Research article Special Issues

Reduction of greenhouse gas emissions in an imperfect production process under breakdown consideration

  • Received: 07 May 2022 Revised: 27 June 2022 Accepted: 26 July 2022 Published: 09 October 2022
  • A long-run manufacturing system can experience machine breakdown at any time for various reasons such as unskilled labor or outdated machinery technology. In an integrated green inventory model, the produced green products cannot all be perfect throughout a cycle, particularly when machines malfunction. Therefore, an inspection policy is introduced to clean the production process from unusable defect products, the correctness of which depends on the discussion of the inspected errors. The perfect products detected via the inspection process are delivered to the retailer as well as the market. To transport green products, it is essential to control the capacity of the containers and the quantities of green products transported per batch. In this study, the greenhouse gas equivalence factor of CO2 emissions is calculated for all green products' manufacturing and transportation mediums. These types of energies are used in the manufacturing process: electricity, natural gas, and coal. Whereas within transportation, four transportation modes are considered: railways, roadways, airways, and waterways. The retailer can agree to transport their inventories to the customers' house according to their requirement by requiring a third-party local agency via outsourcing criteria. The model solves the problem of CO2 emissions through production and transportation within the machine breakdown.

    Citation: Bijoy Kumar Shaw, Isha Sangal, Biswajit Sarkar. Reduction of greenhouse gas emissions in an imperfect production process under breakdown consideration[J]. AIMS Environmental Science, 2022, 9(5): 658-691. doi: 10.3934/environsci.2022038

    Related Papers:

    [1] Zhongdi Cen, Jian Huang, Aimin Xu . A posteriori mesh method for a system of singularly perturbed initial value problems. AIMS Mathematics, 2022, 7(9): 16719-16732. doi: 10.3934/math.2022917
    [2] Lin Fan, Shunchu Li, Dongfeng Shao, Xueqian Fu, Pan Liu, Qinmin Gui . Elastic transformation method for solving the initial value problem of variable coefficient nonlinear ordinary differential equations. AIMS Mathematics, 2022, 7(7): 11972-11991. doi: 10.3934/math.2022667
    [3] Shuqin Zhang, Jie Wang, Lei Hu . On definition of solution of initial value problem for fractional differential equation of variable order. AIMS Mathematics, 2021, 6(7): 6845-6867. doi: 10.3934/math.2021401
    [4] Jean-Paul Chehab, Denys Dutykh . On time relaxed schemes and formulations for dispersive wave equations. AIMS Mathematics, 2019, 4(2): 254-278. doi: 10.3934/math.2019.2.254
    [5] Yu He, Jianing Yang, Theodore E. Simos, Charalampos Tsitouras . A novel class of Runge-Kutta-Nyström pairs sharing orders 8(6). AIMS Mathematics, 2024, 9(2): 4882-4895. doi: 10.3934/math.2024237
    [6] Jiadong Qiu, Danfu Han, Hao Zhou . A general conservative eighth-order compact finite difference scheme for the coupled Schrödinger-KdV equations. AIMS Mathematics, 2023, 8(5): 10596-10618. doi: 10.3934/math.2023538
    [7] Sara S. Alzaid, Pawan Kumar Shaw, Sunil Kumar . A numerical study of fractional population growth and nuclear decay model. AIMS Mathematics, 2022, 7(6): 11417-11442. doi: 10.3934/math.2022637
    [8] Daniel Clemente-López, Esteban Tlelo-Cuautle, Luis-Gerardo de la Fraga, José de Jesús Rangel-Magdaleno, Jesus Manuel Munoz-Pacheco . Poincaré maps for detecting chaos in fractional-order systems with hidden attractors for its Kaplan-Yorke dimension optimization. AIMS Mathematics, 2022, 7(4): 5871-5894. doi: 10.3934/math.2022326
    [9] Sen Ming, Xiaodong Wang, Xiongmei Fan, Xiao Wu . Blow-up of solutions for coupled wave equations with damping terms and derivative nonlinearities. AIMS Mathematics, 2024, 9(10): 26854-26876. doi: 10.3934/math.20241307
    [10] Huichol Choi, Kinam Sin, Sunae Pak, Kyongjin Sok, Sungryol So . Representation of solution of initial value problem for fuzzy linear multi-term fractional differential equation with continuous variable coefficient. AIMS Mathematics, 2019, 4(3): 613-625. doi: 10.3934/math.2019.3.613
  • A long-run manufacturing system can experience machine breakdown at any time for various reasons such as unskilled labor or outdated machinery technology. In an integrated green inventory model, the produced green products cannot all be perfect throughout a cycle, particularly when machines malfunction. Therefore, an inspection policy is introduced to clean the production process from unusable defect products, the correctness of which depends on the discussion of the inspected errors. The perfect products detected via the inspection process are delivered to the retailer as well as the market. To transport green products, it is essential to control the capacity of the containers and the quantities of green products transported per batch. In this study, the greenhouse gas equivalence factor of CO2 emissions is calculated for all green products' manufacturing and transportation mediums. These types of energies are used in the manufacturing process: electricity, natural gas, and coal. Whereas within transportation, four transportation modes are considered: railways, roadways, airways, and waterways. The retailer can agree to transport their inventories to the customers' house according to their requirement by requiring a third-party local agency via outsourcing criteria. The model solves the problem of CO2 emissions through production and transportation within the machine breakdown.



    We are exploring the initial value problem (IVP) defined as:

    z=f(t,z),z(t0)=z0,z(t0)=z0, (1.1)

    where f:R×RmRm and z0,z0Rm. The above equation is widely applicable in various scientific and engineering contexts. Notably, Eq (1.1) lacks z.

