In this paper, we present a general conservative eighth-order compact finite difference scheme for solving the coupled Schrödinger-KdV equations numerically. The proposed scheme is decoupled and preserves several physical invariants in discrete sense. The matrices obtained in the eighth-order compact scheme are all circulant symmetric positive definite so that it can be used to solve other similar equations. Numerical experiments on model problems show the better performance of the scheme compared with other numerical schemes.
Citation: Jiadong Qiu, Danfu Han, Hao Zhou. A general conservative eighth-order compact finite difference scheme for the coupled Schrödinger-KdV equations[J]. AIMS Mathematics, 2023, 8(5): 10596-10618. doi: 10.3934/math.2023538
In this paper, we present a general conservative eighth-order compact finite difference scheme for solving the coupled Schrödinger-KdV equations numerically. The proposed scheme is decoupled and preserves several physical invariants in discrete sense. The matrices obtained in the eighth-order compact scheme are all circulant symmetric positive definite so that it can be used to solve other similar equations. Numerical experiments on model problems show the better performance of the scheme compared with other numerical schemes.
[1] | S. K. Lele, Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103 (1992), 16–42. http://dx.doi.org/10.1016/0021-9991(92)90324-R doi: 10.1016/0021-9991(92)90324-R |
[2] | A. Duràn, M. A. Lopez-Marcos, Conservative numerical methods for solitary wave interactions, J.Phys. A, 36 (2003), 7761–7770. http://dx.doi.org/10.1088/0305-4470/36/28/306 doi: 10.1088/0305-4470/36/28/306 |
[3] | D. Bai, L. Zhang, The finite element method for the coupled Schrödinger-KdV equations, Phys. Lett. A, 373 (2009), 2237–2244. http://dx.doi.org/10.1016/j.physleta.2009.04.043 doi: 10.1016/j.physleta.2009.04.043 |
[4] | A. Golbabai, A. Safdari-Vaighani, A meshless method for numerical solution of the coupled Schrödinger-KdV equations, Computing, 92 (2011), 225–242. http://dx.doi.org/10.1007/s00607-010-0138-4 doi: 10.1007/s00607-010-0138-4 |
[5] | D. Kaya, M. El-Sayed, On the solution of the coupled Schrödinger-KdV equation by the decomposition method, Modern Phys. Lett. A, 313 (2003), 82–88. http://dx.doi.org/10.1016/S0375-9601(03)00723-0 doi: 10.1016/S0375-9601(03)00723-0 |
[6] | M. A. Abdou, A. A. Soliman, New applications of variational iteration method, Phys. D, 211 (2005), 1–8. http://dx.doi.org/10.1016/j.physd.2005.08.002 doi: 10.1016/j.physd.2005.08.002 |
[7] | H. Zhou, D. Han, M. Du, Y. Shi, A conservative spectral method for the coupled Schrödinger-KdV equations, Int. J. Modern Phys. C, 31 (2020), 1–16. http://dx.doi.org/10.1142/S0129183120500746 doi: 10.1142/S0129183120500746 |
[8] | S. Kucukarslan, Homotopy perturbation method for coupled Schrödinger-KdV equation, Nonlinear Anal., 10 (2009), 2264–2271. http://dx.doi.org/10.1016/j.nonrwa.2008.04.008 doi: 10.1016/j.nonrwa.2008.04.008 |
[9] | S. Xie, S. C. Yi, A conservative compact finite difference scheme for the coupled Schrödinger-KdV equations, Adv. Comput. Math., 46 (2020), 1–22. http://dx.doi.org/10.1007/s10444-020-09758-2 doi: 10.1007/s10444-020-09758-2 |
[10] | P. J. Davis, Circulant matrices, 2 Eds., Providence: American Mathematica Society, 2012. |
[11] | P. Amorim, M. Figueira, Convergence of a numerical scheme for a coupled Schrödinger-KdV system, Rev. Mat. Complut., 26 (2013), 409–426. https://doi.org/10.1007/s13163-012-0097-8 doi: 10.1007/s13163-012-0097-8 |
[12] | T. Wang, B. Guo, Q. Xu, Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions, J. Comput. Phys., 243 (2013), 382–399. http://dx.doi.org/10.1016/j.jcp.2013.03.007 doi: 10.1016/j.jcp.2013.03.007 |
[13] | X. Zhang, Z. Ping, A reduced high-order compact finite difference scheme based on proper orthogonal decomposition technique for KdV equation, Appl. Math. Comput., 339 (2018), 535–545. http://dx.doi.org/10.1016/j.amc.2018.07.017 doi: 10.1016/j.amc.2018.07.017 |
