The concept of Fermatean fuzzy sets was introduced by Senapati and Yager in 2019 as a generalization of fuzzy sets, intuitionistic fuzzy sets, and Pythagorean fuzzy sets. In this article, we apply the notions of Fermatean fuzzy left (resp., right) hyperideals and Fermatean fuzzy (resp., generalized) bi-hyperideals in semihypergroups to characterize intra-regular semihypergroups, such as $ S $ is an intra-regular semihypergroup if and only if $ \mathcal{L}\cap\mathcal{R}\subseteq \mathcal{L}\circ\mathcal{R} $, for every Fermatean fuzzy left hyperideal $ \mathcal{L} $ and Fermatean fuzzy right hyperideal $ \mathcal{R} $ of a semihypergroup $ S $. Moreover, we introduce the concept of Fermatean fuzzy interior hyperideals of semihypergroups and use these properties to describe the class of intra-regular semihypergroups. Next, we demonstrate that Fermatean fuzzy interior hyperideals coincide with Fermatean fuzzy hyperideals in intra-regular semihypergroups. However, in general, Fermatean fuzzy interior hyperideals do not necessarily have to be Fermatean fuzzy hyperideals in semihypergroups. Finally, we discuss some characterizations of semihypergroups when they are both regular and intra-regular by means of different types of Fermatean fuzzy hyperideals in semihypergroups.
Citation: Warud Nakkhasen, Teerapan Jodnok, Ronnason Chinram. Intra-regular semihypergroups characterized by Fermatean fuzzy bi-hyperideals[J]. AIMS Mathematics, 2024, 9(12): 35800-35822. doi: 10.3934/math.20241698
The concept of Fermatean fuzzy sets was introduced by Senapati and Yager in 2019 as a generalization of fuzzy sets, intuitionistic fuzzy sets, and Pythagorean fuzzy sets. In this article, we apply the notions of Fermatean fuzzy left (resp., right) hyperideals and Fermatean fuzzy (resp., generalized) bi-hyperideals in semihypergroups to characterize intra-regular semihypergroups, such as $ S $ is an intra-regular semihypergroup if and only if $ \mathcal{L}\cap\mathcal{R}\subseteq \mathcal{L}\circ\mathcal{R} $, for every Fermatean fuzzy left hyperideal $ \mathcal{L} $ and Fermatean fuzzy right hyperideal $ \mathcal{R} $ of a semihypergroup $ S $. Moreover, we introduce the concept of Fermatean fuzzy interior hyperideals of semihypergroups and use these properties to describe the class of intra-regular semihypergroups. Next, we demonstrate that Fermatean fuzzy interior hyperideals coincide with Fermatean fuzzy hyperideals in intra-regular semihypergroups. However, in general, Fermatean fuzzy interior hyperideals do not necessarily have to be Fermatean fuzzy hyperideals in semihypergroups. Finally, we discuss some characterizations of semihypergroups when they are both regular and intra-regular by means of different types of Fermatean fuzzy hyperideals in semihypergroups.