    The Numerov method facilitates the numerical advancement of the solution from tk to tk+1=h+tk, a well-established approach for solving Eq (1.1). It is expressed as:

    zk+1=2zkzk1+h212(fk+1+10fk+fk1),

    where zkz(tk) and fkzn=f(tk,zk). Note that fk,zkRm.

    Hairer [1], Cash [2] and Chawla [3] introduced hybrid implicit Numerov-type methods (i.e., using non-mesh points) approximately 40–45 years ago. Addressing the P-stability property, crucial for handling stiff oscillatory problems, was the primary challenge then. Chawla [4] proposed the modified Numerov scheme, evaluated explicitly as follows:

    v1=zk1,v2=zk,v3=2zkzk1+h2f(tk,v2),zk+12zk+zk1=112h2(f(tk+1,v3)+10f(tk,v2)+f(tk1,v1)), (1.2)

    where h is a constant step length:

    h=tktk1=tk+1tk==t1t0.

    The vectors zk+1,zk, and zk1 approximate z(tk+h),z(tk), and z(tkh) respectively, while v1Rm,v2Rm, and v3Rm represent the stages (alternatively named: function evaluations) used by the method.

    We utilize the information known at the mesh:

    v1=zk1,v2=zk.

    Since f(tk1,v1) is computed in the previous step, only f(tk+1,v3) and f(tk,v2) need evaluation each step, resulting in only two function evaluations per step.

    Tsitouras then introduced a Runge–Kutta–Nyström (RKN)-style method [5], significantly reducing the cost. Consequently, only four steps are required to create a sixth-order method, whereas previous implementations required six function evaluations (see [6]).

    Subsequent to this, our group extensively investigated the topic. Tsitouras developed eighth-order methods with nine steps per step in [7]. Ninth-order methods were studied in [8]. Concurrently, a group of Spanish researchers conducted highly interesting work on the same topic [9,10,11].

    In this study, we aim to present a new method for better addressing problems with periodic solutions. Traditionally, various properties from a simple test equation are fulfilled for this purpose. The novelty lies in training the available free parameters across a wide set of relevant problems. Differential evolution is employed for this training. It is anticipated that this methodology will yield a method better tuned for oscillatory problems.

    For the numerical treatment of Eq (1.1) with higher-order algebraic methods, there exists a considerable demand. We can represent the independent variable t as one of the components of z (if necessary, add t=0 see [12, pg. 286] for details). Consequently, our focus, without loss of generality, lies on the autonomous system z=f(z). Subsequently, a hybrid Numerov method with s stages, as delineated in [7], may be expressed as:

    zk+1=2zkzk1+h2(wIs)f(v), v=(1+a)zkazk1+h2(DIs)f(v) (2.1)

    where IsRs×s represents the identity matrix, DRs×s,wTRs,aRs denote the coefficient matrices of the method, and

    1=[111]TRs.

    To present the coefficients, we utilize the Butcher tableau [13,14],

    aDw.

    The method described in (1.2) can be represented using matrices [8]. As the function evaluations are computed sequentially, these methods are explicit. Therefore, D represents a strictly lower triangular matrix. For the case when s=8, the method takes the following structure:

    fk1=f(tk1,zk1)fk=f(tk,zk)zα=a3zk1+(1a3)zk+h2(d31fk1+ad2fk), fα=f(tka3h,zα),zβ=a4zk1+(1a4)zk+h2(d41fk1+d42fk+d43fα),fβ=f(tka4h,zβ),zc=a5zk1+(1a5)zk+h2(d51fk1+d52fk+d53fα+d54fβ),fc=f(tka5h,zc),zδ=a6zk1+(1a6)zk+h2(d61fk1+d62fk+d63fα+d64fβ+d65fc),fδ=f(tka6h,zδ),ze=a7zk1+(1a7)zk+h2(d71fk1+d72fk+d73fα+d74fβ+d75fc+d76fδ),fe=f(tka7h,ze),zg=a8zk1+(1a8)zk+h2(d81fk1+d82fk+d83fα+d84fβ+d85fc+d86fδ+d87fe),zk+1=2zkzk1+h2(w1fk1+w2fk+w3fα+w4fβ+w5fc+w6fδ+w7fe+w8fg).

    After assuming [15]

    w3=0,w5=w4,w7=w6,w8=w1,a5=a4,a6=a7,a8=1,

    the associated matrices take the form

    D=[0000000000000000d31d32000000d41d42d4300000d51d52d53d540000d61d62d63d64d65000d71d72d73d74d75d7600d81d82d83d84d85d86d870],
    w=[w1w20w4w4w6w6w1]anda=[10a3a4a4a5a51]T.

    Given that fk1 is determined from the preceding stage, seven function assessments are performed per step. To achieve an algebraic order eight, it is imperative to nullify the corresponding error truncation components (refer to [16]).

    Our technique encompasses a total of 34 parameters. As noted earlier, there exist 27 coefficients for matrix D, denoted as

    d31,d32,d41,d42,d43,,d87.

    Moreover, there are 4 coefficients associated with vector w and 3 elements pertaining to vector a. The quantity of condition equations for various orders matches those of the RKN methods [17,18], as presented in Table 1. To attain an eighth order, a cumulative total of 1+1+2+3+6+10+20+36=79 equations must be fulfilled. The equations up to the ninth order can be found in assorted tables within [16].