[14] | Z. Gao, S. Xie, Fourth-order alternating direction implicit compact finite difference schemes for two-dimensional Schrödinger equations, Appl. Numer. Math., 61 (2011), 593–614. http://dx.doi.org/10.1016/j.apnum.2010.12.004 doi: 10.1016/j.apnum.2010.12.004 |
[15] | W. Bao, Y. Cai, Optimal error estmiates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation, Math. Comput., 82 (2012), 99–128. http://dx.doi.org/10.1090/S0025-5718-2012-02617-2 doi: 10.1090/S0025-5718-2012-02617-2 |
[16] | S. Chippada, C. N. Dawson, M. L. Martínez, M. F. Wheeler, Finite element approximations to the system of shallow water equations, part Ⅱ: discrete time a priori error estimates, SIAM J. Numer. Anal., 36 (1999), 226–250. http://dx.doi.org/10.1137/S0036142996314159 doi: 10.1137/S0036142996314159 |
[17] | C. N. Dawson, M. L. Martínez, A characteristic-Galerkin approximation to a system of shallow water equations, Numer. Math., 86 (2000), 239–256. http://dx.doi.org/10.1007/pl00005405 doi: 10.1007/pl00005405 |
[18] | K. Appert, J. Vaclavik, Dynamics of coupled solitons, Phys. Fluids, 20 (1977), 1845–1849. http://dx.doi.org/10.1063/1.861802 doi: 10.1063/1.861802 |
[19] | K. Appert, J. Vaclavik, Instability of coupled Langmuir and ion-acoustic solitons, Phys. Lett. A, 67 (1978), 39–41. http://dx.doi.org/10.1016/0375-9601(78)90561-3 doi: 10.1016/0375-9601(78)90561-3 |
[20] | Y. L. Zhou, Applications of discrete functional analysis of finite diffrence method, New York: International Academic Publishers, 1990. |
[21] | J. Li, T. Wang, Optimal point-wise error estimate of two conservative fourth-order compact finite difference schemes for the nonlinear Dirac equation, Appl. Numer. Math., 162 (2021), 150–170. http://dx.doi.org/10.1016/j.apnum.2020.12.010 doi: 10.1016/j.apnum.2020.12.010 |
[22] | Y. I. Dimitrienko, S. Li, Y. Niu, Study on the dynamics of a nonlinear dispersion model in both 1D and 2D based on the fourth-order compact conservative difference scheme, Math. Comput. Simul., 182 (2021), 661–689. http://dx.doi.org/10.1016/j.matcom.2020.11.012 doi: 10.1016/j.matcom.2020.11.012 |
[23] | J. Wang, D. Liang, Y. Wang, Analysis of a conservative high-order compact finite difference scheme for the Klein-Gordon-Schrödinger equation, J. Comput. Appl. Math., 358 (2019), 84–96. http://dx.doi.org/10.1016/j.cam.2019.02.018 doi: 10.1016/j.cam.2019.02.018 |
[24] | T. Wang, Optimal point-wise error estimate of a compact difference scheme for the coupled Gross-Pitaevskii equations in one dimension, J. Sci. Comput., 59 (2014), 158–186. http://dx.doi.org/10.1007/s10915-013-9757-1 doi: 10.1007/s10915-013-9757-1 |
[25] | B. Wang, T. Sun, D. Liang, The conservative and fourth-order compact finite difference schemes for regularized long wave equation, J. Comput. Appl. Math., 356 (2019), 98–117. http://dx.doi.org/10.1016/j.cam.2019.01.036 doi: 10.1016/j.cam.2019.01.036 |
[26] | T. Wang, Convergence of an eighth-order compact difference scheme for the nonlinear Schrödinger equation, Adv. Numer. Anal., 2012 (2012), 24. http://dx.doi.org/10.1155/2012/913429 doi: 10.1155/2012/913429 |
[27] | J. Chen, F. Chen, Convergence of a high-order compact finite difference scheme for the Klein-Gordon-Schrödinger equations, Appl. Numer. Math., 143 (2019), 133–145. http://dx.doi.org/10.1016/j.apnum.2019.03.004 doi: 10.1016/j.apnum.2019.03.004 |
[28] | S. Abide, W. Mansouri, S. Cherkaoui, X. Cheng, High-order compact scheme finite difference discretization for Signorini's problem, Int. J. Comput. Math., 98 (2021), 580–591. http://doi.org/10.1080/00207160.2020.1762869 doi: 10.1080/00207160.2020.1762869 |
[29] | S. Abide, Finite difference preconditioning for compact scheme discretizations of the Poisson equation with variable coefficients, J. Comput. Appl. Math., 379 (2020), 112872. http://doi.org/10.1016/j.cam.2020.112872 doi: 10.1016/j.cam.2020.112872 |