This study presented a novel Caputo fractional-order lung cancer model aimed at analyzing the population dynamics of cancer cells under untreated conditions and different treatment strategies. First, we explored the existence, uniqueness, and positivity of the model's solutions and analyzed the stability of the tumor-free equilibrium state and the internal equilibrium state. Second, we explored the existence, uniqueness, and positivity of the model's solutions and analyzed the stability of the tumor-free equilibrium state and the internal equilibrium state. We calculated the basic reproduction number and conducted a sensitivity analysis to evaluate the impact of various parameters on cancer cell growth. Next, by considering surgery and immunotherapy as control measures, we discussed the existence of an optimal solution and derived its expression using the Pontryagin maximum principle. We then performed numerical simulations of limit cycles, chaos, and bifurcation phenomena under uncontrolled conditions, as well as the dynamic behavior of cells under different control strategies. Finally, using real data from lung cancer patients, we conducted parameter estimation and curve fitting through the least squares method. The results indicated that combined therapy showed better effectiveness in inhibiting tumor cell growth, significantly outperforming single treatment strategies and more effectively controlling the progression of cancer.
Citation: Xingxiao Wu, Lidong Huang, Shan Zhang, Wenjie Qin. Dynamics analysis and optimal control of a fractional-order lung cancer model[J]. AIMS Mathematics, 2024, 9(12): 35759-35799. doi: 10.3934/math.20241697
This study presented a novel Caputo fractional-order lung cancer model aimed at analyzing the population dynamics of cancer cells under untreated conditions and different treatment strategies. First, we explored the existence, uniqueness, and positivity of the model's solutions and analyzed the stability of the tumor-free equilibrium state and the internal equilibrium state. Second, we explored the existence, uniqueness, and positivity of the model's solutions and analyzed the stability of the tumor-free equilibrium state and the internal equilibrium state. We calculated the basic reproduction number and conducted a sensitivity analysis to evaluate the impact of various parameters on cancer cell growth. Next, by considering surgery and immunotherapy as control measures, we discussed the existence of an optimal solution and derived its expression using the Pontryagin maximum principle. We then performed numerical simulations of limit cycles, chaos, and bifurcation phenomena under uncontrolled conditions, as well as the dynamic behavior of cells under different control strategies. Finally, using real data from lung cancer patients, we conducted parameter estimation and curve fitting through the least squares method. The results indicated that combined therapy showed better effectiveness in inhibiting tumor cell growth, significantly outperforming single treatment strategies and more effectively controlling the progression of cancer.
[1] | A. Leiter, R. R. Veluswamy, J. P. Wisnivesky, The global burden of lung cancer: current status and future trends, Nat. Rev. Clin. Oncol., 20 (2023), 624–639. https://doi.org/10.1038/s41571-023-00798-3 doi: 10.1038/s41571-023-00798-3 |
[2] | M. J. Ahn, B. C. Cho, E. Felip, I. Korantzis, K. Ohashi, M. Majem, et al., Tarlatamab for patients with previously treated small-cell lung cancer, N. Engl. J. Med., 389 (2023), 2063–2075. https://doi.org/10.1056/NEJMoa2307980 doi: 10.1056/NEJMoa2307980 |
[3] | J. S. Deutsch, A. Cimino-Mathews, E. Thompson, M. Provencio, P. M. Forde, J. Spicer, et al., Association between pathologic response and survival after neoadjuvant therapy in lung cancer, Nat. Med., 30 (2024), 218–228. https://doi.org/10.1038/s41591-023-02660-6 doi: 10.1038/s41591-023-02660-6 |
[4] | Y. Zhou, M. Qian, J. Li, L. Ruan, Y. Wang, C. Cai, et al. The role of tumor-associated macrophages in lung cancer: from mechanism to small molecule therapy, Biomed. Pharmacother., 170 (2024), 116014. https://doi.org/10.1016/j.biopha.2023.116014 doi: 10.1016/j.biopha.2023.116014 |
[5] | C. W. Evans, The metastatic cell: behaviour and biochemistry, London: Chapman and Hall, 1991. |
[6] | A. Forder, R. Zhuang, V. G. P. Souza, L. J. Brockley, M. E. Pewarchuk, N. Telkar, et al., Mechanisms contributing to the comorbidity of COPD and lung cancer, Int. J. Mol. Sci., 24 (2023), 2859. https://doi.org/10.3390/ijms24032859 doi: 10.3390/ijms24032859 |
[7] | M. D. Williams, A. B. Sandler, The epidemiology of lung cancer, Cancer Treat Res., 105 (2001), 31–52. https://doi.org/10.1007/978-1-4615-1589-0_2 doi: 10.1007/978-1-4615-1589-0_2 |
[8] | J. A. Barta, C. A. Powell, J. P. Wisnivesky, Global epidemiology of lung cancer, Ann. Glob. Health, 85 (2019), 8. https://doi.org/10.5334/aogh.2419 doi: 10.5334/aogh.2419 |
[9] | W. A. Cooper, D. C. L. Lam, S. A. O'Toole, J. D. Minna, Molecular biology of lung cancer, J. Thorac. Dis., 5 (2013), S479–S490. https://doi.org/10.3978/j.issn.2072-1439.2013.08.03 doi: 10.3978/j.issn.2072-1439.2013.08.03 |
[10] | M. Al Bakir, A. Huebner, C. Martí nez-Ruiz, K. Grigoriadis, T. B. K. Watkins, O. Pich. et al., The evolution of non-small cell lung cancer metastases in TRACERx, Nature, 616 (2023), 534–542. https://doi.org/10.1038/s41586-023-05729-x doi: 10.1038/s41586-023-05729-x |
[11] | B. Muz, P. De La Puente, F. Azab, A. K. Azab, The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy, Hypoxia, 3 (2015), 83–92. https://doi.org/10.2147/hp.s93413 doi: 10.2147/hp.s93413 |
[12] | G. W. Tormoen, M. R. Crittenden, M. J. Gough, Role of the immunosuppressive microenvironment in immunotherapy, Adv. Radiat. Oncol., 3 (2018), 520–526. https://doi.org/10.1016/j.adro.2018.08.018 doi: 10.1016/j.adro.2018.08.018 |
[13] | A. Lahiri, A. Maji, P. D. Potdar, N. Singh, P. Parikh, B. Bisht, et al., Lung cancer immunotherapy: progress, pitfalls, and promises, Mol. Cancer, 22 (2023), 40. https://doi.org/10.1186/s12943-023-01740-y doi: 10.1186/s12943-023-01740-y |
[14] | X. Zheng, X. Song, G. Zhu, D. Pan, H. Li, J. Hu, et al., Nanomedicine combats drug resistance in lung cancer, Adv. Mater., 36 (2024), 2308977. https://doi.org/10.1002/adma.202308977 doi: 10.1002/adma.202308977 |
[15] | L. G. Collins, C. Haines, R. Perkel, R. E. Enck, Lung cancer: diagnosis and management, Am. Fam. Physician, 75 (2007), 56–63. |
[16] | S. Huang, J. Yang, N. Shen, Q. Xu, Q. Zhao, Artificial intelligence in lung cancer diagnosis and prognosis: current application and future perspective, Semin. Cancer Biol., 89 (2023), 30–37. https://doi.org/10.1016/j.semcancer.2023.01.006 doi: 10.1016/j.semcancer.2023.01.006 |
[17] | M. Araghi, R. Mannani, A. H. Maleki, A. Hamidi, S. Rostami, S. H. Safa, et al., Recent advances in non-small cell lung cancer targeted therapy; an update review, Cancer Cell Int., 23 (2023), 162. https://doi.org/10.1186/s12935-023-02990-y doi: 10.1186/s12935-023-02990-y |
[18] | Y. Louzoun, C. Xue, G. B. Lesinski, A. Friedman, A mathematical model for pancreatic cancer growth and treatments, J. Theor. Biol., 351 (2014), 74–82. https://doi.org/10.1016/j.jtbi.2014.02.028 doi: 10.1016/j.jtbi.2014.02.028 |
[19] | F. Nani, H. I. Freedman, A mathematical model of cancer treatment by immunotherapy, Math. Biosci., 163 (2000), 159–199. https://doi.org/10.1016/S0025-5564(99)00058-9 doi: 10.1016/S0025-5564(99)00058-9 |
[20] | T. Alarcón, H. M. Byrne, P. K. Maini, A mathematical model of the effects of hypoxia on the cell-cycle of normal and cancer cells, J. Theor. Biol., 229 (2004), 395–411. https://doi.org/10.1016/j.jtbi.2004.04.016 doi: 10.1016/j.jtbi.2004.04.016 |
[21] | H. Yang, Y. Tan, J. Yang, Dynamic behavior of stochastic prostate cancer system with comprehensive therapy under regime switching, Appl. Math. Model., 113 (2023), 398–415. https://doi.org/10.1016/j.apm.2022.09.019 doi: 10.1016/j.apm.2022.09.019 |
[22] | A. Das, K. Dehingia, H. K. Sarmah, K. Hosseini, K. Sadri, S. Salahshou, Analysis of a delay-induced mathematical model of cancer, Adv. Cont. Discr. Mod., 2022 (2022), 15. https://doi.org/10.1186/s13662-022-03688-7 doi: 10.1186/s13662-022-03688-7 |
[23] | I. Bashkirtseva, L. Ryashko, J. M. Seoane, M. A. F. Sanjuán, Chaotic transitions in a tumor-immune model under chemotherapy treatment, Commun. Nonlinear Sci. Numer. Simul., 132 (2024), 107946. https://doi.org/10.1016/j.cnsns.2024.107946 doi: 10.1016/j.cnsns.2024.107946 |
[24] | E. Ucar, N. Özdemir, E. Altun. Fractional order model of immune cells influenced by cancer cells, Math. Model. Nat. Phenom., 14 (2019), 308. https://doi.org/10.1051/mmnp/2019002 doi: 10.1051/mmnp/2019002 |
[25] | I. Öztürk, F. Özköse, Stability analysis of fractional order mathematical model of tumor-immune system interaction, Chaos Soliton. Fract., 133 (2020), 109614. https://doi.org/10.1016/j.chaos.2020.109614 doi: 10.1016/j.chaos.2020.109614 |
[26] | C. Xu, M. Farman, A. Akgül, K. S. Nisar, A. Ahmad, Modeling and analysis fractal order cancer model with effects of chemotherapy, Chaos Soliton. Fract., 161 (2022), 112325. https://doi.org/10.1016/j.chaos.2022.112325 doi: 10.1016/j.chaos.2022.112325 |
[27] | J. E. Solís-Pérez, J. F. Gómez-Aguilar, A. Atangana, A fractional mathematical model of breast cancer competition model, Chaos Soliton. Fract., 127 (2019), 38–54. https://doi.org/10.1016/j.chaos.2019.06.027 doi: 10.1016/j.chaos.2019.06.027 |
[28] | S. Kumar, A. Atangana, A numerical study of the nonlinear fractional mathematical model of tumor cells in presence of chemotherapeutic treatment, Int. J. Biomath., 13 (2020), 2050021. https://doi.org/10.1142/S1793524520500217 doi: 10.1142/S1793524520500217 |
[29] | D. Baleanu, A. Jajarmi, S. S. Sajjadi, D. Mozyrska, A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator, Chaos, 29 (2019), 083127. https://doi.org/10.1063/1.5096159 doi: 10.1063/1.5096159 |
[30] | S. Ahmad, A. Ullah, A. Akgül, D. Baleanu, Analysis of the fractional tumour-immune-vitamins model with Mittag–Leffler kernel, Results Phys., 19 (2020), 103559. https://doi.org/10.1016/j.rinp.2020.103559 doi: 10.1016/j.rinp.2020.103559 |
[31] | A. Wouters, B. Pauwels, F. Lardon, J. B. Vermorken, Review: implications of in vitro research on the effect of radiotherapy and chemotherapy under hypoxic conditions, Oncologist, 12 (2017), 690–712. https://doi.org/10.1634/theoncologist.12-6-690 doi: 10.1634/theoncologist.12-6-690 |
[32] | M. Ghita, D. Copot, C. M. Ionescu, Lung cancer dynamics using fractional order impedance modeling on a mimicked lung tumor setup, J. Adv. Res., 32 (2021), 61–71. https://doi.org/10.1016/j.jare.2020.12.016 doi: 10.1016/j.jare.2020.12.016 |
[33] | F. Özköse, S. Yılmaz, M. Yavuz, İ. Öztürk, M. T. Şenel, B. Ş. Bağcı, et al., A fractional modeling of tumor-immune system interaction related to lung cancer with real data, Eur. Phys. J. Plus, 137 (2022), 40. https://doi.org/10.1140/epjp/s13360-021-02254-6 doi: 10.1140/epjp/s13360-021-02254-6 |
[34] | D. Amilo, B. Kaymakamzade, E. Hınçal, A Study on lung cancer using nabla discrete fractional-order model, Math. Moravica, 27 (2023), 55–76. |
[35] | D. Amilo, C. Izuchukwu, K. Sadri, H. Yao, E. Hincal, Y. Shehu, A fractional-order model for optimizing combination therapy in heterogeneous lung cancer: integrating immunotherapy and targeted therapy to minimize side effects, Sci. Rep., 14 (2024), 18484. https://doi.org/10.1038/s41598-024-66531-x doi: 10.1038/s41598-024-66531-x |
[36] | F. Özköse, S. Yılmaz, M. T. Şenel, M. Yavuz, S. Townley, M. D. Sarıkaya, A mathematical modeling of patient-derived lung cancer stem cells with fractional-order derivative, Phys. Scr., 99 (2024), 115235. https://doi.org/10.1088/1402-4896/ad80e1 doi: 10.1088/1402-4896/ad80e1 |
[37] | D. Amilo, B. Kaymakamzade, E. Hincal, A fractional-order mathematical model for lung cancer incorporating integrated therapeutic approaches, Sci. Rep., 13 (2023), 12426. https://doi.org/10.1038/s41598-023-38814-2 doi: 10.1038/s41598-023-38814-2 |
[38] | H. Hassani, J. A. T. Machado, Z. Avazzadeh, E. Safari, S. Mehrabi, Optimal solution of the fractional order breast cancer competition model, Sci. Rep., 11 (2021), 15622. https://doi.org/10.1038/s41598-021-94875-1 doi: 10.1038/s41598-021-94875-1 |
[39] | A. M. S. Mahdy, Numerical solution and optimal control for fractional Tumor immune model, J. Appl. Anal. Comput., 14 (2024), 3033–3045. https://doi.org/10.11948/20240053 doi: 10.11948/20240053 |
[40] | N. H. Sweilam, S. M. Al-Mekhlafi, A. S. Alshomrani, D. Baleanu, Comparative study for optimal control nonlinear variable-order fractional tumor model, Chaos Soliton. Fract., 136 (2020), 109810. https://doi.org/10.1016/j.chaos.2020.109810 doi: 10.1016/j.chaos.2020.109810 |
[41] | N. H. Sweilam, S. M. Al-Mekhlafi, A. O. Albalawi, J. A. Tenreiro Machado, Optimal control of variable-order fractional model for delay cancer treatments, Appl. Math. Model., 89 (2021), 1557–1574. https://doi.org/10.1016/j.apm.2020.08.012 doi: 10.1016/j.apm.2020.08.012 |
[42] | M. Ghita, D. Copot, C. M. Ionescu, Lung cancer dynamics using fractional order impedance modeling on a mimicked lung tumor setup, J. Adv. Res., 32 (2021), 61–71. https://doi.org/10.1016/j.jare.2020.12.016 doi: 10.1016/j.jare.2020.12.016 |
[43] | S. Nortey, M. A. Fellah, S. O. Akindeinde, S. E. Moore, Optimal control for fractional order dynamics of tumor growth, Research Square, 2023. https://doi.org/10.21203/rs.3.rs-3562617/v1 |
[44] | D. Amilo, K. Sadri, B. Kaymakamzade, E. Hincal, A mathematical model with fractional-order dynamics for the combined treatment of metastatic colorectal cancer, Commun. Nonlinear Sci. Numer. Simul., 130 (2024), 107756. https://doi.org/10.1016/j.cnsns.2023.107756 doi: 10.1016/j.cnsns.2023.107756 |
[45] | M. Robertson-Tessi, A. El-Kareh, A. Goriely, A mathematical model of tumor-immune interactions, J. Theor. Bio., 294 (2012), 56–73. https://doi.org/10.1016/j.jtbi.2011.10.027 doi: 10.1016/j.jtbi.2011.10.027 |
[46] | C. Mufudza, W. Sorofa, E. T. Chiyaka, Assessing the effects of estrogen on the dynamics of breast cancer, Comput. Math. Methods Med., 2012 (2012), 473572. https://doi.org/10.1155/2012/473572 doi: 10.1155/2012/473572 |
[47] | L. G. de Pillis, A. E. Radunskaya, C. L. Wiseman, A validated mathematical model of cell-mediated immune response to tumor growth, Cancer Res., 65 (2005), 7950–7958. https://doi.org/10.1158/0008-5472.can-05-0564 doi: 10.1158/0008-5472.can-05-0564 |
[48] | L. G. De Pillis, W. Gu, A. E. Radunskaya, Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations, J. Theor. Biol., 238 (2006), 841–862. https://doi.org/10.1016/j.jtbi.2005.06.037 doi: 10.1016/j.jtbi.2005.06.037 |
[49] | M. Villasana, A. Radunskaya, A delay differential equation model for tumor growth, J. Math. Biol., 47 (2003), 270–294. https://doi.org/10.1007/s00285-003-0211-0 doi: 10.1007/s00285-003-0211-0 |
[50] | L. G. De Pillis, A. Radunskaya, A mathematical tumor model with immune resistance and drug therapy: an optimal control approach, Comput. Math. Methods Med., 3 (2001), 79–100. https://doi.org/10.1080/10273660108833067 doi: 10.1080/10273660108833067 |
[51] | O. Diekmann, J. A. P. Heesterbeek, J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365–382. https://doi.org/10.1007/BF00178324 doi: 10.1007/BF00178324 |
[52] | Z. Wu, Y. Cai, Z. Wang, W. Wang, Global stability of a fractional order SIS epidemic model, J. Differ. Equations, 352 (2023), 221–248. https://doi.org/10.1016/j.jde.2022.12.045 doi: 10.1016/j.jde.2022.12.045 |
[53] | D. L. Lukes, Differential equations: classical to controlled, Vol. 162, Elsevier, 1982. |
[54] | X. Yang, A note on Hölder inequality, Appl. Math. Comput., 134 (2003), 319–322. https://doi.org/10.1016/S0096-3003(01)00286-7 doi: 10.1016/S0096-3003(01)00286-7 |
[55] | J. Li, X. Tan, W. Wu, X. Liu, Chaotic dynamics and optimal therapeutic strategies for Caputo fractional tumor immune model in combination therapy, Chaos, 34 (2024), 113113. https://doi.org/10.1063/5.0224717 doi: 10.1063/5.0224717 |