    Table 1.  Number of order conditions.
    Order p 1 2 3 4 5 6 7 8 9 10 11
    No of conditions 1 1 2 3 6 10 20 36 72 137 275

     | Show Table
    DownLoad: CSV

    The parameters are fewer than the equations, presenting a comparable challenge encountered in devising Runge-Kutta (RK) techniques. Hence, we are compelled to employ simplifying assumptions that diminish the quantity of conditions, thereby also decreasing the number of coefficients. The most prevalent options include

    (D1)(38)=12(a2+a)(38)(Da)(38)=16(a3a)(38)(Da2)(48)=112(a4+a)(48) (2.2)

    with

    ai=[(1)i0ai3ai4(a4)i(a5)iai51]T,

    and for κ1<κ2

    (v)(κ1κ2)=[vκ1vκ1+1vκ2]T.

    The remaining order conditions are presented in Table 2. In this table, the symbol "*" can be interpreted as element-wise multiplication:

    [u1u2un]T[v1v2vn]T=[u1v1u2v2unnn]T.
    Table 2.  Equations of condition up to eighth order, under assumptions (2.2).
    w1=1, wa2=16, wa4=115, wa6=128,
    wD2a=0, wD31=120160, wD(aDc)=1115120,
    wD3a=0, wD(aD21)=17560, w(aD2c)=1710080,
    w(aD(aDa))=1720, w(aD31)=2360480, w(D1D2a)=1720160.

     | Show Table
    DownLoad: CSV

    This operation holds lower precedence. Parentheses, exponents, and dot products are always computed prior to "*".

    Given the thirteen order conditions outlined in Table 2 and the fulfillment of 17 assumptions (2.2), we determine that only thirty equations are necessary. This results in four coefficients remaining as variables. Let's consider a3,a4,a5, and d64. The issue can be resolved explicitly, and the corresponding efficient Mathematica [19] module is depicted in Table 3.

    Table 3.  Mathematica listing for the derivation of the coefficients with respect to a3,a4,a5 and d64.
    BeginPackage["Numerov8'"];
    Clear["Numerov8'*"]
    Numerov8::usage = " Numerov8[x1, x2, x3, x4] for 7-stages 8-order explicit Numerov"
    Begin["'Private'"];
    Clear["Numerov8'Private'*"];
    Numerov8[aa3_?NumericQ, aa4_?NumericQ, aa5_?NumericQ, dd64_?NumericQ] :=
    Module[{a3, a4, a5, w, w1, w2, w4, w6, w7, a, d, d31, d32, d41, d42, d43,
         d85, d54, d61, d63, d72, d74, d53, d51, d84, d62, d52, e, so,
         d87, d75, d64, d71, d81, d83, d85, d65, d73, d82, d86, d76},
     w = {w1, w2, 0, w4, w4, w6, w6, w1};
     a = {-1, 0, a3, a4, -a4, -a5, a5, 1};
     d = {{0, 0, 0, 0, 0, 0, 0, 0},
        {0, 0, 0, 0, 0, 0, 0, 0},
        {d31, d32, 0, 0, 0, 0, 0, 0},
        {d41, d42, d43, 0, 0, 0, 0, 0},
        {d51, d52, d53, d54, 0, 0, 0, 0},
        {d61, d62, d63, d64, d65, 0, 0, 0},
        {d71, d72, d73, d74, d75, d76, 0, 0},
        {d81, d82, d83, d84, d85, d86, d87, 0}};
     e = {1, 1, 1, 1, 1, 1, 1, 1};
     a3 = Rationalize[aa3, 10^-17]; a4 = Rationalize[aa4, 10^-17];
     a5 = Rationalize[aa5, 10^-17]; d64 = Rationalize[dd64, 10^-17];
     so = Solve[{-1 + w. e, -(1/12) + w. a^2/2, -(1/360) + w. a^4/24,
           -(1/20160) + w. a^6/720} == {0, 0, 0, 0}, {w1, w2, w4, w6}];
     w = Simplify[w /. so[[1]]];
     so = Solve[
      Join[(d. e - 1/2*(a^2 + a))[[3;; 8]], (d. a - 1/6*(a^3 - a))[[3;; 8]],
         (d. a^2 - 1/12*(a^4 + a))[[4;; 8]], {w. d. d. a,
         w. d. d. d. e - 1/20160, w. d. (a d. a) + 11/15120,
         - w. d. d. d. a, w. d. (a d. d. e) + 1/7560,
         w. (a d. d. a) - 17/10080, w. (a d. (a d. a)) + 1/720,
         w. (a d. d. d. e) - 23/60480, w. (d. e d. d. a) - 17/20160}]
                                  == Array[0 &, 26],
         {d32, d31, d42, d41, d52, d51, d62, d61, d72, d71, d82, d81, d43,
         d53, d63, d73, d83, d54, d65, d74, d75, d76, d84, d85, d86, d87}];
     d = Simplify[d /. so][[1]];
     Return[{a, w, d}]]
    End[];
    EndPackage[];

     | Show Table
    DownLoad: CSV

    For comprehensive details regarding the computation of truncation error coefficients, refer to the comprehensive overview in [16]. Coleman [20] emphasized the utilization of the B2 series representation of the local truncation error, drawing connections with the T2 rooted trees.

    In [21], the scalar test problem

    z=ω2z,ωR, (3.1)

    was introduced to examine the periodic characteristics of techniques applied to solve (1.1).

