

∂Qh(x) := ∂B(φ(ψ(x)))ψ′(x)

and
∂Q|S h(x) :=

{
U |U is a limit o f Ui ∈ ∂Qh(yi), yi ∈ S , yi → x

}
.

For c ∈ Rn, write
Λ(c) := diag(λ1(c), ..., λn(c)),

and define
Q(c) := {Q(c)|Q(c)T Q(c) = I and Q(c)T A(c)Q(c) = Λ(c)}. (2.7)

By (1.3) and the concept of a generalized Jacobian to f , we have [34]

∂Qf(c) = {J|[J]i j = qi(c)T A jqi(c), where [q1(c), ...,qn(c)] ∈ Q(c)}.

In particular, if J(c) is a singleton, we write ∂Qf(c) = {J(c)}. Let

S := {c ∈ Rn|A(c) has distinct eigenvalues}.

Then, let c ∈ S and f be continuously differentiable at c. Moreover,

∂Qf(c) = {J(c)} = {f′(c)}.

Thus, we get the following relative generalized Jacobian [34]:

∂Q|S f(c) = {J|J = lim
k→+∞

J(yk) with {yk} ⊂ S and yk → c}.

2.2. Preliminary results

Throughout this paper, let the given eigenvalues {λ∗i }
n
i=1 satisfy λ∗1 ≤ λ

∗
2 ≤ · · · ≤ λ

∗
n. For simplicity,

without loss of generality, we assume that

λ∗1 = λ
∗
2 = · · · = λ

∗
t < λ

∗
t+1 < · · · · · · < λ

∗
n, (2.8)

where 1 ≤ t ≤ n. Write

Λ∗ = diag
(
λ∗1, λ

∗
2, ..., λ

∗
n
)

and λ∗ =
(
λ∗1, λ

∗
2, ..., λ

∗
n
)T . (2.9)
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Then a solution of the IEP (1.2) can be written by c∗ and Q(c∗) as

Q(c∗)T A(c∗)Q(c∗) = Λ∗, (2.10)

where Q(c∗) is an orthogonal matrix. Recall that Q(c) can be defined by (2.7). Let Q(c) ∈ Q(c) and
write Q(c)=[Q(1)(c),Q(2)(c)] in which Q(1)(c) ∈ Rn×t and Q(2)(c) ∈ Rn×(n−t). Let c∗ be the solution of the
IEPs with (2.8). Define

Π = Q(1)(c∗)Q(1)(c∗)T .

Clearly, Π is the eigenprojection of A(c∗) for λ∗1 in (2.8). Given an orthogonal matrix P = [P(1), P(2)],
where P(1) ∈ Rn×t and P(2) ∈ Rn×(n−t), we obtain the QR factorization of ΠP(1) by

ΠP(1) = Q̃(1)(c∗)R, (2.11)

where R is a t× t nonsingular upper triangular matrix and Q̃(1)(c∗) is an n× t matrix whose columns are
orthonormal. Let

Q̃(c∗) :=
[
Q̃(1)(c∗),Q(2)(c∗)

]
. (2.12)

Obviously, Q̃(c∗) ∈ Q(c∗). Moreover, we define the error matrix

E := [P(1) − ΠP(1), P(2) − Q(2)(c∗)].

Now, we state the following two lemmas, which are usefull for our proof.

Lemma 2.1. [35, 36] Let c∗ ∈ Rn and the eigenvalues of the matrix A(c∗) satisfy (2.8). Then, there
exist two positive numbers δ0 and ρ0 such that, for each c ∈ B(c∗, δ0) and [Q(1)(c), Q(2)(c)] ∈ Q(c),
we get

∥A(c) − A(c∗)∥ ⩽ max
1≤ j≤n
∥A j∥∥c − c∗∥,

∥Λ(c) − Λ∗∥ ⩽ ρ0∥c − c∗∥,

∥Q(2)(c) − Q(2)(c∗)∥ ⩽ ρ0∥c − c∗∥

and
∥(I − Π)Q(1)(c)∥ ⩽ ρ0∥c − c∗∥.

Lemma 2.2. There exist two positive numbers ϵ0 and β such that, for any orthogonal matrix P =
[P(1), P(2)], if ∥E∥ = ∥P(1)−ΠP(1), P(2)−Q(2)(c∗)∥ ≤ ϵ0 and the skew-symmetric matrix X defined by eX =

PT Q̃(c∗) , then we get
∥X∥F ⩽ β ∥E∥ and ∥X(11)∥F ⩽ β ∥E∥2, (2.13)

in which X(11) is the t-by-t leading block of X. Moreover, if ∥X∥F < 1, then∥∥∥∥∥ ∞∑
l=2

Xl−2

l!

∥∥∥∥∥
F
≤ 1,

∥∥∥∥∥ ∞∑
l=2

(−X)l−2

l!

∥∥∥∥∥
F
≤ 1,

∥∥∥∥∥ ∞∑
l=1

(−X)l−1

l!

∥∥∥∥∥
F
≤ 2, and

∥∥∥∥∥ ∞∑
l=0

(−X)l

l!

∥∥∥∥∥
F
≤ 3. (2.14)

Proof. (2.13) can be found in [22, 35, 36]. Noting that

∞∑
l=2

1
l!
≤

∞∑
l=2

1
l(l − 1)

= 1.
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If ∥X∥F ≤ 1, we get ∥∥∥∥∥∥∥
∞∑

l=2

Xl−2

l!

∥∥∥∥∥∥∥
F

≤ 1 and

∥∥∥∥∥∥∥
∞∑

l=2

(−X)l−2

l!

∥∥∥∥∥∥∥
F

≤ 1,

which implies that ∥∥∥∥∥∥∥
∞∑

l=1

(−X)l−1

l!

∥∥∥∥∥∥∥
F

≤ 2 and

∥∥∥∥∥∥∥
∞∑

l=0

(−X)l

l!

∥∥∥∥∥∥∥
F

≤ 3.

3. The two-step Ulm-Chebyshev-like Cayley transform method

We first recall the given eigenvalues in (2.8). Suppose that Pk is the current estimate of Q(c∗) and Yk

is a skew-symmetric matrix, i.e., YT
k = −Yk. Let us write Q(c∗) = PkeYk . Then, by using the Taylor

series of the exponential function, we can express (2.10) as

PT
k A(c∗)Pk = eYkΛ∗e−Yk =

(
I + Yk +

1
2

Y2
k + · · ·

)
Λ∗

(
1 − Yk +

1
2

Y2
k + · · ·

)
.

The vector ck is updated as ck+1 by neglecting the second–order term of the above equality in Yk as

PT
k A(ck+1)Pk = Λ

∗ + YkΛ
∗ − Λ∗Yk. (3.1)

We obtain ck+1 by equating the diagonal elements in (3.1) as

Jkck+1 = λ∗ − bk,

in which, Jk and bk are defined by

[Jk]i j = (pk
i )

T A jpk
i , 1 ≤ i, j ≤ n and [b]k

i = (pk
i )

T A0pk
i , 1 ≤ i ≤ n.