[1] | A. K. Adak, G. Kumar, M. Bhowmik, Pythagorean fuzzy semi-prime ideals of ordered semigroups, International Journal of Computer Applications, 185 (2023), 4–10. http://dx.doi.org/10.5120/ijca2023922661 doi: 10.5120/ijca2023922661 |
[2] | A. K. Adak, Nilkamal, N. Barman, Fermatean fuzzy semi-prime ideals of ordered semigroups, Topological Algebra in its Applications, 11 (2023), 20230102. http://dx.doi.org/10.1515/taa-2023-0102 doi: 10.1515/taa-2023-0102 |
[3] | S. Ashraf, S. Abdullah, T. Mahmood, F. Gahni, T. Mahmood, Spherical fuzzy sets and their applications in multi-attribute decision making problems, J. Intell. Fuzzy Syst., 36 (2019), 2829–2844. http://dx.doi.org/10.3233/JIFS-172009 doi: 10.3233/JIFS-172009 |
[4] | K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. http://dx.doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3 |
[5] | S. Bashir, M. M. A. Al-Shamiri, S. Khalid, R. Mazhar, Regular and Intra-regular ternary semirings in terms of $m$-polar fuzzy ideals, Symmetry, 15 (2023), 591. http://dx.doi.org/10.3390/sym15030591 doi: 10.3390/sym15030591 |
[6] | P. Corsini, V. Leoreanu, Applications of hyperstructures theory, New York: Springer, 2003. http://dx.doi.org/10.1007/978-1-4757-3714-1 |
[7] | B. C. Cuong, V. Kreinovich, Picture fuzzy sets–A new concept for computational intelligence problems, 2013 Third World Congress on Information and Communication Technologies (WICT 2013), Hanoi, Vietnam, 2013, 1–6. http://dx.doi.org/10.1109/WICT.2013.7113099 |
[8] | B. Davvaz, P. Corsini, T. Changphas, Relationship between ordered semihypergroups and ordered semigroups by using pseudoorder, Eur. J. Combin., 44 (2015), 208–217. http://dx.doi.org/10.1016/j.ejc.2014.08.006 doi: 10.1016/j.ejc.2014.08.006 |
[9] | Y. Z. Diao, Q. Zhang, Optimization of management mode of small- and medium-sized enterprises based on decision tree model, J. Math., 2021 (2021), 2815086. http://dx.doi.org/10.1155/2021/2815086 doi: 10.1155/2021/2815086 |
[10] | J. Y. Dong, S. P. Wan, Interval-valued intuitionistic fuzzy best-worst method with additive consistency, Expert Syst. Appl., 236 (2024), 121213. http://dx.doi.org/10.1016/j.eswa.2023.121213 doi: 10.1016/j.eswa.2023.121213 |
[11] | Z. X. Duan, J. L. Liang, Z. R. Xiang, $H_{\infty}$ control for continuous-discrete systems in $T$-$S$ fuzzy model with finite frequency specifications, Discrete Cont. Dyn.-S, 15 (2022), 3155–3172. http://dx.doi.org/10.3934/dcdss.2022064 doi: 10.3934/dcdss.2022064 |
[12] | D. Fasino, D. Freni, Existence of proper semihypergroups of types $U$ on the right, Discrete Math., 307 (2007), 2826–2836. http://dx.doi.org/10.1016/j.disc.2007.03.001 doi: 10.1016/j.disc.2007.03.001 |
[13] | A. Hussain, T. Mahmood, M. I. Ali, Rough Pythagorean fuzzy ideals in semigroups, Comp. Appl. Math., 38 (2019), 67. http://dx.doi.org/10.1007/s40314-019-0824-6 doi: 10.1007/s40314-019-0824-6 |
[14] | K. Hila, B. Davvaz, J. Dine, Study on the structure of $\Gamma$-semihypergroups, Commun. Algebra, 40 (2012), 2932–2948. http://dx.doi.org/10.1080/00927872.2011.587855 doi: 10.1080/00927872.2011.587855 |
[15] | K. Hila, B. Davvaz, K. Naka, On quasi-hyperideals in semihypergroups, Commun. Algebra, 39 (2011), 4183–4194. http://dx.doi.org/10.1080/00927872.2010.521932 doi: 10.1080/00927872.2010.521932 |