    Upon employing a Numerov-style approach akin to (2.1) to tackle problem (3.1), a discrete equation is formulated, taking the form

    zk+1+S(ψ2)zk+P(ψ2)zk1=0, (3.2)

    where ψ=ωh, and S(ψ2),P(ψ2) represent polynomials in ψ2.

    The periodicity interval (0,ψ0) encompasses all 0<ψ<ψ0 with P(ψ2)1 and 0<|S(ψ2)|<2. A method deemed P-stable exhibits ψ0=.

    The fulfillment of the zero dissipation property necessitates that

    P(ψ2)=1ψ2w(Is+ψ2D)1a1,

    ensuring that the numerical method approximating (3.1) remains within its cyclic orbit.

    The dissipation order ρ of a method is characterized by the number for which 1P(ψ2)=O(ψρ). It is worth noting that

    P(ψ2)=1+j=0ψ2j+1wDja=1+ψq1+ψ3q3+.

    A method with algebraic order 2i satisfies the terms in the aforementioned series for j=0,1,,i1. Consequently, for an eighth order method, it is advantageous to address

    q9=wD4a=0,q11=wD5a=0,etc.,

    to enhance the dissipation order. In the case of a zero-dissipative method, only q9=z11=q13=q15=q17=0 is necessary, and as for the lower triangular matrix D, all other q-s vanish,

    q2i+1=wDia=0,fori>8.

    The difference in angles between the numerical and theoretical cyclic solution of (3.1) is called phase-lag. Since the solution of (3.1) is

    z(t)=eωt1,

    we may write Eq (3.2) as

    Λ=e2ψ1+S(ψ2)eψ1+P(ψ2)=O(ψτ), (3.3)

    with the number τ the phase-lag order of the method. Since

    S(ψ2)=2ψ2w(I+ψ2D)1(1+a),

    we observe that expression (3.3) is a series of the form

    Λ=i=1ψ2i(1)i+1(ij=11(2(ij))!wDj1(1+a)wDi1a2ij=11(2j)!(2(ij))!), (3.4)

    or in a compact form

    Λ=ψ2λ2+ψ4λ4+ψ6λ6+O(ψ8).

    In this series, λ2=λ4==λ2i=0 for i=1,2,,p12+1, where p denotes the algebraic order of the method. For eighth order methods, the order conditions yield λ2=λ4=λ6=λ8=0. Given that p=8, and for i=3, we infer from (3.4):

    λ6=1(2(31))!w(1+a)+12!wD(1+a)+wD212(12!4!+14!2!+16!0!)=0.

    In case of i=4, we get (observe already that w1=1,wc=0,wDc=0, etc.),

    λ8=12720160+1720(wa+w1)+124(wDa+wD1)
    +12(wD2a+wD21)+wD31=0.

    Further we have that,

    λ10=wD4111814400,
    λ12=12wD4a+wD511239500800,
    λ14=124wD4c+12wD5a+12wD51+wD612310897286400,
    λ16=1720wD4c+124wd5c+124wD51
    +12wD6c+12wD61+wD716473487131648000.

    Then we may ask for simultaneous satisfaction of phase-lag order conditions:

    λ10=0,λ12=0,λ14=0,λ16=0. (3.5)

    The set of four nonlinear equations (3.5) can be resolved to determine the four independent parameters. Our analysis reveals that the method exhibits a phase error on the order of O(ψ18), whereas the amplification error is O(ψ9). Consequently, the newly devised method demonstrates dissipative characteristics and lacks a periodicity interval.

    The free parameters satisfying (3.5) in double precision are the following [15],

    a3=0.870495922977052833,a4=0.265579060733883584,
    a5=1.11694341482497459,d64=2.43624015403357971,

    and form the method N8ph18 that outperforms other methods in oscillatory problems.

    Another noteworthy characteristic is P-stability [2,3]. In this context, it is essential to ensure σ1, while also meeting the condition

    2(2ψ2w(Isψ2D)1(1+a))2.

    Only implicit methods are capable of fulfilling these two criteria simultaneously.

    From the aforementioned set, our aim is to create a specific hybrid Numerov-style approach. The resultant technique should excel when applied to challenges exhibiting oscillatory solutions. Therefore, we opt to evaluate the following scenarios for testing purposes.

    z(x)=μ2z(t),z(0)=1,z(0)=0,t[0,10π],

    with the analytical solution z(t)=cos(μx). This scenario was tested using five distinct values of μ: specifically, μ=1,3,5,7,9. These numbers were chosen arbitrarily. Different choices will produce slightly different coefficients. Anyway, Differential Evolution is a metaheuristic method that produces random results in (hopefully) the direction of desired solutions. We may get thousands of results extremely close to each other. Consequently, we have five scenarios denoted as 1–5.

    Our current project's primary framework is rooted in [22]. Upon selection of the independent parameters a3,a4,a5,d64, we establish a method termed NEW8. Each scenario undergoes four runs with varying step counts. For each run we evaluated the maximum global error geproblem,steps observed and we record the "accurate digits" i.e., log10(geproblem,steps). The mean value r, computed over these 20 problems, serves as an efficacy metric to be optimized. To facilitate this optimization, we employ the differential evolution technique [23].

    DE operates through iterative steps, where each iteration, or generation g, involves a "population" of individuals (a(g)3,i,a(g)4,i,a(g)5,i,d(g)64,i), i=1,2,,N, with N denoting the population size. The initial population (a(0)3,i,a(0)4,i,a(0)5,i,d(0)64,i), i=1,2,,N is randomly generated in the first step. Furthermore, we designate r as the fitness function, computed as the average precision over the 20 aforementioned runs. This fitness function is then assessed for each individual within the initial population. In every generation (iteration) g, a three-step sequential process updates all individuals involved, consisting of Differentiation, Crossover, and Selection.