On the other hand, equating the off-diagonal in (3.1),

(pk
i )

T A(ck+1)pk
j = [Yk]i j

(
λ∗j − λ

∗
i

)
, for each i, j ∈ [1, n] and i , j, (3.2)

and, assuming that the given eigenvalues are defined in (2.8), we obtain the skew-symmetric
matrix Yk as

[Yk]i j =

 0, for each 1 ≤ i, j ≤ t, or i = j;
(pk

i )
T

A(ck+1)pk
j

λ∗j−λ
∗
i

, for each t + 1 ≤ i ≤ n or t + 1 ≤ j ≤ n and i , j.
(3.3)

Furthermore, by using the Cayley transform, we calculate the matrix Pk+1 as

Pk+1 = Pk

(
I +

1
2

Yk

) (
I −

1
2

Yk

)−1

. (3.4)

Finally, by (3.3), (3.4), and the two-step Ulm-Chebyshev iterative procedure [30], we can propose the
following two-step Ulm-Chebyshev-like Cayley transform method for solving the IEP with multiple
eigenvalues.
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Algorithm I: The two-step Ulm-Chebyshev-like Cayley transform method
Step 1. Given c0 ∈ Rn, calculate the orthogonal eigenvectors {qi(c0)}ni=1 of A(c0). Let

P0 = [p0
1,p

0
2, . . . ,p

0
n] = [q1(c0),q2(c0), . . . ,qn(c0)],

and J0 = J(c0) and the vector b0 are defined as follows:

[J0]i j = (p0
i )T A jp0

i , 1 ≤ i, j ≤ n,

[b]0
i = (p0

i )T A0p0
i , 1 ≤ i ≤ n. (3.5)

Let B0 ∈ R
n×n satisfy

∥I − B0J(c0)∥ ≤ µ,

where µ is a positive constant.
Step 2. For k = 0, until convergence, do:

(a) Calculate yk by
yk = ck − Bk(Jkck + bk − λ∗). (3.6)

(b) Form the skew-symmetric matrix Yk:

[Yk]i j =

 0, for 1 ≤ i, j ≤ t, or i = j;
(pk

i )T A(yk)pk
j

λ∗j−λ
∗
i

, for t + 1 ≤ i ≤ n or t + 1 ≤ j ≤ n and i , j,
(3.7)

where the matrix A(yk) is defined by (1.1).
(c) Calculate P(yk) = [p1(yk),p2(yk), . . . ,pn(yk)]T = [vk

1, v
k
2, . . . , v

k
n]T by solving

(I +
1
2

Yk)vk
j = hk

j, for 1 ≤ j ≤ n, (3.8)

where hk
j is the jth column of Hk = (I − 1

2Yk)PT
k .

(d) Calculate the approximate eigenvalues of A(yk) via

λ̂i(yk) = (pi(yk))T A(yk)pi(yk), for 1 ≤ i ≤ n.

(e) Calculate ck+1 by
ck+1 = yk − Bk(λ̂(yk) − λ∗). (3.9)

(f) Form the skew-symmetric matrix Ŷk:

[Ŷk]i j =

 0, for 1 ≤ i, j ≤ t, or i = j;
(pi(yk))T A(ck+1)(p j(yk))

λ∗j−λ
∗
i

, for t + 1 ≤ i ≤ n or t + 1 ≤ j ≤ n and i , j,

where the matrix A(ck+1) is defined by (1.1).
(g) Calculate Pk+1 = [pk+1

1 ,pk+1
2 , . . . ,pk+1

n ]T = [v̂k
1, v̂

k
2, . . . , v̂

k
n]T by solving

(I +
1
2

Ŷk)v̂k
j = ĥk

j, for 1 ≤ j ≤ n, (3.10)

where ĥk
j is the jth column of Ĥk = (I − 1

2 Ŷk)(P(yk))T .
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(h) Form the matrix Jk+1 and the vector bk+1:

[Jk+1]i j = (pk+1
i )T A jpk+1

i , 1 ≤ i, j ≤ n,

[b]k+1
i = (pk+1

i )T A0pk+1
i , 1 ≤ i ≤ n.

(i) Calculate the Chebyshev matrices Bk+1 by

Bk+1 = Bk + Bk(2I − J(ck+1)Bk)(I − J(ck+1)Bk).

Remark 3.1. For k = 0, 1, 2, . . ., from (c) and (g) in Step 2 in Algorithm I, we have

P(yk) = Pk(I +
1
2

Yk)(I −
1
2

Yk)−1 (3.11)

and
Pk+1 = P(yk)(I +

1
2

Ŷk)(I −
1
2

Ŷk)−1. (3.12)

Remark 3.2. Without the distinction of the given eigenvalues, the convergence analysis of the two-
step Ulm-Chebyshev-like method in [30] cannot work properly due to the differentiability of f and the
discontinuity of the eigenvectors corresponding to multiple eigenvalues [22]. Based on the relative
generalized Jacobian of eigenvalue function [32], we propose the improved method for solving the
IEP (1.2) with multiple eigenvalues. Clearly, in the case when t = 1, the method presented below is
reduced to the two-step Ulm-Chebyshev-like method proposed in [30] for the distinct case.

4. Convergence analysis

In this section, we shall analyze the convergence of Algorithm I. To ensure the cubical convergence,
it is assumed that all J ∈ ∂Qf(c∗) are nonsingular for robustness. Yet, a suitable choice of eigenvectors
can render J nonsingular in a general manner. Therefore, we assume that all J ∈ ∂Q|S f(c∗) are
nonsingular.

Let ck, yk, Yk, Ŷk, Pk, P(yk), Jk and Bk be generated by Algorithm I with initial point c0. For
k = 0, 1, 2, . . ., let

Ek := [P(1)
k − ΠP(1)

k P(2)
k − Q(2)(c∗)] (4.1)

and
E(yk) := [P(yk)(1) − ΠP(yk)(1) P(yk)(2) − Q(2)(c∗)]. (4.2)

Then, we can get the following lemmas.

Lemma 4.1. Let the given eigenvalues {λ∗i }
n
i=1 be defined as in (2.8). Then, in Algorithm I, there exists

a number 0 < δ2 ≤ 1 such that for k = 0, 1, 2, . . ., if ∥yk − c∗∥ ≤ δ2, ∥ck+1 − c∗∥ ≤ δ2, ∥Ek∥ ≤ δ2 and
∥E(yk)∥ ≤ δ2, then

∥Λ∗ + XkΛ
∗ − Λ∗Xk − PT

k A(c∗)Pk∥ ≤ K∥Ek∥
2, (4.3)

∥P(yk) − Pk∥ ≤ ρ(∥yk − c∗∥ + ∥Ek∥), (4.4)

∥E(yk)∥ ≤ ρ(∥yk − c∗∥ + ∥Ek∥
2), (4.5)

∥Λ∗ + YkΛ
∗ − Λ∗Yk − P(yk)T A (c∗) P(yk)∥ < K∥E(yk)∥2, (4.6)
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∥Pk+1 − P(yk)∥ ≤ ρ(∥ck+1 − c∗∥ + ∥E(yk)∥) (4.7)

and
∥Ek+1∥ ≤ ρ(∥ck+1 − c∗∥ + ∥E(yk)∥2), (4.8)

where K and ρ are defined by (2.1) and (2.2), respectively.