[16] | K. Hila, S. Abdullah, A. Saleem, A study on intuitionistic fuzzy sets in $\Gamma$-semihypergroups, J. Intell. Fuzzy Syst., 26 (2014), 1695–1710. http://dx.doi.org/10.3233/IFS-130849 doi: 10.3233/IFS-130849 |
[17] | U. Jittburus, P. Julatha, A. Pumila, N. Chunseem, A. Iampan, R. Prasertpong, New generalizations of sup-hesitant fuzzy ideals of semigroups, Int. J. Anal. Appl., 20 (2022), 58. http://dx.doi.org/10.28924/2291-8639-20-2022-58 doi: 10.28924/2291-8639-20-2022-58 |
[18] | N. Kehayopulu, M. Tsingelis, Regular ordered semigroups in terms of fuzzy subsets, Inform. Sciences, 176 (2006), 3675-3693. http://dx.doi.org/10.1016/j.ins.2006.02.004 doi: 10.1016/j.ins.2006.02.004 |
[19] | A. Khan, M. Shabir, Intuitionistic fuzzy semiprime ideals in ordered semigroups, Russ. Math., 54 (2010), 56–67. http://dx.doi.org/10.3103/S1066369X10050087 doi: 10.3103/S1066369X10050087 |
[20] | K. H. Kim, On intuitionistic fuzzy semiprime ideals in semigroups, Scientiae Mathematicae Japonicae, 65 (2007), 447–453. https://doi.org/10.32219/isms.65.3_447 doi: 10.32219/isms.65.3_447 |
[21] | B. X. Li, Y. M. Feng, Intuitionistic $(\lambda, \mu)$-fuzzy sets in $\Gamma$-semigroups, J. Inequal. Appl., 2013 (2013), 107. http://dx.doi.org/10.1186/1029-242X-2013-107 doi: 10.1186/1029-242X-2013-107 |
[22] | X. Y. Lu, J. Y. Dong, S. P. Wan, H. C. Li, Interactively iterative group decision-making method with interval-valued intuitionistic fuzzy preference relations based on a new additively consistent concept, Appl. Soft Comput., 152 (2024), 111199. http://dx.doi.org/10.1016/j.asoc.2023.111199 doi: 10.1016/j.asoc.2023.111199 |
[23] | X. Y. Lu, J. Y. Dong, S. P. Wan, H. C. Li, The strategy of consensus and consistency improving considering bounded confidence for group interval-valued intuitionistic multiplicative best-worst method, Inform. Sciences, 669 (2024), 120489. http://dx.doi.org/10.1016/j.ins.2024.120489 doi: 10.1016/j.ins.2024.120489 |
[24] | F. Marty, On a generalization of the notion of group, The 8th Congres des Mathematiciens, Scandinaves, Stockholm, 1934, 45–49. |
[25] | I. A. H. Masmali, Pythagorean picture fuzzy hyperideals in semihypergroups, Int. J. Math. Comput. Sc., 16 (2021), 1533–1553. |
[26] | W. Nakkhasen, Characterizng regular and intra-regular semigroups in terms of picture fuzzy bi-ideals, Int. J. Innov. Comput. I., 17 (2021), 2115–2135. http://dx.doi.org/10.24507/ijicic.17.06.2115 doi: 10.24507/ijicic.17.06.2115 |
[27] | W. Nakkhasen, On picture fuzzy $(m, n)$-ideals of semigroups, IAENG International Journal of Applied Mathematics, 52 (2022), 1040–1051. |
[28] | W. Nakkhasen, Semihypergroups characterized by means of their Fermatean fuzzy bi-hyperideals, Int. J. Innov. Comput. I., 19 (2023), 255–267. http://dx.doi.org/10.24507/ijicic.19.01.255 doi: 10.24507/ijicic.19.01.255 |
[29] | W. Nakkhasen, Regularity of semigroups in terms of Pythagorean fuzzy bi-ideals, J. Appl. Math. Inform., 42 (2024), 333–351. http://dx.doi.org/10.14317/jami.2024.333 doi: 10.14317/jami.2024.333 |
[30] | W. Nakkhasen, R. Chinram, Ternary semigroups characterized by spherical fuzzy bi-ideals, Science and Technology Asia, 28 (2023), 86–107. http://dx.doi.org/10.14456/scitechasia.2023.73 doi: 10.14456/scitechasia.2023.73 |
[31] | W. Nakkhasen, R. Chinram, A. Iampan, On (fuzzy) weakly almost interior $\Gamma$-hyperideals in ordered $\Gamma$-semihypergrouops, Int. J. Anal. Appl., 21 (2023), 77. http://dx.doi.org/10.28924/2291-8639-21-2023-77 doi: 10.28924/2291-8639-21-2023-77 |
[32] | A. Nongmenee, S. Leeratanavalee, Regularity in ternary semihypergroups induced by subsets of ternary semigroups, Thai J. Math., 22 (2024), 73–84. |
[33] | M. Riaz, M. R. Hashmi, Linear Diophantine fuzzy set and its applications towards multi-attribute decision-making problems, J. Intell. Fuzzy Syst., 37 (2019), 5417–5439. http://dx.doi.org/10.3233/JIFS-190550 doi: 10.3233/JIFS-190550 |
[34] | T. Senapati, R. R. Yager, Fermatean fuzzy sets, J. Ambient Intell. Human. Comput., 11 (2019), 663–674. http://dx.doi.org/10.1007/s12652-019-01377-0 doi: 10.1007/s12652-019-01377-0 |
[35] | M. Shabir, T. Abbas, S. Bashir, R. Mazhar, Bipolar fuzzy hyperideals in regular and intra-regular semihypergroups, Comp. Appl. Math., 40 (2021), 196. http://dx.doi.org/10.1007/s40314-021-01574-8 doi: 10.1007/s40314-021-01574-8 |
[36] | M. Shabir, A. Khan, Intuitionistic fuzzy interior ideals in ordered semigroups, J. Appl. Math. Inform., 27 (2009), 1447–1457. |
[37] | M. Shabir, T. Mahmood, Semihypergroups characterized by $(\in, \in\vee q_k)$-fuzzy hyperideals, Inf. Sci. Lett., 2 (2013), 101–121. |
[38] | Q. D. Sun, J. C. Ren, F. Zhao, Sliding mode control of discrete-time interval type-$2$ fuzzy Markov jump systems with the preview target signal, Appl. Math. Comput., 435 (2022), 127479. http://dx.doi.org/10.1016/j.amc.2022.127479 doi: 10.1016/j.amc.2022.127479 |
[39] | J. Tang, B. Davvaz, X. Y. Xie, A study on (fuzzy) quasi-$\Gamma$-hyperideals on ordered $\Gamma$-semihypergroups, J. Intell. Fuzzy Syst., 32 (2017), 3821–3838. http://dx.doi.org/10.3233/IFS-162117 doi: 10.3233/IFS-162117 |
[40] | N. Tipachot, B. Pibaljommee, Fuzzy in interior hyperideals in ordered semihypergroups, Ital. J. Pure Appl. Mat., 36 (2016), 859–870. |
[41] | S. P. Wan, J. Y. Dong, S. M. Chen, A novel intuitionistic fuzzy best-worst method for group decision making with intuitionistic fuzzy preference relations Inform. Sciences, 666 (2024), 120404. http://dx.doi.org/10.1016/j.ins.2024.120404 doi: 10.1016/j.ins.2024.120404 |
[42] | Y. D. Xia, J. Wang, B. Meng, X. Y. Chen, Further results on fuzzy sampled-data stabilization of chaotic nonlinear systems, Appl. Math. Comput., 379 (2020), 125225. http://dx.doi.org/10.1016/j.amc.2020.125225 doi: 10.1016/j.amc.2020.125225 |
[43] | X. Y. Xie, J. Tang, Regular ordered semigroups and intra-regular ordered semigroups in terms of fuzzy subsets, Iran. J. Fuzzy Syst., 7 (2010), 121–140. |
[44] | R. R. Yager, Pythagorean fuzzy subsets, 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), Edmonton, AB, Canada, 2013, 57–61. http://dx.doi.org/10.1109/IFSA-NAFIPS.2013.6608375 |
[45] | L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338–353. http://dx.doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X |
[46] | N. Zhang, W. H. Qi, G. C. Pang, J. Cheng, K. B. Shi, Observer-based sliding mode control for fuzzy stochastic switching systems with deception attacks, Appl. Math. Comput., 427 (2022), 127153. http://dx.doi.org/10.1016/j.amc.2022.127153 doi: 10.1016/j.amc.2022.127153 |