    We utilized MATLAB [24] software DeMat [25] for the implementation of the aforementioned technique. Indeed, notable enhancements were achieved through selection:

    a3=0.9442042052877105,a4=0.4611624530665672,a5=0.8575664014828354,d64=12.56127525577038.

    The coefficients of the new method in matrix forms are given below, which are suitable for double precision computations.

    D=(000000000000000013073231765816835116242593112904488730000001550430130344630420454652969150362054685615481128700000046437667980424298950918151054858556137848999469113561290636998791667000023846431619519460335551854734301857693862090392293777917897911057714824761030425807485391861900027674601510373998991131050235688407688186740362103009932511393142131212843869150014782512313274896071398108981421100348994066631129559599291110149698123715587744963114191118307167862726461355397241959142749796241969555741123970163167188440919931375841240640),
    w=[1341579392312827461160043108495844203060712891258074655306071289125807465542607879894937316426078798949373161341579392312827],

    and

    a=[101987811512105277124336150294026523433615029402652396673439112729975966734391127299751]T.

    With this approach, we achieved a value of approximately r9.24, which demonstrates remarkable performance. In fact, numerous methods yielding r>9.1 were obtained, indicating the presence of a narrow range of parameter combinations a3,a4,a5,d64 where r reaches elevated levels. It is noteworthy that in the current configuration, the amplification differs from unity (σ1), and the phase lag is on the order of O(v8), implying ρ=O(v8), where ρ80. Moreover, no specific property is satisfied under these conditions.

    In Table 4 we present the results for the new method and the method N8ph18 presented in [15] that was especially formed for addressing oscillatory problems. For this latter method we observe a performance ρ7.82 which is much smaller.

    Table 4.  Training phase. Accurate digits delivered after using various steps by NEW8 and N8ph18 in the interval [0,10π].
    Problem Steps NEW8 N8ph18
    1 20 7.5 6.6
    40 11.2 9.4
    60 12.3 11.0
    80 13.3 12.1
    2 50 6.0 5.4
    100 10.1 8.2
    150 11.2 9.8
    200 12.0 10.9
    3 80 5.6 5.0
    130 8.2 7.0
    180 10.8 8.3
    230 12.0 9.2
    4 100 4.7 4.4
    150 7.0 6.0
    200 8.6 7.2
    250 11.0 8.1
    5 150 5.5 4.9
    225 7.7 6.6
    300 9.6 7.7
    375 10.3 8.6

     | Show Table
    DownLoad: CSV

    The NEW8 method was designed to excel following multiple iterations on model scenarios. In the assessments outlined in Table 4, it was anticipated to outperform alternative methods for the specified intervals and step counts.

    Hence, we aim to subject NEW8 to a distinct array of challenges, encompassing varying intervals and step counts. To this end, we re-evaluate problems 1–5 over an extended interval [0,20π]. These problems are now labeled as 1,2,,5. Additionally, we introduce two additional nonlinear problems and a wave equation to broaden the scope of evaluation. Specifically, we consider:

    z(t)=100z(t)+99sint,z(0)=1,z(0)=11,t[0,20π],

    with the theoretical solution z(t)=cos(10t)+sin(10t)+sint.

    Next, we choose the equation

    z(t)=1500cos(1.01t)z(t)z(t)3,z(0)=0.2004267280699011,z(0)=0,

    with an approximate analytical solution given in [16],

    z(t){61016cos(11.11t)+4.6091013cos(9.09t)+3.7434951010cos(7.07t)+3.040149839107cos(5.05t)+2.469461432611104cos(3.03t)+0.2001794775368452cos(1.01t)}.

    Finally, we consider the linearized wave equation, which is a rather large-scale problem [16],

    ϑ2uϑt2=4ϑ2uϑx2+sintcos(πxb), 0xb=100, t[0,20π],ϑuϑx(t,0)=ϑuϑx(t,b)=0,u(0,x)0, ϑuϑt(0,x)=b24π2b2cosπxb,

    with the theoretical solution

    u(t,x)=b24π2b2sintcosπxb. (5.1)

    We discretize ϑ2uϑx2 using fourth-order symmetric differences for internal points, while boundary points utilize one-sided differences of the same order (while considering the information about ϑuϑx at those points). This results in the following system:

    [z0z1zN]=4(Δx)2[41572838918257144103742914801124352431121124352431120148297410325714418893841572][z0z1zN]+sint[cos(0Δxbπ)cos(1Δxbπ)cos(NΔxbπ)].

    Here, z0,z1zN may be understood as coordinates of zRN+1, and not as time steps. Upon selecting Δx=5, we establish a system with constant coefficients and N=20. The outcomes for this scenario were primarily influenced by the errors arising from the semi-discretization process. As a consequence, an error of about 106.1 is added constantly to the theoretical solution (5.1). Thus, no method can have a true error smaller than this. But, as shown in Table 5, our new method even though it has limited accuracy, is faster (i.e., uses fewer time steps) than N8ph18.