Proof. Let eXk := PT
k Q̃(c∗), where Xk is the skew-symmetric matrix and Q̃(c∗) is defined by (2.11)

and (2.12) with P = Pk. By ∥Ek∥ ≤ δ2 ≤ ϵ0 and Lemma 2.2, we have

∥Xk∥F ⩽ β∥Ek∥ and ∥X(11)
k ∥F ⩽ β∥Ek∥

2, (4.9)

where β is a positive number and X(11)
k is the t-by-t leading block of Xk. On the other hand, by Q̃(c∗) ∈

Q(c∗), we derive
eXkΛ∗e−Xk = PT

k A(c∗)Pk. (4.10)

Thus, by the fact of eXk =
∞∑

l=0
( Xl

k
l! ), we can express (4.10) as

Λ∗ + XkΛ
∗ − Λ∗Xk = PT

k A(c∗)Pk + R(Xk), (4.11)

where

R(Xk) = −X2
k

∞∑
l=2

(
Xl−2

k

l!
)Λ∗

( ∞∑
l=0

(−Xk)l

l!
)
+ Λ∗X2

k

∞∑
l=2

(−Xk)l−2

l!
− XkΛ

∗Xk

∞∑
l=1

(−Xk)l−1

l!
.

By (2.1) and Lemma 2.2, we get

∥R(Xk)∥F ⩽ 6 ∥Xk ∥
2
F · ∥Λ

∗ ∥F = 6 ∥Xk ∥
2
F · ∥λ

∗ ∥ ⩽ 6β2 ∥λ∗∥ · ∥Ek ∥
2 ≤ K∥Ek∥

2. (4.12)

Thus, (4.3) is seen to hold by (4.11) and (4.12).
In order to prove (4.4) and (4.5), assume that ∥yk − c∗∥ ⩽ δ2. We note by (4.11) that

[Xk]i j =
1

λ∗j − λ
∗
i

(
pk

i
)T A(c∗)pk

j +
[
R
(
Xk

)]
i j,

where t + 1 ≤ i ≤ n, 1 ≤ j ≤ n, i > j. Combining this with (3.7), we have

[Xk]i j − [Yk]i j =
1

λ∗j − λi
∗

(
pk

i
)T [A(c∗) − A(yk)

]
pk

j +
[
R
(
Xk

)]
i j,

in which t + 1 ≤ i ≤ n, 1 ≤ j ≤ n, i > j. By (4.12), Lemma 2.1, and the fact that {pk
i }

n
i=1 are orthogonal,

we get

max
t+1≤i≤n, 1≤ j≤n,i, j

∣∣∣[Xk]i j − [Yk]i j

∣∣∣ ⩽ max
1≤i≤n−1

1
λ∗i+1 − λ

∗
i
×

(
max
1≤ j≤n
∥A j∥ · ∥yk − c∗∥ + K∥Ek∥

2).
In addition, by the fact that [Yk]i j = 0, for each i, j ∈ [1, t], we have

∥Xk − Yk∥ ⩽ ∥Xk − Yk∥F ⩽ ∥X
(11)
k ∥F +

(
n2 − t2

)
max

i∈[t+1,n], j∈[1,n],i, j

∣∣∣[Xk]i j − [Yk]i j

∣∣∣ .
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Then, it follows from (2.1) and (4.9) that

∥Xk − Yk∥ ⩽ β∥Ek∥
2 + N

(
max
1≤ j≤n
∥A j∥ · ∥yk − c∗∥ + K∥Ek∥

2), (4.13)

and so
∥Yk∥ ⩽ β∥Ek∥ + β∥Ek∥

2 + N
(

max
1≤ j≤n
∥A j∥ · ∥yk − c∗∥ + K∥Ek∥

2).
Thus, thanks to the fact that β∥Ek∥ ≤ βδ2 ≤ 1 and (2.2), one has

∥Yk∥ ⩽ N max
1≤ j≤n
∥A j∥ · ∥yk − c∗∥ + (1 + β + 6Nβ∥λ∗∥) ∥Ek∥

⩽ C
2

(
∥yk − c∗∥ + ∥Ek∥

)
⩽ ρ

2

(
∥yk − c∗∥ + ∥Ek∥

)
. (4.14)

Since ∥Ek∥ ⩽ δ2 and ∥yk − c∗∥ ⩽ δ2, it follows from (2.4) and (4.14) that ∥Yk∥ ⩽ 1. Consequently,∥∥∥(I − 1
2

Yk
)−1∥∥∥ ⩽ 1

1 − 1
2 ∥Yk∥

⩽ 2. (4.15)

Therefore, in the following, we estimate ∥P(yk) − Pk∥ and ∥E(yk)∥. Indeed, by (3.11),

P(yk) − Pk = Pk
[(

I +
1
2

Yk
)
−

(
I −

1
2

Yk
)](

I −
1
2

Yk
)−1
= PkYk

(
I −

1
2

Yk
)−1
.

This together with (4.14), (4.15), as well as the orthogonality of Pk indicate that (4.4) holds.
As for (4.5), we note by (3.11) and Xk that

P(yk) − Q̃(c∗) = Pk
[(

I +
1
2

Yk
)(

I −
1
2

Yk
)−1
− eXk

]
= Pk

[(
I +

1
2

Yk
)
− eXk

(
I −

1
2

Yk
)](

I −
1
2

Yk
)−1
.

Combining this with eXk =
∞∑

l=0
( Xl

k
l! ), we get

P(yk) − Q̃(c∗) = Pk
[
Yk − Xk +

1
2

XkYk −
(
X2

k

∞∑
m=2

Xm−2
k

m!
)(

I −
1
2

Yk
)](

I −
1
2

Yk
)−1

= Pk
(
Yk − Xk +

1
2

XkYk
)(

I −
1
2

Yk
)−1
− PkX2

k

∞∑
m=2

Xm−2
k

m!
.

Since Pk is orthogonal, note by (2.14) and (4.15) that

∥P(yk) − Q̃(c∗)∥ ⩽ 2 ∥ Yk − Xk ∥ + ∥ Xk ∥ · ∥ Yk ∥ + ∥ Xk ∥
2 .