    Table 5.  Numerical tests phase. Accurate digits delivered after using various steps by NEW8 and N8ph18 in the interval [0,20π].
    Problem Steps NEW8 N8ph18
    1 40 7.2 6.3
    80 10.9 9.1
    120 12.0 10.7
    160 12.9 11.8
    2 100 5.7 5.1
    200 9.8 7.9
    300 10.9 9.5
    400 11.7 10.6
    3 160 5.2 4.7
    260 7.9 6.7
    360 10.5 8.0
    460 12.0 8.9
    4 200 4.4 4.1
    300 6.7 5.7
    400 8.3 6.9
    500 10.7 7.8
    5 300 5.2 4.6
    450 7.4 6.2
    600 9.3 7.4
    750 10.0 8.3
    6 240 2.9 3.0
    480 7.0 5.9
    720 10.1 7.5
    960 10.1 8.6
    7 100 4.8 4.9
    200 7.7 7.3
    300 9.3 8.7
    400 10.4 9.7
    8 60 6.0 5.0
    70 6.1 5.4
    80 6.1 5.8
    90 6.1 5.9

     | Show Table
    DownLoad: CSV

    We execute these 8 scenarios with varying step counts and present the outcomes in Table 5. Notably, we also incorporate results obtained using the N8ph18 method. For economy and ease of reading the results, only the best methods of eighth order were tested on oscillatory problems. i.e., NEW8 and N8ph18. N8ph18 has already proven to outperform other 8th order methods [15,16]. It becomes evident from the table that NEW8 significantly outperforms all other methods documented in the literature. Overall, an improvement of nearly one decimal digit in accuracy was achieved.

    The proposed method is constructed for application to second order Ordinary Differential Equations (ODEs) with oscillatory solutions. However, this is a rather wide category of problems that is constantly under the interest of respected scholars. As seen from problem 8 (wave equation), our method may also apply to a certain kind of partial differential equations sharing periodic solutions after proper transformation to system of ODEs.

    The key aspects of our investigation were as follows:

    ● We explored a family of eighth-order hybrid two-step techniques characterized by minimal stage counts, with a notable innovation being the proposal of a methodology for selecting appropriate independent parameters.

    ● The parameters of the novel technique were determined following extensive evaluation of their performance across a diverse array of periodic scenarios.

    ● Optimal parameter selection was achieved through the application of the differential evolution approach. Across a broad spectrum of challenges featuring oscillatory solutions, the devised approach demonstrated significant superiority over methods belonging to both similar and disparate families.

    ● The method we introduced is finely calibrated for scenarios with periodic solutions, particularly those featuring substantial linear components.

    Both authors of this article have been contributed equally. Both authors have read and approved the final version of the manuscript for publication.

    The authors declare that no Artificial Intelligence (AI) tools were used in the creation of this article.

    This work does not have any conflicts of interest.



    [1] Abisourour J, Hachkar M, Mounir B, et al. (2020) Methodology for integrated management system improvement: Combining costs deployment and value stream mapping. Int J Prod Res 58: 3667–3685. https://doi.org/10.1080/00207543.2019.1633482 doi: 10.1080/00207543.2019.1633482
    [2] Bai QG, Gong YM, Jin MZ, et. al (2019) Effects of carbon emission reduction on supply chain coordination with vendor-managed deteriorating product inventory. Int J Prod Econ 208: 83–99. http://doi.org/doi.org/10.1016/j.ijpe.2018.11.008. doi: 10.1016/j.ijpe.2018.11.008
    [3] Ben-Daya M, Hassini E, Bahroun Z (2019) Internet of things and supply chain management: A literature review. Int J Prod Res 57: 4719–4742. https://doi.org/10.1080/00207543.2017.1402140 doi: 10.1080/00207543.2017.1402140
    [4] Bhuniya S, Pareek P, Sarkar B, et al. (2021) A smart production process for the optimum energy consumption with maintenance policy under a supply chain managementy. Processes 9: 19. https://doi.org/10.3390/pr9010019 doi: 10.3390/pr9010019
    [5] Boulaksil Y, Grunow M, Fransoo JC (2011) Capacity flexibility allocation in an outsourced supply chain with reservation. Int J Prod Econ 129: 111–118. https://doi.org/10.1016/j.ijpe.2010.09.010 doi: 10.1016/j.ijpe.2010.09.010
    [6] Bouslah B, Gharbi A, Pellerin R, et al. (2013) Optimal production control policy in unreliable batch processing manufacturing systems with transportation delay. Int J Prod Res 51: 264–280. https://doi.org/10.1080/00207543.2012.676217 doi: 10.1080/00207543.2012.676217
    [7] Bortolini M, Faccio M, Gamberi M, et al. (2016) Multi-objective design of multi-modal fresh food distribution networks. Int J Logist Syst Manage 24: 155–177. https://doi.org/10.1504/IJLSM.2016.076470 doi: 10.1504/IJLSM.2016.076470
    [8] Cárdenas-Barrón LE, González-Velarde JL, Garza-Nuñeza D, et al. (2019) Heuristic algorithm based on reduce and optimize approach for a selective and periodic inventory routing problem in a waste vegetable oil collection environment. Int J Prod Econ 211: 44–59. http://doi.org/10.1016/j.ijpe.2019.01.026 doi: 10.1016/j.ijpe.2019.01.026
    [9] Cárdenas-Barrón LE, Shaikh AA, Tiwari S, et al. (2020) An EOQ inventory model with nonlinear stock dependent holding cost, nonlinear stock dependent demand and trade credit. Comput Ind Eng 139: 105557. https://doi.org/10.1016/j.cie.2018.12.004 doi: 10.1016/j.cie.2018.12.004
    [10] Cárdenas-Barrón LE, Treviño-Garza G (2014) An optimal solution to a three echelon supply chain network with multi-product and multi-period. Appl Math Model 38: 1911–1918. http://doi.org/10.1016/j.apm.2013.09.010 doi: 10.1016/j.apm.2013.09.010
    [11] Chan FTS, Wang ZX, Goswami A, et al. (2020) Multi-objective particle swarm optimisation based integrated production inventory routing planning for efficient perishable food logistics operations. Int J Prod Res 58: 5155–5174. https://doi.org/10.1080/00207543.2019.1701209 doi: 10.1080/00207543.2019.1701209
    [12] Chen YCK, Sackett PJ (2007) Return merchandize authorization stakeholders and customer requirements management—high-technology products. Int J Prod Res 45: 1595–1608. https://doi.org/10.1080/00207540600942508 doi: 10.1080/00207540600942508
    [13] Choi SB, Dey BK, Kim SJ, et al. (2022) Intelligent servicing strategy for an online-to-offline (O2O) supply chain under demand variability and controllable lead time. RAIRO-Oper Res 56: 1623–1653. https://doi.org/10.1051/ro/2022026 doi: 10.1051/ro/2022026
    [14] Elhedhli S, Merrick R (2012) Green supply chain network design to reduce carbon emissions. Transport Res D: Tr E 17: 370–379. http://doi.org/10.1016/j.trd.2012.02.002 doi: 10.1016/j.trd.2012.02.002
    [15] Faccio M, Persona A, Sgarbossa F, et al. (2011) Multi-stage supply network design in case of reverse flows: A closed-loop approach. Int J Oper Res 12: 157–191. https://doi.org/10.1504/IJOR.2011.042504 doi: 10.1504/IJOR.2011.042504
    [16] Faccio M, Gamberi M (2015) New city logistics paradigm: From the "Last Mile" to the "Last 50 Miles" sustainable distribution. Sustainability 7: 14873–14894. https://doi.org/10.3390/su71114873 doi: 10.3390/su71114873
    [17] Guchhait R, Sarkar B (2021) Economic and environmental assessment of an unreliable supply chain management. RAIRO-Oper Res 55: 3153–3170. https://doi.org/10.1051/ro/2021128 doi: 10.1051/ro/2021128
    [18] Ho KY, Su RK (2020) Insertion of new idle time for unrelated parallel machine scheduling with job splitting and machine breakdowns. Comput Ind Eng 147: 106630. https://doi.org/10.1016/j.cie.2020.106630 doi: 10.1016/j.cie.2020.106630
    [19] Hota SK, Ghosh SK, Sarkar B (2022) A solution to the transportation hazard problem in a supply chain with an unreliable manufacturer. AIMS Environ Sci 9: 354–380. http://doi.org/10.3934/environsci.2022023 doi: 10.3934/environsci.2022023
    [20] Jani MY, Betheja MR, Chaudhari U, et al. (2021) Optimal investment in preservation technology for variable demand under trade-credit and shortages. Mathematics 9: 1301. https://doi.org/10.3390/math9111301 doi: 10.3390/math9111301
    [21] Kaur J, Sidhu R, Awasthi A, et al. (2018) A dematel based approach for investigating barriers in green supply chain management in Canadian manufacturing firms. Int J Prod Res 56: 312–332. https://doi.org/10.1080/00207543.2017.1395522 doi: 10.1080/00207543.2017.1395522
    [22] Khan I, Sarkar B (2021) Transfer of risk in supply chain management with joint pricing and inventory decision considering shortages. Mathematics 9: 638. https://doi.org/10.3390/math9060638 doi: 10.3390/math9060638
    [23] Khan M, Hussain M, Cárdenas-Barrón LE, et al. (2017) Learning and screening errors in an EPQ inventory model for supply chains with stochastic lead time demands. Int J Prod Res 55: 4816–4832. https://doi.org/10.1080/00207543.2017.1310402 doi: 10.1080/00207543.2017.1310402
    [24] Kugele ASH, Ahmed W, Sarkar B (2022) Geometric programming solution of second degree difficulty for carbon ejection controlled reliable smart production system. RAIRO-Oper Res 56: 1013–1029. https://doi.org/10.1051/ro/2022028 doi: 10.1051/ro/2022028