Thus, we derive by using (2.13), (4.13), and (4.14),

∥P(yk) − Q̃(c∗)∥ ≤ 2β ∥Ek∥
2 + 2N

(
max
1≤ j≤n

∥A j ∥ · ∥yk − c∗∥ + K∥Ek∥
2)

+
1
2
βC ∥Ek∥ ·

(
∥yk − c∗∥ + ∥Ek∥

)
+ β2 ∥Ek∥

2
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≤
(
2β + β2 + 2NK +

1
2
βC

)
∥Ek∥

2 +
(
2N max

1≤ j≤n
∥A j∥ +

1
2

C
)
∥yk − c∗∥

≤ max
1≤ j≤n
∥A j∥∥yk − c∗∥ + K∥E(yk)∥2, 1 ≤ i ≤ n, (4.16)

where the second inequality holds because of the fact that β∥Ek∥ ⩽ 1 while the last inequality holds
because of the definition of C. Write P(yk) = [P(yk)(1) P(yk)(2)], where P(yk)(1) ∈ Rn×t and P(yk)(2) ∈

Rn×(n−t). Since (I − Π)Q̃(1)(c∗) = 0, where 0 is a zero matrix, we have∥∥∥(I − Π)P(yk)(1)∥ = ∥(I − Π)
(
P(yk)(1) − Q̃(1)(c∗) + Q̃(1)(c∗)

)∥∥∥
=

∥∥∥(I − Π)
(
P(yk)(1) − Q̃(1)(c∗)

)∥∥∥
⩽

∥∥∥P(yk) − Q̃(c∗)
∥∥∥

and
∥P(yk)(2) − Q̃(2)(c∗)∥ ≤ ∥P(yk) − Q̃(c∗)∥.

Hence, by (4.2) and (4.16), we obtain

∥E(yk)∥ ⩽ ∥(I − Π)P(yk)(1)∥ + ∥P(yk)(2) − Q̃(2)(c∗)∥ ⩽ 2
√

n ∥ P(yk) − Q̃(c∗) ∥

⩽ 2
√

n
[ (

2β + β2 + 2NK +
1
2
βC

)
∥Ek∥

2 +
3
2

C ∥ yk − c∗∥
]
. (4.17)

Therefore, (4.5) is proved by (2.2) and (4.17). We defined eYk := P(yk)T Q̃(c∗), where Yk is the skew-
symmetric matrix. Similarly, (4.6)–(4.8) also hold. □

Lemma 4.2. Let ρ0 and δ0 be defined in Lemma 2.1. If ∥yk − c∗∥ ≤ δ0 and λ̂(yk) =
(λ̂1(yk), λ̂2(yk), . . . , λ̂n(yk))T , in which λ̂i(yk) = (pi(yk))T A(yk)pi(yk), 1 ≤ i ≤ n, then

∥λ̂(yk)∥ ≤
√

n max
1≤ j≤n
∥A j∥∥yk − c∗∥ + K

√
n∥E(yk)∥2 + ∥λ∗∥. (4.18)

Proof. From the diagonal elements of Λ∗ +YkΛ
∗ −Λ∗Yk −P(yk)T A (c∗) P(yk), we obtain from (4.6) that

|(pi(yk))T A(c∗)pi(yk) − λ∗i | ≤ K∥E(yk)∥2, for 1 ≤ i ≤ n,

which together with Lemma 3.1 gives

|(pi(yk))T A(yk)pi(yk) − λ∗i | = |(pi(yk))T (A(yk) − A(c∗))pi(yk) + (pi(yk))T A(c∗)pi(yk) − λ∗i |
≤ |(pi(yk))T (A(yk) − A(c∗))pi(yk)| + |(pi(yk))T A(c∗)pi(yk) − λ∗i |
≤ max

1≤ j≤n
∥A j∥∥yk − c∗∥ + K∥E(yk)∥2, 1 ≤ i ≤ n.

Therefore,
∥λ̂(yk) − λ∗∥ ≤

√
n max

1≤ j≤n
∥A j∥∥yk − c∗∥ + K

√
n∥E(yk)∥2,

which together with the fact that ∥λ̂(yk)∥ ≤ ∥λ̂(yk) − λ∗∥ + ∥λ∗∥, we can get (4.18). □
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Lemma 4.3. Let the Jacobian matrix of J̃(c∗) and the vector b̃ be defined as follows:

[J̃(c∗)]i j = q̃i(c∗)T A jq̃i(c∗), 1 ≤ i, j ≤ n and [b̃]i = (q̃i(c∗))T A0q̃i(c∗), 1 ≤ i ≤ n.

Then, we have

∥J̃(c∗)yk + b̃ − λ̂(yk)∥ ≤ 6
√

nβ2 ∥λ̂(yk)∥ ∥E(yk) ∥2. (4.19)

Proof. Let eYk := P(yk)T Q̃(c∗) where Yk is the skew-symmetric matrix and Q̃(c∗) is defined by (2.11)
and (2.12) with P = P(yk). By ∥E(yk)∥ ≤ δ2 ≤ ϵ0 and Lemma 2.2, we get

∥Yk∥F ⩽ β∥E(yk)∥,

where β is a positive number. By Λ̂(yk) = P(yk)T A(yk)P(yk) and e−YkΛ̂(yk)eYk = Q̃(c∗)T A(yk)Q̃(c∗),
we have

Λ̂(yk) − YkΛ̂(yk) + Λ̂(yk)Yk = Q̃(c∗)T A(yk)Q̃(c∗) + R(Yk),

where

R(Yk) = (Yk)2
∞∑

l=2

(
(−Yk)l−2

l!
)Λ̂(yk)

( ∞∑
l=0

(Yk)l

l!

)
− Λ̂(yk)(Yk)2

∞∑
l=2

(Yk)l−2

l!
+ YkΛ̂(yk)Yk

∞∑
l=1

(Yk)l−1

l!
.

By Lemma 2.2, we get

∥R(Yk)∥F ⩽ 6 ∥Yk ∥
2
F ∥Λ̂(yk) ∥F = 6 ∥Yk ∥

2
F ∥λ̂(y

k) ∥ ⩽ 6β2 ∥λ̂(yk)∥ ∥E(yk) ∥2.

Thus,
∥Q̃(c∗)T A(yk)Q̃(c∗) + YkΛ̂(yk) − Λ̂(yk)Yk − Λ̂(yk)∥ ≤ 6β2 ∥λ̂(yk)∥ ∥E(yk) ∥2. (4.20)

By the diagonal entries of Q̃(c∗)T A(yk)Q̃(c∗) + YkΛ̂(yk) − Λ̂(yk)Yk − Λ̂(yk) and (4.20), we get

|(q̃i(c∗))T A(yk)q̃i(c∗) − λ̂i(yk)| < 6β2 ∥λ̂(yk)∥ ∥E(yk) ∥2, for 1 ≤ i ≤ n.

Therefore, by the definitions of J̃(c∗), λ̂(yk), b̃ and A(yk), we can get (4.19). □

Lemma 4.4. [35] Let J0 be defined in (3.5). Suppose that J0 is invertible. Let k ≥ 1 such that

2n∥J−1
0 ∥max

1≤ j≤n
∥A j∥∥Pk − P0∥ < 1. (4.21)

Then, the matrix Jk is nonsingular and

∥J−1
k ∥ ≤

∥J−1
0 ∥

1 − 2n∥J−1
0 ∥max

1≤ j≤n
∥A j∥∥Pk − P0∥

.

Lemma 4.5. Let the vector c∗ ∈ clS and the given eigenvalues of the matrix A(c∗) satisfy (2.8). Let all
J ∈ ∂Q|S f(c∗) be nonsingular. If for c0 ∈ B(c∗, δ)

⋂
S where δ > 0 and k = 0, 1, 2, . . ., then there exist

three numbers 0 < τ ≤ 1, 0 < δ < τ and 0 ≤ µ ≤ δ, that if ∥c0 − c∗∥ ≤ δ, the conditions

∥Ek∥ ≤ 2
√

nρ0τ
(δ
τ

)3k

, (4.22)
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∥ck − c∗∥ ≤ τ
(δ
τ

)3k

, (4.23)

and
∥I − BkJk∥ ≤ τ

(δ
τ

)3k

(4.24)

imply

∥J−1
k ∥ ≤ γ, ∥Bk∥ ≤ 2γ, and ∥ck+1 − c∗∥ ≤ τ

(δ
τ

)3k+1

. (4.25)

Proof. Since all J ∈ ∂Q|S f(c∗) are nonsingular, and from Theorem 3.2 in [34], for each c0 ∈

B(c∗, δ0)
⋂

S , we have
sup

J∈∂Q|S f(c0)
∥J−1∥ ≤ ξ,

where ξ > 0 and δ0 > 0. From (2.3), (2.5), and (2.6), we know that

τ ≤ 1. (4.26)

By (2.6) and (4.22), we get

∥Ek∥ ≤ 2
√

nρ0τ
(δ
τ

)3k

≤ 2
√

nρ0δ ≤ δ2,

and then, from Lemma 2.2, we obtain
∥Xk∥F ⩽ β∥Ek∥, (4.27)

where β > 0. By the definitions of Xk and the Taylor series of the exponential function eXk , we have

Pk − Q̃(c∗) = Pk(I − eXk) = Pk(−Xk)
∞∑

l=1

(X)l−1

l!
.

Since Pk is orthogonal, note by (2.14) and (4.27) that

∥Pk − Q̃(c∗)∥ ≤ 2∥Xk∥ ≤ 2∥Xk∥F ≤ 2β∥Ek∥. (4.28)

Similarly, we also have

∥Pk−1 − Q̃(c∗)∥ ≤ 2∥Xk−1∥ ≤ 2∥Xk−1∥F ≤ 2β∥Ek−1∥.

Thus, by (2.5), (4.22), and (4.28), we have

∥Pk − Pk−1∥ ≤ ∥Pk − Q̃(c∗)∥ + ∥Pk−1 − Q̃(c∗)∥
≤ 2β∥Ek∥ + 2β∥Ek−1∥

≤ 2β(2
√

nρ0τ
(δ
τ

)3k

+ 2
√

nρ0τ
(δ
τ

)3k−1

)

≤ 4
√

nβρ0τ
(δ
τ

)3k−1

. (4.29)

Therefore, we further have

∥Pm − P0∥ ≤

m∑
k=1

∥Pk − Pk−1∥ ≤ 4
√

nβρ0τ
[(δ
τ

)
+

(δ
τ

)3
+

(δ
τ

)32

+ · · · +
(δ
τ

)3m−1]
. (4.30)
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Since 3n ≥ 2n + 1 for each n ≥ 0, we obtain from (4.30) that

∥Pm − P0∥ ≤ 4
√

nβρ0τ
[(δ
τ

)
+

(δ
τ

)3
+

(δ
τ

)5
+ · · · +

(δ
τ

)2m−1]
≤ 4

√
nβρ0δ

[
1 −

(
δ
τ

)2m]
1 −

(
δ
τ

)2 ,

which together with (2.1) and (2.6), we obtain

2nξ max
1≤ j≤n
∥A j∥∥Pm − P0∥ ≤

8n
3
2 ξβρ0δmax

1≤ j≤n
∥A j∥

1 −
(
δ
τ

)2 = H1δ <
1
2

H1τ < 1.

Consequently, using Lemma 4.4, we can derive that Jk is nonsingular and moreover

∥J−1
m ∥ ≤

ξ

1 − 2nξ max
1≤ j≤n
∥A j∥∥Pm − P0∥

≤
ξ

1 − H1δ
= γ. (4.31)

Furthermore, by (2.5), (2.6), and (4.24), we have

∥Bk∥ ≤ ∥BkJk∥∥J−1
k ∥ ≤ (I + ∥I − BkJk∥)∥J−1

k ∥ ≤ (1 + τ
(δ
τ

)3k

)γ ≤ (1 + τ)γ ≤ 2γ. (4.32)

On the other hand, considering the diagonal elements of Λ∗ + XkΛ
∗ − Λ∗Xk − PT

k A(c∗)Pk, we obtain
from (4.3) that

|(pk
i )

T A(c∗)pk
i − λ

∗
i | ≤ K∥Ek∥

2, for 1 ≤ i ≤ n.

Therefore, by the definitions of λ∗, Jk, bk and A(c∗), we have

∥Jkc∗ − λ∗ + bk∥ ≤
√

nK∥Ek∥
2. (4.33)

From (3.6), we get
yk − c∗ = Bk(λ∗ − bk − Jkc∗) + (I − BkJk)(ck − c∗).

It follows that
∥yk − c∗∥ ≤ ∥Bk∥∥Jkc∗ − λ∗ + bk∥ + ∥I − BkJk∥∥ck − c∗∥,

which together with (4.22)–(4.24), (4.32), and (4.33) gives

∥yk − c∗∥ ≤ 2γ
√

nK∥Ek∥
2 + τ

(δ
τ

)3k

· τ
(δ
τ

)3k

≤ (1 + 8γKn
3
2ρ2

0)τ2
(δ
τ

)2·3k

:= α2τ
2
(δ
τ

)2·3k

. (4.34)

By (2.6), (4.22), and (4.34), we have

∥yk − c∗∥ ≤ α2δ ≤ δ2 ≤ 1 (4.35)
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and
∥Ek∥ ≤ 2

√
nρ0τ

(δ
τ

)3k

≤ 2
√

nρ0δ ≤ δ2 ≤ 1, (4.36)

which together with (4.22) and (4.28), we obtain

∥pk
i − q̃i(c∗)∥ ≤ ∥Pk − Q̃(c∗)∥ ≤ 4

√
nβρ0τ

(δ
τ

)3k

, 1 ≤ i ≤ n.

This together with the orthogonality of Pk and Q̃(c∗) and the Cauchy-Schwarz inequality indicates that

|[Jk]i j − [J̃(c∗)]i j| = |(pk
i )

T A jpk
i − q̃i(c∗)T A jq̃i(c∗)|

= |(pk
i − q̃i(c∗))T A jpk

i − q̃i(c∗)T A j(q̃i(c∗) − pk
i )|

≤ 2∥A j∥∥pk
i − q̃i(c∗)∥

≤ 8
√

nβρ0∥A j∥τ
(δ
τ

)3k

, 1 ≤ i, j ≤ n.

Thus, we get

∥Jk − J̃(c∗)∥ ≤ ∥Jk − J̃(c∗)∥F ≤ 8n
3
2βρ0 max

1≤ j≤n
∥A j∥τ

(δ
τ

)3k

:= α1τ
(δ
τ

)3k

. (4.37)

By (4.24), (4.32), and (4.37), we have

∥I − Bk J̃(c∗)∥ ≤ ∥I − BkJk∥ + ∥Bk∥∥Jk − J̃(c∗)∥

≤ τ
(δ
τ

)3k

+ 2γα1τ
(δ
τ

)3k

≤ (1 + 2γα1)τ
(δ
τ

)3k

:= α6τ
(δ
τ

)3k

. (4.38)

By (4.34)–(4.36) and Lemma 4.1, we obtain

∥E(yk)∥ ≤ ρ
(
α2τ

2
(δ
τ

)2·3k

+ 4nρ2
0τ

2
(δ
τ

)2·3k)
≤ ρ(α2 + 4nρ2

0)τ2
(δ
τ

)2·3k

:= α3τ
2
(δ
τ

)2·3k

, (4.39)

which together with (2.6), (4.22), and (4.34), we have

∥E(yk)∥ ≤ α3δ ≤ δ2 ≤ 1,

which together with (4.35) and Lemmas 4.2 and 4.3, we get

∥J̃(c∗)yk + b̃ − λ̂(yk)∥ ≤ 6
√

nβ2 ∥λ̂(yk)∥∥E(yk)∥2

≤ 6
√

nβ2
(√

n max
1≤ j≤n
∥A j∥∥yk − c∗∥ + K

√
n∥E(yk)∥2 + ∥λ∗∥

)
∥E(yk)∥2
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≤ 6
√

nβ2
(√

n max
1≤ j≤n
∥A j∥ + K

√
n + ∥λ∗∥

)
α2

3τ
4
(δ
τ

)4·3k

≤ 6
√

nβ2
(√

n max
1≤ j≤n
∥A j∥ + K

√
n + ∥λ∗∥

)
α2

3τ
3
(δ
τ

)3k+1

:= α5τ
3
(δ
τ

)3k+1

. (4.40)

Together with (3.9) and λ∗ = J̃(c∗)c∗ + b̃, we get

ck+1 − c∗ = Bk(J̃(c∗)yk + b − λ̂(yk)) + (I − Bk J̃(c∗))(yk − c∗).

It follows from (4.26), (4.32), (4.34), (4.38), and (4.40) that

∥ck+1 − c∗∥ ≤ ∥Bk∥∥J̃(c∗)yk + b̃ − λ̂(yk)∥ + ∥I − Bk J̃(c∗)∥∥yk − c∗∥

≤ 2γα5τ
3
(δ
τ

)3k+1

+ α6τ
(δ
τ

)3k

· α2τ
2
(δ
τ

)2·3k

≤ (2γα5 + α2α6)τ2
(δ
τ

)3k+1

= τ
(δ
τ

)3k+1

. (4.41)

Finally, by (4.31), (4.32), and (4.41), we have (4.25). □

Next, we can analyze the convergence of Algorithm I.

Theorem 4.1. Let the vector c∗ ∈ clS and the given eigenvalues {λ∗i }
n
i=1 satisfy (2.8). All J ∈ ∂Q|S f(c∗)

are nonsingular. Then Algorithm I is locally cubic convergent.

Proof. Let us start by mathematical induction that (4.22)–(4.24) are true for all k > 0. Clearly, by
assumptions µ ≤ δ and ∥c0 − c∗∥ ≤ δ, (4.23) and (4.24) for k = 0 are trivial. From Lemma 2.1, we have

∥E0∥ ≤ ∥∥E0∥F ≤ ∥(I − Π)Q(1)(c0)∥F + ∥Q(2)(c0) − Q(2)(c∗)∥F ≤ 2
√

nα1∥c0 − c∗∥ ≤ 2
√

nα1δ,

and this gives that (4.22) is true for k = 0.
Now assume that (4.22)–(4.24) are true for all k ≤ m − 1. Recalling that (2.5) and (2.6), we get

∥Em−1∥ ≤
√

nρ0τ
(δ
τ

)3m−1

≤
√

nρ0δ ≤ δ2,

which together with Lemma 4.1, (2.5), (2.6), (4.34), and (4.39) with k = m − 1 gives

∥E(ym−1)∥ ≤ α3δ ≤ δ2.

It follows from Lemma 4.1, (2.5), (4.39), and (4.41) with k = m − 1 that

∥cm − c∗∥ ≤ τ
(δ
τ

)3m

≤ δ ≤ δ2

and

∥Em∥ ≤ ρ3

(
α7τ

2
(δ
τ

)3m

+ α2
3τ

4
(δ
τ

)4·3m−1)
≤ ρ3(α7 + α

2
3)τ2

(δ
τ

)3m

≤ 2
√

nρ0τ
(δ
τ

)3m

≤ 2
√

nρ0δ.
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Thus, (4.22) and (4.23) hold for k = m. From Lemma 4.5 with k = m − 1, we get ∥I − Bm−1Jm−1∥ ≤

τ
(
δ
τ

)3m−1

and ∥Bm−1∥ ≤ 2γ. Thanks to (4.29) (with k = m), one can see that

∥Pm − Pm−1∥ ≤ 4
√

nβρ0τ
(δ
τ

)3m−1

,

which implies that

∥pm
i − pm−1

i ∥ ≤ 4
√

nβρ0τ
(δ
τ

)3m−1

, 1 ≤ i ≤ n.

Consequently,

|[Jm]i j − [Jm−1]i j| = |(pm
i − pm−1

i )T A jpm
i − (pm

i )T A j(pm
i − pm−1

i )|
≤ 2∥A j∥∥(pm

i − pm−1
i )∥

≤ 8∥A j∥
√

nβρ0τ
(δ
τ

)3m−1

, 1 ≤ i, j ≤ n.

Hence,

∥Jm − Jm−1∥ ≤ ∥Jm − Jm−1∥F ≤ 8n
3
2βρ0 max

1≤ j≤n
∥A j∥τ

(δ
τ

)3m−1

:= α1τ
(δ
τ

)3m−1

.

It follows that

∥I − Bm−1Jm∥ ≤ ∥I − Bm−1Jm−1∥ + ∥Bm−1∥Jm−1 − Jm∥

≤ τ
(δ
τ

)3m−1

+ 2γ · α1τ
(δ
τ

)3m−1

≤ (1 + 2γα1)τ
(δ
τ

)3m−1

. (4.42)

Notice that Bm = Bm−1 + Bm−1(2I − J(cm)Bm−1)(I − J(cm)Bm−1), and we obtain

I − BmJm = I − (Bm−1 + Bm−1(2I − J(cm)Bm−1)(I − J(cm)Bm−1))Jm = (I − Bm−1Jm)3.

Together with (2.5), (4.26), and (4.42), one has

∥I − BmJm∥ ≤ ∥I − Bm−1Jm∥
3 ≤ (1 + 2γα1)3τ3

(δ
τ

)3m

≤ τ
(δ
τ

)3m

,

and therefore, (4.24) is true for k = m and the proof is complete. □

5. Numerical experiments

In this section, we present the computational performance of Algorithm I in addressing the IEP
with several multiple eigenvalues. Algorithm I is contrasted with the two-step Ulm-Chebyshev-like
Cayley transform method (TUCT method), inexact Cayley transform method (ICT method), and Ulm-
like Cayley transform method (UCT method) as presented in [30, 35, 36], respectively. The tests were
carried out in MATLAB 7.10 running on a PC Intel Pentium IV of 3.0 GHz CPU. We will now consider
the problem of finding the eigenvalues for a matrix with a Toeplitz structure, as previously investigated
in references [35, 36].
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The QMR method [37] was utilized to solve all linear systems in all algorithms, using the MATLAB
QMR function and setting the maximum number of iterations to 1000. Notably, in the context of
solving approximate Jacobian equations within the framework of the inexact Cayley transform method,
an advanced approach was employed. This approach involved leveraging the preconditioned QMR
method with a specific stopping tolerance, and integrating the MATLAB incomplete LU factorization
as the designated preconditioner. Specifically, the drop tolerance in LUINC(A, drop-tolerance) is fixed
at 0.001. Furthermore, the precision level for the linear systems involved in all computational methods
is adjusted to match the machine accuracy, ensuring the attainment of the desired solutions. The
termination criterion for the outer (Newton) iterations is met in every algorithm when

∥PT
k A(ck)Pk − Λ

∗∥ ≤ 10−12.

Example 5.1. (See [35, 36]) Referring to the Toeplitz matrices stated in [35, 36], consider {Ai}
n
i=0 as

A0 = O, A1 = I, A2 =



0 1 0 · · · 0

1 0 1 . . .
...

0 1 . . .
. . . 0

...
. . .

. . . 0 1
0 · · · 0 1 0


, · · · , An =



0 0 · · · 0 1

0 . . .
. . .

. . . 0
...

. . .
. . .

. . .
...

0 · · ·
. . .

. . . 0
1 0 · · · 0 0


.

Hence, the matrix A(c) can be characterized as a symmetric Toeplitz matrix where the first column is
identical to the vector c.

Here, we consider three cases: n = 100, 200, 300. For any n, we generate a vector c̃∗ such that
|λk+1(c̃∗) − λk(c̃∗)| < η with 1 ≤ l ≤ n − 1, where

η =


5 × 10−5, n = 100;
1 × 10−5, n = 200;
1 × 10−6, n = 300.

Set

λ∗i =

λk(c̃∗), i = k, k + 1;
λi(c̃∗), otherwise.

Subsequently, we choose {λ∗i }
n
i=1 as the prescribed eigenvalues. It is clear that, in this way of

selecting {λ∗i }
n
i=1, multiple eigenvalues are present. Since all of the algorithms are locally convergent,

the initial guess c0 is formed by chopping the components of c̃∗ to six decimal places for n =
100, 200, 300. The information in Table 1 presents the average values of ∥PT

k A(ck)Pk − Λ
∗∥, and

“ it.” denotes the the averaged numbers of outer iterations. The data in Table 2 presents the average
total numbers of outer iterations N0 throughout ten test scenarios and the average total numbers of
inner iterations Ni essential for solving the IEPs. A comparison of the averaged CPU time of all of the
algorithms for the ten tests with different n is shown in Table 3.
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Table 1. Averaged values of ∥PT
k A(ck)Pk − Λ

∗∥ for the ten tests.

n it. ICT method UCT method Algorithm I TUCT method
β = 1.5 β = 1.8

100 0 1.8973e − 5 1.8973e − 5 1.8973e − 5 1.8973e − 5 1.8973e − 5
1 1.0006e − 6 9.5329e − 5 3.4389e − 5 7.2881e − 9 2.3548e + 3
2 3.4623e − 7 5.2316e − 7 1.5623e − 7 4.6864e − 14 2.5421e + 15
3 1.5456e − 9 2.5695e − 9 9.2635e − 9
4 8.6994e − 12 9.9999e − 11 8.2312e − 12
5 9.5684e − 15 1.0001e − 14 6.2351e − 15

200 0 2.6051e − 5 2.6051e − 5 2.6051e − 5 2.6051e − 5 2.6051e − 5
1 1.0003e − 7 4.1858e − 6 3.1889e − 6 9.9999e − 8 4.2151e + 4
2 9.9998e − 8 3.9856e − 8 4.4668e − 8 6.2392e − 13 8.2357e + 21
3 6.1254e − 9 2.2254e − 9 3.5563e − 9
4 1.5684e − 12 9.5695e − 11 1.5623e − 12
5 2.3564e − 14 3.2356e − 13 8.8563e − 14

300 0 4.0904e − 5 4.0904e − 5 4.0904e − 5 4.0904e − 5 4.0904e − 5
1 9.1364e − 7 4.2864e − 7 7.2789e − 7 1.9604e − 9 3.2546e + 3
2 3.3874e − 8 2.9856e − 8 3.3668e − 8 2.2275e − 13 6.2534e + 22
3 4.2356e − 9 8.5695e − 9 4.5564e − 9
4 1.0012e − 12 9.9898e − 11 2.5873e − 11
5 6.5684e − 14 1.2325e − 13 8.2344e − 13

Table 2. Averaged total numbers of outer and inner iterations for the ten tests.

n ICT method Algorithm I UCT method
β = 1.5 β = 1.8

100 N0 4.9 4.9 2 4.9
Ni 32.1 32.9 29.2 32.5

200 N0 5.1 5.1 2 5.1
Ni 47.2 47.8 38.9 47.3

300 N0 5.1 5.1 2 5.1
Ni 71.2 71.8 60.1 71.6

Table 3. Averaged CPU time in seconds of all algorithms for the ten tests.

n 50 100 150 200 250 300
UCT method 0.66 2.14 7.23 18.11 40.56 98.88
ICT method with β = 1.5 0.64 1.91 8.12 17.68 32.43 86.37
Algorithm I 0.33 1.18 5.53 12.52 28.99 55.67
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From the data presented in Table 1, we see that Algorithm I requires a lower number of iterations
compared to the ICT and UCT methods, and the TUCT method fails to converge. It is evident from
the data presented in Table 2 that Algorithm I outperforms the inexact Cayley transform method and
Ulm-like Cayley transform method. Table 3 shows that Algorithm I demonstrates a more cost-effective
CPU time compared to the other approaches.

Example 5.2. [22] This is an inverse problem with multiple eigenvalues and n = 8. We are given that
B = I +WWT , where

W =



1 −1 −3 −5 −6
1 1 −2 −5 −17
1 −1 −1 5 18
1 1 1 2 0
1 −1 2 0 1
1 1 3 0 −1

2.5 0.2 0.3 0.5 0.6
2 −0.2 0.3 0.5 0.8


8×5

.

Define

A0 = 0, Ai := biieieT
i +

i−1∑
j=1

bi j(eieT
j + e jeT

i ), i = 1, . . . , 8.

λ∗ = (1, 1, 1, 2.120754, 9.218868, 17.28137, 35.70822, 722.6808)T ,

c∗ = (1, 1, 1, 1, 1, 1, 1, 1)T .

We report our numerical results for different starting points: (a) c0 = 10−5 · (1, 1, 1, 1, 1, 1, 1, 1)T ;
(b) c0 = (0, 0, 0, 0, 0, 0, 0, 0)T .

Table 4 presents the average values of ∥PT
k A(ck)Pk−Λ

∗∥, and “ it.” denotes the the averaged numbers
of outer iterations.

Table 4. Averaged values of ∥PT
k A(ck)Pk − Λ

∗∥ for the ten tests.

it. ICT method UCT method Algorithm I TUCT method
β = 1.5 β = 1.8

(a) 0 2.2113e − 5 2.2113e − 5 2.2113e − 5 2.2113e − 5 2.2113e − 5
1 3.2154e − 6 4.2568e − 6 8.2135e − 5 9.889e − 14 4.2356e + 3
2 8.3549e − 8 4.2648e − 8 2.1350e − 8 3.2589e + 15
3 3.2111e − 10 1.2309e − 10 8.2156e − 10
4 8.2543e − 13 5.2236e − 13 9.9998e − 14

(b) 0 7.2383e + 2 7.2383e + 2 7.2383e + 2 7.2383e + 2 7.2383e + 2
1 5.2469e + 5 3.2699e + 6 5.3216e + 6 8.3269e + 18 3.2156e + 14
2 5.2148e + 12 7.2584e + 12 5.2318e + 13

It can be observed from Table 4 that Algorithm I requires a lower number of iterations compared to
the ICT and UCT methods and Algorithm I has global non-convergence and local cubic convergence.
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To further illustrate the effectiveness of Algorithm I, we present a practical engineering application
in vibrations [15, 16]. We consider the vibration of a taut string with n beads. Figure 1 shows such a
model for the case where n = 4. Here, we assume that the n beads are placed along the string, where
the ends of the string are clamped. The mass of the jth bead is denoted by m j. The horizontal lengths
between masses m j and m j+1 (and between each bead at each end and the clamped support) are set
to be a constant L. The horizontal tension is set to be a constant T . Then the equation of motion is
governed by

m jy′′j (t) = T
y j+1 − y j

L
− T

y j − y j−1

L
, j = 1, . . . , n, (5.1)

where y0 = yn+1 = 0. That is, the ends of the string are fixed. The matrix form of (5.1) is given by

y′′(t) = −CJy(t), (5.2)

where y(t) = (y1(t), y2(t), . . . , yn(t))T , C = diag(c1, c2, . . . , cn) with c j =
T

m jL
, and J is the discrete

Laplacian matrix

J =



2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2


∈ Sn.

The general solution of (5.2) is given in terms of the eigenvalue problem

CJy = λy,

where λ is the square of the natural frequency of the vibration system and the nonzero vector y accounts
for the interplay between the masses. The inverse problem for the beaded string is to compute the
masses {m j}

n
j=1 so that the resulting system has a prescribed set of natural frequencies.

It is easy to check that the eigenvalues of J are given by

λ j(J) = 4
(
sin

jπ
n + 1

)2

, j = 1, 2, . . . , n.

Thus, J is symmetric and positive definite and CJ is similar to LTCL, where L is the Cholesky factor
of J = LLT [31]. Then, the inverse problem is converted into the form of the IEP where A0 = 0 and
A j = LT E jL with E j = diag(e j) for j = 1, 2, . . . , n. The beaded string data in Examples 5.3 and 5.4
comes from the website http://www.caam.rice.edu/˜beads.

m1

m2

m3

m4

y1

y2

y3

y4

L
T T

Figure 1. A string with n = 4 beads.

AIMS Mathematics Volume 9, Issue 8, 22986–23011.

http://www.caam.rice.edu/~beads


23007

Example 5.3. This is an inverse problem for the beaded string with n = 4 beads, where

(m1,m2,m3,m4) = (0.030783, 0.017804, 0.017804, 0.030783) (kg = kilogram),

(n + 1)L = 1.12395 (meter), T = 191.8199 (Newton),

λ∗ = (15041.90, 42344.26, 88328.78, 15041.90)T ,

c∗ = (27720.80, 47929.08, 47929.08, 27720.80)T .

We report our numerical result for the starting points: c0 = 10−5 · (27720.80, 47929.08, 47929.08,
27720.80)T .

Example 5.4. This is an inverse problem for the beaded string with n = 6 beads, where

(m1,m2,m3,m4,m5,m6) = (0.017804, 0.030783, 0.017804, 0.017804, 0.030783, 0.017804)(kg),

(n + 1)L = 1.12395 (meter), T = 166.0370 (Newton),

λ∗ = (9113.978, 30746.32, 83621.69, 148694.4, 148694.4, 193537.0)T ,

c∗ = (58081.57, 33592.71, 58081.57, 58081.57, 33592.71, 58081.57)T .

We report our numerical results for the starting points: c0 = 10−5 · (58081.57, 33592.71, 58081.57,
58081.57, 33592.71, 58081.57)T .

The information in Table 5 presents the average values of ∥PT
k A(ck)Pk − Λ

∗∥, and Table 6 displays
the computed masses for the beaded string.

Table 5. Averaged values of ∥PT
k A(ck)Pk − Λ

∗∥ in the ten tests for Examples 5.3 and 5.4.

Example 5.3
∥PT

k A(ck)Pk − Λ
∗∥-value (last 3 iterations)

ICT method (6.0235 × 10−8, 3.6564 × 10−10, 9.3356 × 10−13)
UCT method (1.9587 × 10−8, 8.3985 × 10−10, 2.8872 × 10−14)
Algorithm I (5.9254 × 10−5, 2.8123 × 10−11, 6.5865 × 10−21)

Example 5.4
∥PT

k A(ck)Pk − Λ
∗∥-value (last 3 iterations)

ICT method (1.0562 × 10−7, 5.0420 × 10−9, 7.4001 × 10−13)
UCT method (2.9125 × 10−7, 9.0859 × 10−9, 3.7523 × 10−13)
Algorithm I (1.9862 × 10−5, 2.9546 × 10−11, 5.5555 × 10−21)
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Table 6. Recovered masses for Examples 5.3 and 5.4.

Example 5.3
m1 m2 m3 m4

true 0.030783 0.017804 0.017804 0.030783
recovered 0.030783 0.017804 0.017804 0.030783

Example 5.4
m1 m2 m3 m4 m5 m6

true 0.017804 0.030783 0.017804 0.017804 0.030783 0.017804
recovered 0.017804 0.030783 0.017804 0.017804 0.030783 0.017804

From Table 5, we know that Algorithm I requires a lower number of iterations compared to the ICT
and UCT methods, and the TUCT method fails to converge. Table 6 shows that the desired masses
are recovered. All of these numerical observations agree with our prediction and further validate our
theoretical results.

6. Conclusions

In this paper, we have proposed a two-step Ulm-Chebyshev-like Cayley transform method for
solving the IEP (1.2) with multiple eigenvalues, which avoids solving (approximate) Jacobian
equations in each outer iteration. Furthermore, the proposed algorithm is proved to have cubical
convergence under the following nonsingular condition in terms of the relative generalized Jacobian
evaluated at a solution c∗: Each J ∈ ∂Q|S f(c∗) is nonsingular. Furthermore, this kind of method can be
worked with larger problems for the Toeplitz inverse eigenvalue problem and is efficient when working
with small and medium-sized problems for a more general perspective on this problem. Nevertheless,
the effective methods for general larger inverse eigenvalue problems should be studied in the future.
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