    [25] Kumar S, Sigroha K, Kumar M, et al. (2022) Manufacturing/remanufacturing based supply chain management under advertisements and carbon emission process. RAIRO-Oper Res 56: 831–851. https://doi.org/10.1051/ro/2021189 doi: 10.1051/ro/2021189
    [26] Lee SD, Fu YC (2014) Joint production and delivery lot sizing for a make-to-order producer-buyer supply chain with transportation cost. Transp Res E: Log 66: 23–35. http://doi.org/10.1016/j.tre.2014.03.002 doi: 10.1016/j.tre.2014.03.002
    [27] Lee YH, Jeong CS, Moon C (2002) Advanced planning and scheduling with outsourcing in manufacturing supply chain. Comput Ind Eng 43: 351–374. https://doi.org/10.1016/S0360-8352(02)00079-7 doi: 10.1016/S0360-8352(02)00079-7
    [28] Majumder A, Sinha SS, Govindan K (2021) Prioritising risk mitigation strategies for environmentally sustainable clothing supply chains: Insights from selected organisational theories. Sustain Prod Consum 28: 543–555. https://doi.org/10.1016/j.spc.2021.06.021 doi: 10.1016/j.spc.2021.06.021
    [29] Muhammad I (2022) Carbon tax as the most appropriate carbon pricing mechanism for developing countries and strategies to design an effective policy. AIMS Environ Sci 9: 161–184. https://doi.org/10.3934/environsci.2022012 doi: 10.3934/environsci.2022012
    [30] Mittal M, Pareek S, Agarwal R (2015) EOQ estimation for imperfect quality items using association rule mining with clustering. Decis Sci Lett 4: 497–508. http://doi.org/10.5267/j.dsl.2015.5.008 doi: 10.5267/j.dsl.2015.5.008
    [31] Mittal M, Sarkar B (2022) Stochastic behavior of exchange rate on an international supply chain under random energy price. Math Comput Simulat. In press. https://doi.org/10.1016/j.matcom.2022.09.007
    [32] Moon I, Yun WY, Sarkar B (2022) Effects of variable setup cost, reliability, and production costs under controlled carbon emissions in a reliable production system. Eur J Ind Eng 16: 371–397.
    [33] Nguyen L, Moseson AJ, Spatari S, et al. (2018) Effects of composition and transportation logistics on environmental, energy and cost metrics for the production of alternative cementitious binders. J Clean Prod 185: 628–645. http://doi.org/10.1016/j.jclepro.2018.02.247 doi: 10.1016/j.jclepro.2018.02.247
    [34] Sana SS, Chaudhuri K (2010) An EMQ model in an imperfect production process. Int J Syst Sci 41: 635–646. http://doi.org/10.1080/00207720903144495 doi: 10.1080/00207720903144495
    [35] Sarkar A, Guchhait R, Sarkar B (2022) Application of the artificial neural network with multithreading within an inventory model under uncertainty and inflation. Int J Fuzzy Syst 24: 2318–2332. https://doi.org/10.1007/s40815-022-01276-1 doi: 10.1007/s40815-022-01276-1
    [36] Sarkar B, Bhuniya B (2022) A sustainable flexible manufacturing–remanufacturing model with improved service and green investment under variable demand. Expert Syst Appl 202: 117154. https://doi.org/10.1016/j.eswa.2022.117154 doi: 10.1016/j.eswa.2022.117154
    [37] Sarkar B, Dey BK, Sarkar M, et al. (2022) A smart production system with an autonomation technology and dual channel retailing. Comput Ind Eng 173: 108607. https://doi.org/10.1016/j.cie.2022.108607 doi: 10.1016/j.cie.2022.108607
    [38] Sarkar B, Joo J, Kim Y, et al. (2022) Controlling defective items in a complex multi-phase manufacturing system. RAIRO-Oper Res 56: 871–889. https://doi.org/10.1051/ro/2022019 doi: 10.1051/ro/2022019
    [39] Sarkar B, Kar S, Basu K, et al. (2022) A sustainable managerial decision-making problem for a substitutable product in a dual-channel under carbon tax policy. Comput Ind Eng 172: 108635. http://doi.org/10.1016/j.cie.2022.108635 doi: 10.1016/j.cie.2022.108635
    [40] Sarkar B, Saren S (2016) Product inspection policy for an imperfect production system with inspection errors and warranty cost. Eur J Oper Res 248: 263–271. http://doi.org/10.1016/j.ejor.2015.06.021 doi: 10.1016/j.ejor.2015.06.021
    [41] Sarkar B, Takeyeva D, Guchhait R, et al. (2022) Optimized radio-frequency identification system for different warehouse shapes. Know-Based Syst. In press. https://doi.org/10.1016/j.knosys.2022.109811
    [42] Shekarian E, Marandi A, Majava J (2021) Dual-channel remanufacturing closed-loop supply chains under carbon footprint and collection competition. Sustain Prod Consum 28: 1050–1075. https://doi.org/10.1016/j.spc.2021.06.028 doi: 10.1016/j.spc.2021.06.028
    [43] Tayyab M, Habib MS, Jajja MSS, et al. (2022) Economic assessment of a serial production system with random imperfection and shortages: A step towards sustainability. Comput Ind Eng 171: 108398. https://doi.org/10.1016/j.cie.2022.108398 doi: 10.1016/j.cie.2022.108398
    [44] Taleizadeh AA, Cárdenas-Barrón LE, Sohani R (2019) Coordinating the supplier-retailer supply chain under noise effect with bundling and inventory strategies. J Ind Manag Optim 15: 1701–1727. http://doi.org/10.3934/jimo.2018118 doi: 10.3934/jimo.2018118
    [45] Tseng SC, Hung SW (2014) A strategic decision-making model considering the social costs of carbon dioxide emissions for sustainable supply chain management. J Environ Manage 133: 315–322. http://doi.org/10.1016/j.jenvman.2013.11.023 doi: 10.1016/j.jenvman.2013.11.023
    [46] Ullah M, Asghar I, Zahid M, et al. (2021) Ramification of remanufacturing in a sustainable three-echelon closed-loop supply chain management for returnable products. J Clean Prod 290: 125609. https://doi.org/10.1016/j.jclepro.2020.125609 doi: 10.1016/j.jclepro.2020.125609
    [47] Wee HM, Daryanto Y (2020) Imperfect quality item inventory models considering carbon emissions, In: Shah N, Mittal M (Eds.), Optimization and inventory management, Singapore: Springer, 137–159. http://doi.org/10.1007/978-981-13-9698-4_8
    [48] Zhu ZG, Chu F, Dolgui A, et al. (2017) Recent advances and opportunities in sustainable food supply chain: A model-oriented review. Int J Prod Res 56: 5700–5722. https://doi.org/10.1080/00207543.2018.1425014 doi: 10.1080/00207543.2018.1425014
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1965) PDF downloads(122) Cited by(2)

Figures and Tables

Figures(10)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog