
https://www.aimspress.com/journal/Math

AIMS Mathematics, 9(12): 35759–35799.
DOI: 10.3934/math.20241697
Received: 04 November 2024
Revised: 08 December 2024
Accepted: 13 December 2024
Published: 24 December 2024

Research article

Dynamics analysis and optimal control of a fractional-order lung cancer
model

Xingxiao Wu, Lidong Huang*, Shan Zhang and Wenjie Qin

Department of Mathematics, Yunnan Minzu University, Kunming 650500, China

* Correspondence: Email: hld@ymu.edu.cn.

Abstract: This study presented a novel Caputo fractional-order lung cancer model aimed at analyzing
the population dynamics of cancer cells under untreated conditions and different treatment strategies.
First, we explored the existence, uniqueness, and positivity of the model’s solutions and analyzed the
stability of the tumor-free equilibrium state and the internal equilibrium state. Second, we explored
the existence, uniqueness, and positivity of the model’s solutions and analyzed the stability of the
tumor-free equilibrium state and the internal equilibrium state. We calculated the basic reproduction
number and conducted a sensitivity analysis to evaluate the impact of various parameters on cancer
cell growth. Next, by considering surgery and immunotherapy as control measures, we discussed the
existence of an optimal solution and derived its expression using the Pontryagin maximum principle.
We then performed numerical simulations of limit cycles, chaos, and bifurcation phenomena under
uncontrolled conditions, as well as the dynamic behavior of cells under different control strategies.
Finally, using real data from lung cancer patients, we conducted parameter estimation and curve
fitting through the least squares method. The results indicated that combined therapy showed better
effectiveness in inhibiting tumor cell growth, significantly outperforming single treatment strategies
and more effectively controlling the progression of cancer.
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1. Introduction

Lung cancer is a prevalent cancer globally and a major cause of cancer deaths, responsible for
18% of cancer-related mortality and 11% of cancer cases [1–4]. It not only affects the health and
quality of life of millions of people but also places a tremendous burden on global healthcare systems.
The occurrence of lung cancer stems from gene mutations and unregulated growth control, leading to
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abnormal cell proliferation [5]. These abnormally proliferating cells gradually form tumors, which can
infiltrate nearby tissues and metastasize.

Lung cancer risk factors are smoking, occupational hazards, air pollution, and genetics. Smoking
is the most significant causative factor, greatly increasing the likelihood of developing the disease [6].
Additionally, prolonged exposure to air pollution, radiation, and chemicals like heavy metals can also
raise lung cancer risk [7]. People working in the mining, construction, and chemical industries face
higher risks due to occupational exposure [8]. Genetic factors also play a role in some cases, with
individuals having a family history of lung cancer being at a higher risk [9]. These factors together
raise the likelihood of lung cancer.

The metastasis and spread of cancer cells are among the primary reasons why lung cancer is so
deadly [10]. Cancer cells spread via the blood and lymphatic systems, such as the brain, bones, and
liver, forming metastatic tumors [11]. These tumors severely disrupt the structure and function of the
affected organs and weaken the immune system, leading to decreased resistance and making patients
more susceptible to infections and other diseases [12]. The presence of metastatic tumors not only
affects the patient’s quality of life but also makes treatment more complex and difficult, thereby further
increasing the mortality rate of lung cancer.

Cancer treatments encompass chemotherapy, immunotherapy, targeted therapy, radiation, and
surgical procedures [13, 14]. Surgery is suitable for early-stage lung cancer and involves removing
the tumor and affected tissues to control the disease [15]. Radiation therapy uses high-energy rays to
kill cancer cells and is often combined with surgery or chemotherapy. Chemotherapy uses drugs to kill
or inhibit the growth of cancer cells and is applicable for advanced lung cancer or as adjuvant therapy
after surgery [16]. Targeted therapy employs specific drugs to attack the genes or proteins of cancer
cells, reducing damage to normal cells [17]. Immunotherapy, an emerging treatment method, boosts
the immune system to identify and destroy cancer cells. In order to quickly develop effective treatment
strategies, we need to thoroughly study the interaction mechanisms between cancer cells and other
cells.

Some researchers have attempted to investigate the interactions between tumor cells and immune
cells using mathematical models to better understand the dynamic characteristics of cancer [18–22].
These models not only capture the interactions between different cell types but also account for factors
such as immune evasion, changes in the tumor microenvironment, and the effects of drug treatments.
By simulating tumor progression under various environmental and therapeutic conditions, researchers
can predict the trajectory of tumor development, evaluate treatment efficacy, and provide support
for personalized treatment strategies [23]. These models are particularly valuable in the context of
immunotherapy, targeted therapy, and other emerging treatments as they help optimize therapeutic
approaches, minimize side effects, and promote more precise cancer treatment.

With the development of fractional calculus, its application in modeling cancer growth has become
increasingly widespread [24–28]. In particular, the Caputo derivative, which can more accurately
describe systems with memory effects and historical dependence, has shown significant advantages in
simulating complex biological processes [26]. Studies have shown that fractional-order models, when
analyzing the impact of chemotherapy on cancer cell growth, align better with experimental data and
more accurately reflect the interactions between cancer cells, chemotherapy drugs, and immune cells
compared to integer-order models [29–31]. Since fractional-order models can capture the non-locality
and long-term memory effects of the system, they have demonstrated higher precision and effectiveness

AIMS Mathematics Volume 9, Issue 12, 35759–35799.



35761

in cancer modeling, drawing increasing attention from researchers.
Lung cancer, as a high-mortality cancer, has attracted many researchers who use fractional-order

mathematical models to analyze the dynamic behavior of its cells and their interactions with other
cells [32–36]. Amilo et al. [34] established a Nablara discrete fractional-order model, revealing how
the growth of lung epithelial cells and their interactions with immune cells promote the increase in the
number of lung cancer cells. At the same time, they combined immunotherapy with targeted therapy
to analyze the effects of these two treatment strategies on cancer cells and explored in-depth the role of
genetic mutations in the spread of cancer cells [35]. In addition, Özköse et al. [36] developed a model
that includes lung cancer tumor cells, lung cancer stem cells, CD8+ T cells, interleukin-12 (IL-12),
and natural immune cells, studying the dynamic relationships between these factors and cell types.
The results showed that after tumor formation, an increase in the number of CD8+ T cells significantly
reduced the numbers of cancer stem cells and tumor cells.

In the aforementioned studies, the dynamic interactions between cancer cells and immune cells,
as well as the effects of different treatment strategies on cancer cells, have been effectively modeled.
However, optimizing these interactions during the treatment process to achieve the best therapeutic
outcomes remains an important and unresolved issue. To address this, many researchers have focused
on optimal control under various treatment strategies, aiming to determine the best control policies
to inhibit cancer growth and spread through mathematical models [37–42]. For example, one study
analyzed the optimal treatment plan combining chemotherapy with a healthy lifestyle, and the results
showed that this combination enhances the effectiveness of chemotherapy and reduces side effects [43].
Another study explored the optimal combination of surgery and programmed cell death ligand 1
(PD-L1) monoclonal antibody immunotherapy in the treatment of lung cancer, and the findings also
indicated that the combined therapy significantly improves patient prognosis compared to single
treatments [44]. Through these studies, researchers aim to provide more precise guidance for clinical
treatment and optimize therapeutic outcomes.

This paper establishes a Caputo fractional-order model for lung cancer, aiming to explore the
dynamics of lung cancer from two key aspects. First, the model focuses on the complex interactions
between lung cancer cells, immune cells, healthy cells, and metastatic cancer cells, revealing the
underlying mechanisms involved in tumor growth and cancer cell metastasis. Second, the model
incorporates surgery and immunotherapy as intervention factors to evaluate the impact of different
treatment strategies on tumor growth rate, immune response, and other dynamic changes. Through
these studies, this paper aims to provide theoretical support for lung cancer treatment, enhance
the understanding of tumor evolution under different treatment interventions, and provide scientific
guidance for optimizing clinical treatment strategies.

The key contributions and innovations of this paper are as follows:

a. Unlike [37], the new model presented in this paper takes into account the interaction between
healthy cells and tumor cells in nutrient competition. This competitive mechanism inhibits tumor
cell growth, leading to a more comprehensive description of its growth dynamics.

b. Existing research on fractional-order optimization control often overlooks the time-dependent
changes in control parameters and the performance of the objective function under different
treatment strategies [38–40]. This paper analyzes these issues through numerical simulations and
demonstrates the impact of different treatment strategies on control parameters and the objective
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function, as shown in Figures 1 and 2.

c. Based on real data regarding the changes in cancer cells in lung cancer patients, we evaluated the
model parameters using the least squares method and performed curve fitting.

The remainder of this paper is organized as follows: Section 2 introduces the model construction
and key definitions. Section 3 analyzes the conditions for the existence and uniqueness of the solution.
Section 4 explores the stability theorems of the equilibrium points. Section 5 investigates the combined
optimization strategy of surgery and immunotherapy, proposing the conditions for the existence of
an optimal solution and deriving its expression. Section 6 validates the theory through numerical
simulations. Section 7 performs parameter evaluation and curve fitting using real data. Finally,
Section 8 summarizes the main conclusions of this paper.
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Figure 1. Time series of control parameter ui (i = 1, 2) under different treatment strategies.
Parameters: α = 0.95, r1 = 1.5, K1 = 10, µ1 = 0.025, λ1 = 0.002, c1 = 0.2, a1 = 5, c2 = 0.15,
a2 = 5, µ2 = 0.03, d1 = 0.01, r2 = 0.4, K2 = 12, µ3 = 0.02, λ2 = 0.02, d2 = 0.05, s = 0.5.
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Figure 2. Time series of objective function J under different treatment strategies, with
parameters consistent with those in Figure 1.

2. Model formulation and preliminaries

2.1. Model formulation

Bashkirtseva et al. [23] developed a three-dimensional system based on the Lotka-Volterra
competition model to study the dynamic interactions between tumor cells, immune cells, and healthy
cells. The system considers the competition between healthy cells and tumor cells and introduces
the stimulatory effect of tumor cell proliferation on immune cell proliferation. Specifically, tumor
cell proliferation stimulates the growth of immune cells, but the proliferation of immune cells is not
unlimited. Therefore, the authors use a second-type functional response function to describe this
relationship. The system is 

Ṫ = r1T
(
1 −

T
k1

)
− a12T H − a13T E,

Ḣ = r2H
(
1 −

H
k2

)
− a21HT,

Ė = r3
ET

T + k3
− a31ET − d3E,

(2.1)

where T , H, and E represent tumor cells, healthy cells, and immune cells, respectively. ri and ki

(i = 1, 2, 3) denote the growth rate and the maximum carrying capacity of each cell type. a12 represents
the competition coefficient between healthy cells and tumor cells, a13 represents the killing rate of

AIMS Mathematics Volume 9, Issue 12, 35759–35799.



35764

tumor cells by effector cells, a21 represents the rate at which tumor cells inactivate healthy cells, a31

represents the rate at which tumor cells kill immune cells, and d3 represents the death rate of immune
cells.

Meanwhile, in order to investigate the interactions between lung cancer cells, immune cells, and
disseminated cancer cells, Amilo et al. [37] developed a three-dimensional system. In this system, in
addition to considering the stimulatory effect of cancer cell proliferation on the immune system, it also
takes into account the natural proliferation rate of immune cells in the absence of cancer cells. This
three-dimensional system is

dαN(t)
dtα

= λN(t)
(
1 −

N(t)
K

)
− µN(t)P(t) − β1N(t)I(t),

dαI(t)
dtα

= φ1I0 + φ2N(t)2 − φ3I(t) − β2I(t)N(t),

dαP(t)
dtα

= γN(t)P(t) − δP(t) − β3I(t)P(t),

(2.2)

where N(t), P(t), and I(t) represent the number of lung cancer cells, disseminated cancer cells, and
immune cells, respectively. λ, K, µ, and β1 denote the growth rate of lung cancer cells, carrying
capacity, spread rate, and the rate at which immune cells eliminate cancer cells. φ1, φ2, and φ3 are the
factors influencing immune cells. β2 indicates the rate at which cancer cells kill immune cells, while
γ, δ, and β3 represent the spread rate, death rate of disseminated cancer cells, and the rate at which
immune cells destroy them. The fractional order of the Caputo derivative α ranges from 0 < α ≤ 1.

Inspired by systems (2.1) and (2.2) and considering that when the number of cancer cells becomes
too high, the lack of nutrients or oxygen may lead to the death or slowed proliferation of cancer cells,
resulting in a gradual reduction in the rate of cancer cell spread and eventually leading to stabilization.
To better describe this phenomenon, we use a second-order functional response function to model the
dynamic process of cancer cell diffusion. This function effectively simulates the rapid spread of cancer
cells in the early stages, and as the number of tumor cells increases, resource limitations gradually
become apparent, causing the diffusion rate to slow down and eventually stabilize. Therefore, we
have established a four-dimensional fractional-order system that includes lung cancer cells, immune
cells, healthy cells, and diffusing cancer cells to analyze the dynamic behaviors of these cells, as
schematically shown in Figure 3. The specific form of the system is as follows:

DαT (t) = r1T (t)
(
1 −

T (t)
K1

)
− µ1I (t) T (t) − λ1H (t) T (t) −

c1T (t) P (t)
a1 + T (t)

,

DαI (t) = s +
c2T (t) I (t)
a2 + T (t)

− µ2I (t) T (t) − d1I (t) ,

DαH (t) = r2H (t)
(
1 −

H (t)
K2

)
− µ3H (t) T (t) ,

DαP (t) =
c1T (t) P (t)
a1 + T (t)

− λ2I (t) P (t) − d2P (t) ,

(2.3)

where T (t), I(t), H(t), and P(t), respectively, represent the tumor cell density, immune cell density,
healthy cell density, and tumor cell density diffused out at time t in the lungs. Other parameters are
detailed in Table 1. To better understand the following content, we will first introduce some basic
definitions and concepts.
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Table 1. Definitions of parameters for model (2.3).

Parameter Definition Unit

r1 The net growth rate of tumor cells day−1 [45]

r2 The net growth rate of healthy cells day−1 [46]

K1 The maximum carrying capacity of lung tissue for tumor cells cells [47]

K2 The maximum carrying capacity of lung tissue for healthy cells cells [47]

µ1 The tumor cell mortality rate induced by the immune response cell−1 day−1

µ2 The mortality rate of healthy cells induced by the immune response cell−1 day−1 [48]

µ3 The rate of healthy cell death due to tumor cells cell−1 day−1

λ1 The tumor cell mortality rate caused by competition with healthy cells cell−1 day−1

λ2 The mortality rate of disseminated tumor cells caused by the immune response cell−1 day−1

c1 The speed at which tumor cells spread from the lungs to other tissues cell−1 day−1

c2 The rate at which tumor cell formation stimulates the production of immune cells day−1 [49]

a1 The half-maximal carrying capacity of the tumor cell environment cells

a2 The maximum response threshold of immune cells cells [50]

d1 The natural apoptotic rate of immune cells day−1 [46]

d2 The natural death rate of metastatic tumor cells day−1

s The generation rate of immune cells in the absence of tumors cell day−1 [49]

Figure 3. The schematic diagram of the tumor model (2.3).

2.2. Preliminaries

Definition 2.1. [33] The Riemann-Liouville fractional integral is given by

0Iαt h(t) =
1

Γ(α)

∫ t

0
(t − τ)α−1h(τ) dτ,
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where α > 0 and Γ(·) is the Gamma function.

Definition 2.2. [33] The Caputo derivative is given by:

C
0 Dα

t h(t) = 0In−α
t =

1
Γ(n − α)

∫ t

0

h(n)(τ)
(t − τ)α−n+1 dτ.

To simplify the notation, we use Dαh(t) to represent the Caputo derivative operator C
0 Dα

t h(t).

Definition 2.3. [37] Let (X, d) be a metric space and T : X → X be a function. If there exists a
constant 0 ≤ k < 1 such that for any x, y ∈ X the following holds, d(T (x),T (y)) ≤ k · d(x, y), then T is
called a Banach contraction.

Definition 2.4. [37] If a function f : Rn → Rm on a set D ⊆ Rn has a constant K ≥ 0 such that for any
two points x and y in D it holds that | f (x) − f (y)| ≤ K|x − y|, then the function is Lipschitz continuous
on D.

Definition 2.5. [37] The Laplace transform of the Caputo fractional derivative is given by the
following formula:

L (Dα f (t)) = ϑαF(ϑ) −
n−1∑
j=0

f ( j)(0)ϑα− j−1, n − 1 < α ≤ n.

3. The existence and positivity of solutions

We first focus on the existence and uniqueness of the solution to system (2.3). Since directly proving
the solution to system (2.3) is challenging, we will transform it into

DαX (t) = A1X (t) + T (t) A2X (t) + I (t) A3X (t) + H (t) A4X (t)

+
T (t)

a1 + T (t)
A5X (t) +

T (t)
a2 + T (t)

A6X (t) + A7,

X (0) = X0,

(3.1)

where

X (t) =


T (t)
I (t)
H (t)
P (t)

 , X (0) =


T (0)
I (0)
H (0)
P (0)

 , A1 =


r1 0 0 0
0 −d1 0 0
0 0 r2 0
0 0 0 −d2

 ,

A2 =


−

r1
K1
−µ1 −λ1 0

0 −µ2 0 0
0 0 −µ3 0
0 0 0 0

 , A4 =


0 0 0 0
0 0 0 0
0 0 −

r2
K2

0
0 0 0 0

 ,

A3 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −λ2

 , A5 =


0 0 0 −c1

0 0 0 0
0 0 0 0
0 0 0 c1

 ,
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A6 =


0 0 0 0
0 c2 0 0
0 0 0 0
0 0 0 0

 , A7 =


0
s
0
0

 .
According to [33], we can provide the following definition:

Definition 3.1. [33] Let C∗ [0, a] be the set of continuous column vectors X (t), where the components
T (t), I(t), H(t), and P(t) of X (t) are continuous functions on the interval [0, a]. The norm of X ∈
C∗ [0, a] is defined as follows:

‖X‖ = sup
t

∣∣∣e−NtT (t)
∣∣∣ + sup

t

∣∣∣e−NtI (t)
∣∣∣ + sup

t

∣∣∣e−NtH (t)
∣∣∣ + sup

t

∣∣∣e−NtP (t)
∣∣∣ , (3.2)

if t > ε ≥ m, it can be represented as C∗ε [0, a] and Cε [0, a].

Definition 3.2. [33] If X ∈ C∗ [0, a] satisfies the following conditions:
(1) (t, X (t)) ∈ B, t ∈ [0, a], where B = [0, a] × L,

L =
{
(T, I,H, P) ∈ R4

+ : |T | < e1, |I| < e2, |H| < e3, |P| < e4

}
,

e1, e2, e3, and e1 are real numbers.
(2) X (t) satisfies the initial value problem (3.1).
At this point, X (t) is called the solution to initial value problem (3.1).

Theorem 3.1. For the initial value problem (3.1), there exists a unique solution X ∈ C∗ [0, a].

Proof. Based on the relevant properties of Caputo fractional order, (3.1) can be reformulated as

I(1−α) d
dt

X (t) = A1X (t) + T (t) A2X (t) + I (t) A3X (t) + H (t) A4X (t) +
T (t)

a1 + T (t)
A5X (t)

+
T (t)

a2 + T (t)
A6X (t) + A7.

Thus,
X (t) = X (0) + Iα(A1X (t) + T (t) A2X (t) + I (t) A3X (t) + H (t) A4X (t)

+
T (t)

a1 + T (t)
A5X (t) +

T (t)
a2 + T (t)

A6X (t) + A7).
(3.3)

Let F : C∗ [0, a]→ C∗ [0, a], and we obtain

FX (t) = X (0) + Iα(A1X (t) + T (t) A2X (t) + I (t) A3X (t) + H (t) A4X (t)

+
T (t)

a1 + T (t)
A5X (t) +

T (t)
a2 + T (t)

A6X (t) + A7),
(3.4)
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then
e−Nt (FX1 − FX2)

= e−NtIα(A1 (X1 (t) − X2 (t)) + T (t) A2 (X1 (t) − X2 (t)) + I (t) A3 (X1 (t) − X2 (t))

+ H (t) A4 (X1 (t) − X2 (t)) +
T (t)

a1 + T (t)
A5 (X1 (t) − X2 (t))

+
T (t)

a2 + T (t)
A6 (X1 (t) − X2 (t))),

≤
1

Γ (α)

∫ t

0
(t − s)α−1e−N(t−s) (X1 (s) − X2 (s)) × e−Ns(A1 + e1A2 + e2A3 + e3A4

+
e1

a1
A5 +

e1

a2
A6)ds

≤
A1 + e1A2 + e2A3 + e3A4 + e1

a1
A5 + e1

a2
A6

Nα
‖X1 − X2‖

∫ t

0

sα−1

Γ (α)
ds.

This suggests

‖FX1 − FX2‖ ≤
A1 + e1A2 + e2A3 + e3A4 + e1

a1
A5 + e1

a2
A6

Nα
‖X1 − X2‖ .

When N → ∞, we have
A1 + e1A2 + e2A3 + e3A4 + e1

a1
A5 + e1

a2
A6

Nα
< 1

and
‖FX1 − FX2‖ < ‖X1 − X2‖ .

Based on the definition of operator F in Eq (3.4) having a unique fixed point, it follows that Eq (3.3)
exists a unique solution X ∈ C∗ [0, τ]. From Eq (3.3), we can deduce that

X (t) = X (0) +
tα

Γ (α + 1)
(A1X (0) + T (0) A2X (0) + I (0) A3X (0)

+ H (0) A4X (0) +
T (0)

a1 + T (0)
A5X (0) +

T (0)
a2 + T (0)

A6X (0) + A7)

+ Iα+1(A1X′ (t) + T ′ (t) A2X (t) + T (t) A2X′ (t) + I′ (t) A3X (t)

+ I (t) A3X′ (t) + H′ (t) A4X (t) + H (t) A4X′ (t) +
a1T ′ (t)

(a1 + T (t))
A5X (t)

+
T (t)

a1 + T (t)
A5X′ (t) +

a2T ′ (t)
(a2 + T (t))

A6X (t) +
T (t)

a2 + T (t)
A6X′ (t))

and

dX (t)
dt

=
tα−1

Γ (α)
(A1X (0) + T (0) A2X (0) + I (0) A3X (0)

+ H (0) A4X (0) +
T (0)

a1 + T (0)
A5X (0) +

T (0)
a2 + T (0)

A6X (0) + A7)

+ Iα(A1X′ (t) + T ′ (t) A2X (t) + T (t) A2X′ (t) + I′ (t) A3X (t)
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+ I (t) A3X′ (t) + H′ (t) A4X (t) + H (t) A4X′ (t) +
a1T ′ (t)

(a1 + T (t))
A5X (t)

+
T (t)

a1 + T (t)
A5X′ (t) +

a2T ′ (t)
(a2 + T (t))

A6X (t) +
T (t)

a2 + T (t)
A6X′ (t)),

e−NtX′ (t) = e−Nt[
tα−1

Γ (α)
(A1X (0) + T (0) A2X (0) + I (0) A3X (0)

+ H (0) A4X (0) +
T (0)

a1 + T (0)
A5X (0) +

T (0)
a2 + T (0)

A6X (0) + A7)

+ Iα(A1X′ (t) + T ′ (t) A2X (t) + T (t) A2X′ (t) + I′ (t) A3X (t)

+ I (t) A3X′ (t) + H′ (t) A4X (t) + H (t) A4X′ (t) +
a1T ′ (t)

(a1 + T (t))
A5X (t)

+
T (t)

a1 + T (t)
A5X′ (t) +

a2T ′ (t)
(a2 + T (t))

A6X (t) +
T (t)

a2 + T (t)
A6X′ (t))].

This implies that X ∈ C∗ε[0, a]. From (3.3), we can deduce

dX (t)
dt

=
d
dt

Iα(A1X (t) + T (t) A2X (t) + I (t) A3X (t)

+ H (t) A4X (t) +
T (t)

a1 + T (t)
A5X (t) +

T (t)
a2 + T (t)

A6X (t) + A7),

Iα−1 dX (t)
dt

= Iα−1 d
dt

Iα(A1X (t) + T (t) A2X (t) + I (t) A3X (t)

+ H (t) A4X (t) +
T (t)

a1 + T (t)
A5X (t) +

T (t)
a2 + T (t)

A6X (t) + A7),

DαX (t) = A1X (t) + T (t) A2X (t) + I (t) A3X (t) + H (t) A4X (t)

+
T (t)

a1 + T (t)
A5X (t) +

T (t)
a2 + T (t)

A6X (t) + A7,

X (0) = X0 + Iα(A1X (t) + T (t) A2X (t) + I (t) A3X (t)

+ H (t) A4X (t) +
T (t)

a1 + T (t)
A5X (t) +

T (t)
a2 + T (t)

A6X (t) + A7).

Therefore, the initial value problem of Eq (3.3) corresponds to the solution of Eq (3.1).

Theorem 3.2. The solution of system (2.3) is positively invariant in the set

R4
+ = {X ∈ R4; X (0) ≥ 0}

and
X (t) = (T, I,H, P)T .

That is, if X (0) > 0, then the model remains greater than zero for t > 0.

Proof. Obviously,

DαT (t)|T=0 ≥ 0, DαI (t)|I=0 > 0, DαH (t)|H=0 ≥ 0, DαP (t)|P=0 ≥ 0.

AIMS Mathematics Volume 9, Issue 12, 35759–35799.



35770

We can derive the following conclusion from the first equation of system (2.3)

DαT = r1T
(
1 −

T
K1

)
− µ1IT − λ1HT −

c1T P
a1 + T

≥ −

(
r1

K1
T + µ1I + λ1H +

c1P
a1 + T

)
T.

Let
T ≤ e1, I ≤ e2, H ≤ e3, P ≤ e4

and
λ3 =

r1

K1
e1 + µ1e2 + λ1e3 +

c1e4

a1 + e1
.

Therefore, we can obtain
DαT (t) ≥ −λ3T (t) . (3.5)

Next, by applying the Laplace transform to (3.5), we derive

L (DαT (t)) ≥ L (−λ3T (t)) .

Based on the Laplace transform of the Caputo fractional derivative, we have

ϑαL {T } (ϑ) − T (0)ϑα−1 ≥ −λ3L {T } (ϑ)

and
ϑαL {T } (ϑ) (ϑα + λ3)

ϑα
≥

T (0)
ϑ

.

Thus,

L {T (t)} ≥
ϑα−1T (0)
(ϑα + λ3)

.

By applying the inverse Laplace transform,

T (t) ≥ L−1
{
ϑα−1T (0)
(ϑα + λ3)

}
. (3.6)

As each term on the right side of Eq (3.6) is a positive constant, T (t) is positive for any t > 0. The
positivity of the remaining three variables in system (2.3) can be proven similarly to T (t).

4. The existence and stability of equilibria

In this section, we will investigate the equilibria of system (2.3). First, we analyze the equilibria
in the absence of tumor cells. Second, we explore the equilibria when tumor cells coexist with other
cell populations. Finally, we examine the local stability of these equilibria under different parameter
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conditions. Based on 

r1T
(
1 −

T
K1

)
− µ1IT − λ1HT −

c1T P
a1 + T

= 0,

s +
c2T I

a2 + T
− µ2IT − d1I = 0,

r2H
(
1 −

H
K2

)
− µ3HT = 0,

c3T P
a3 + T

− λ2IP − d2P = 0,

(4.1)

we can obtain two equilibria without tumor cells, denoted as E1 =
(
0, s

d1
, 0, 0

)
and E2 =

(
0, s

d1
,K2, 0

)
.

Basic Reproduction Number: As an important indicator for assessing the progression of cancer,
we will then apply the next-generation matrix [51, 52] method for calculation, namely,

<0 = ρ
(
FV−1

)
, (4.2)

where F = ∂F
∂T and V = ∂V

∂T . It follows from (2.3) that

F (x) =

(
r1T

(
1 −

T
K1

))
, V (x) =

(
µ1IT + λ1HT +

c1T P
a1 + T

)
and

F =
∂F

∂T
= r1 − 2

r1

K1
T, V =

∂V

∂T
= µ1I + λ1H +

a1c1P
(a1 + T )2 . (4.3)

After substituting E1 and E2, we get

F1 = r1, V1 =
sµ1

d1
, F2 = r1, V2 =

sµ1

d1
+ λ1K2

and
V−1

1 =
d1

sµ1
, V−1

2 =
d1

sµ1 + d1λ1K2
.

Therefore, it can be concluded that

<1
0 = ρ

(
F1V−1

1

)
=

r1d1

sµ1
, <2

0 = ρ
(
F2V−1

2

)
=

r1d1

sµ1 + d1λ1K2
. (4.4)

Next, we will analyze the existence of equilibria of system (2.3) when T , 0. According to the first
equation of system (4.1), we can derive

P∗ =
a1 + T ∗

c1

[
r1

(
1 −

T ∗

K1

)
− µ1I∗ − λ1H∗

]
.

From the second equation of system (4.1), we have

I∗ =
−s (a2 + T ∗)

c2T ∗ − (µ2T ∗ + d1) (a2 + T ∗)
.
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From the third equation of system (4.1), it can be deduced that

H∗ =
K2r2 − K2µ3T ∗

r2
.

Based on the fourth equation of system (4.1), we can obtain

I∗ =
(c1 − d2) T ∗ − a1d2

λ2 (a1 + T ∗)
.

Therefore, system (2.3) has an interior equilibrium E3 = (T ∗, I∗,H∗, P∗).

4.1. Local stability analysis of E2

This section examines the local stability of tumor-free equilibria.

Lemma 4.1. If r1 < µ1
s

d1
+ λ1K2, equilibrium point E2 exhibits local asymptotic stability.

Proof. The Jacobian matrix of system (2.3) is

J =


r1 − 2 r1

K1
T − µ1I − λ1H − a1c1P

(a1+T )2 −µ1T −λ1T −
c1T

a1+T
a2c2I

(a2+T )2 − µ2I c2T
a2+T − µ2T − d1 0 0

−µ3H 0 r2 − 2 r2
K2

H − µ3T 0
a1c1P

(a1+T )2 −λ2P 0 c1T
a1+T − λ1I − d2

 .
Thus, the Jacobian matrix at E1 is

JE2 =


r1 − µ1

s
d1
− λ1K2 0 0 0

−
c2 s−a2µ2 s

a2d1
−d1 0 0

−µ3K2 0 −r2 0
0 0 0 −

λ2 s+d1d2
d1

 .
Obviously, the eigenvalues of matrix JE2 are

λ1 = r1 − µ1
s

d1
− λ1K2, λ2 = −d1, λ3 = −r2, λ4 = −

λ2s + d1d2

d1
.

This means that when r1 < µ1
s

d1
+ λ1K2, E2 exhibits local asymptotic stability.

4.2. Local stability analysis of E3

Next, we will examine the local stability of the internal equilibria.

Lemma 4.2. If C1 > 0, C2 > 0, C3 > 0, and C4 > 0, then E3 is locally asymptotically stable.

Proof. The Jacobian matrix at E3 is

JE3 =


−B1 −µ1T −λ1T −B2

−B3 −B4 0 0
−µ3H 0 −B5 0
−B6 −B7 0 −B8

 ,
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where
B1 = 2

r1

K1
T ∗ + µ1I∗ + λ1H∗ +

a1c1P∗

(a1 + T ∗)2 − r1, B2 =
c1T ∗

a1 + T ∗
,

B3 = µ2I∗ −
a2c2I∗

(a2 + T ∗)2 , B4 = µ2T ∗ + d −
c2T ∗

a2 + T ∗
,

B5 = 2
r2

K2
H∗ + µ3T ∗ − r2, B6 =

a1c1P∗

(a1 + T ∗)2 ,

B7 = λ2P∗, B8 = λ2I∗ + d2 −
c1T ∗

a1 + T ∗
.

Therefore, the characteristic polynomial of matrix JE3 is

f (λ) =
∣∣∣λE − JE3

∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣
λ + B1 µ1T λ1T B2

B3 λ + B4 0 0
µ3H 0 λ + B5 0
B6 B7 0 λ + B8

∣∣∣∣∣∣∣∣∣∣∣ .
Through calculation, we can obtain

f (λ) = λ4 + (B1 + B4 + B5 + B8) λ3 + [B1B8 + B2B6 + B4B5 + (B1 + B8) (B4 + B5)] λ2

+ [B2B3B7 + B2B4B6 + B2B5B6 + B4B5 (B1 + B8) + B1B8 (B4 + B5)] λ
+ B2B3B5B7 + B2B4B5B6 + B1B4B5B8.

According to the Hurwitz criterion [37], if C1 > 0, C2 > 0, C3 > 0, and C4 > 0, then E3 is locally
asymptotically stable, where

C1 = B1 + B4 + B5 + B8,

C2 = B1B8 + B2B6 + B4B5 + (B1 + B8) (B4 + B5) ,

C3 = B2B3B7 + B2B4B6 + B2B5B6 + B4B5 (B1 + B8) + B1B8 (B4 + B5) ,

C4 = B2B3B5B7 + B2B4B5B6 + B1B4B5B8.

5. Optimization control

We will continue to formulate a fractional-order optimal control problem, targeting model (2.3),
and study and design an optimal control strategy. By analyzing the basic reproduction number, it is
evident that parameters r1 and µ1 play critical roles in tumor control. To effectively regulate tumor cell
numbers, we need to decrease r1 while enhancing µ1. This will achieve the goal of reducing tumor
density and minimizing control costs. This approach not only improves treatment efficacy but also
reduces the burden on patients while controlling the tumor.

In our optimal control problem, we introduce two control functions: u1(t) and u2(t). Here, u1(t)
represents surgical treatment and u2(t) represents immunotherapy. Surgical treatment reduces the
number of tumor cells by directly removing tumor tissue, while immunotherapy boosts the immune
system’s ability to target cancer cells. Through these measures, our aim is to minimize the objective
function, thereby achieving optimal treatment outcomes while controlling costs.
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From the above description, we introduce the following control model on the basis of the existing
system (2.3) to address this issue more systematically. This model considers both the dynamic
interaction between tumor cells and immune cells, as well as the effects of surgery and immunotherapy,
aiming to achieve effective tumor control through optimized control strategies.

DαT (t) = r1T (t) (1 − u1 (t))
(
1 −

T (t)
K1

)
− (1 + u2 (t)) µ1I (t) T (t)

− λ1H (t) T (t) −
c1T (t) P (t)
a1 + T (t)

,

DαI (t) = s +
c2T (t) I (t)
a2 + T (t)

− µ2I (t) T (t) − d1I (t) ,

DαH (t) = r2H (t)
(
1 −

H (t)
K2

)
− µ3H (t) T (t) ,

DαP (t) =
c1T (t) P (t)
a1 + T (t)

− λ2I (t) P (t) − d2P (t) ,

(5.1)

The initial condition is T (0) = T0, I (0) = I0, H (0) = H0, and P (0) = P0. Our objective function is as
follows:

J (u1, u2) = min
∫ t f

0
T (t) + D1u2

1 + D2u2
2dt, (5.2)

D1 and D2 are both positive constants, representing the weights of the control measures’ costs in the
objective function. Meanwhile, we define the following control set:

U = {u = (u1, u2)| ui (t) , 0 ≤ ui (t) ≤ 1, t ∈
[
0, t f

]
, i = 1, 2}, (5.3)

where ui is measurable.
The main challenge is to discover an optimal control solution (u∗1, u

∗
2) that minimizes the objective

function J (u1, u2). Therefore, our initial focus will be on exploring the existence of this optimal control
solution.

Theorem 5.1. If these conditions are all fulfilled:
(1) The control set U contains at least one element.
(2) The control set is both convex and closed.
(3) The righthand side of system (5.1) is subject to linear constraints on the state and control

variables.
(4) The objective function’s integrand exhibits convexity.
(5) Exist a constant σ and two positive numbers k1 and k2 such that the integrated function

G (T, u1, u2, t) satisfies

G (T, u1, u2, t) ≥ k1

(
|u1 (t)|2 + |u2 (t)|2

)σ
2
− k2, (5.4)

then a set of controls u∗1, u
∗
2 ∈ U can be found such that

J
(
u∗1, u

∗
2
)

= min J (u) , u ∈ U. (5.5)

Proof. According to the existence of bounded system solutions in Lukes’ literature [53], condition (1)
holds, and based on the definition of the control set, condition (2) also holds. Our focus is on proving
the last three conditions, and below is the proof for condition (3).
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By simplifying (5.1), we obtain

DαX (t) = M (X) = NX + O (X) ,

where
X (t) = (T (t) , I (t) ,H (t) , P (t))T

and

N =


r1(1 − u1) 0 0 0

0 −d1 0 0
0 0 r2 0
0 0 0 −d2

 , O (X) =


−

r1(1−u1)
K1

T 2 − (1 + u2)µ1IT − λ1HT − c1T P
a1+T

s + c2T P
a2+T − µ2IT

−
r2
K2

H2 − µ3HT
c1T P
a1+T − λ2IP

 .
Obviously, we can find a constant e∗ such that

T (t) , I (t) ,H (t) , P (t) < e∗.

Let
X1 (t) = (T1 (t) , I1 (t) ,H1 (t) , P1 (t))

and
X2 (t) = (T2 (t) , I2 (t) ,H2 (t) , P2 (t)) .

According to the Hölder inequality [54], we can derive

|O (X1) − O (X2)| =
r1 (1 − u1)

K1

∣∣∣T 2
1 − T 2

2

∣∣∣ + µ1 (1 + u2) |I1T1 − I2T2| + λ1 |H1T1 − H2T2|

+ 2c1

∣∣∣∣∣ T1P1

a1 + T1
−

T2P2

a1 + T2

∣∣∣∣∣ + c2

∣∣∣∣∣ T1I1

a2 + T1
−

T2I2

a2 + T2

∣∣∣∣∣ + µ2 |I1T1 − I2T2|

+
r2

K2

∣∣∣H2
1 − H2

2

∣∣∣ + µ3 |H1T1 − H2T2| + λ2 |I1P1 − I2P2| .

Therefore, we have

|O (X1) − O (X2)| =
r1 (1 − u1)

K1

∣∣∣T 2
1 − T 2

2

∣∣∣ +
[
µ1 (1 + u2) + µ2

]
|I1T1 − I2T2| + (λ1 + µ3) |H1T1 − H2T2|

+ 2c1

∣∣∣∣∣ T1P1

a1 + T1
−

T2P2

a1 + T2

∣∣∣∣∣ + c2

∣∣∣∣∣ T1I1

a2 + T1
−

T2I2

a2 + T2

∣∣∣∣∣ +
r2

K2

∣∣∣H2
1 − H2

2

∣∣∣ + λ2 |I1P1 − I2P2|

≤
r1

K1
|T1 + T2| |T1 − T2| + (2µ1 + µ2) |I1| |T1 − T2| + (2µ1 + µ2) |T2| |I1 − I2|

+ (λ1 + µ3) |H1| |T1 − T2| + (λ1 + µ3) |T2| |H1 − H2| + 2c1 |T1T2| |P1 − P2|

+ 2a1c1 |T1| |P1 − P2| + 2a1c1 |P2| |T1 − T2| + c2 |T1T2| |I1 − I2| + a2c2 |T1| |I1 − I2|

+ a2c2 |I2| |T1 − T2| +
r2

K2
|H1 + H2| |H1 − H2| + λ2 |I1| |P1 − P2| + λ2 |I2| |I1 − I2|

≤
r1

K1
(|T1| + |T2|) |T1 − T2| + (2µ1 + µ2) |I1| |T1 − T2| + (2µ1 + µ2) |T2| |I1 − I2|

+ (λ1 + µ3) |H1| |T1 − T2| + (λ1 + µ3) |T2| |H1 − H2| + 2c1 |T1T2| |P1 − P2|
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+ 2a1c1 |T1| |P1 − P2| + 2a1c1 |P2| |T1 − T2| + c2 |T1T2| |I1 − I2| + a2c2 |T1| |I1 − I2|

+ a2c2 |I2| |T1 − T2| +
r2

K2
(|H1| + |H2|) |H1 − H2| + λ2 |I1| |P1 − P2| + λ2 |P2| |I1 − I2|

=

[
r1

K1
(|T1| + |T2|) + (2µ1 + µ2) |I1| + (λ1 + µ3) |H1| + 2a1c1 |P2| a2c2 |I2|

]
|T1 − T2|

+
[
(2µ1 + µ2) |T2| + c2 |T1T2| + a2c2 |T1| + λ2 |P2|

]
|I1 − I2|

+

[
(λ1 + µ3) |T2| +

r2

K2
(|H1| + |H2|)

]
|H1 − H2|

+ (2c1 |T1T2| + 2a1c1 |T1|) |P1 − P2|

≤ $1 |T1 − T2| +$2 |I1 − I2| +$3 |H1 − H2| +$4 |P1 − P2|

≤ θ (|T1 − T2| + |I1 − I2| + |H1 − H2| + |P1 − P2|) ,

where

$1 =

(
2

r1

K1
+ 2µ1 + µ2 + µ3 + λ1 + 2a1c1 + a2c2

)
e∗,

$2 = (2µ1 + µ2 + λ2 + a2c2) e∗ + c2e∗2, $3 =

(
µ3 + λ1 + 2

r2

K2

)
e∗,

$4 = (2a1c1 + λ2) e∗ + 2c1e∗2, θ = max {$1, $2, $3, $4} .

This implies

|M (X1) − M (X2)| ≤ η |X1 − X2| ,

where η = max{θ, ‖N‖} < ∞. Therefore, M is Lipschitz continuous. This implies that condition (3) is
satisfied.

Next, we will demonstrate condition (4). Let

S
(
t,T, ~u

)
= T (t) + D1u2

1 (t) + D2u2
2 (t) ,

where ~u = (u1, u2) ∈ U, ~w = (w1,w2) ∈ U, and 0 ≤ β ≤ 1. To prove that S is convex, it suffices to
demonstrate

(1 − β) S
(
t,T, ~u

)
+ βS

(
t,T, ~w

)
≥ S

(
t,T, (1 − β)~u + β~w

)
,

namely,

(1 − β) S
(
t,T, ~u

)
+ βS

(
t,T, ~w

)
− S

(
t,T, (1 − β)~u + β~w

)
≥ 0.

According to the definition of convex functions,

(1 − β) S
(
t,T, ~u

)
+ βS

(
t,T, ~w

)
− S

(
t,T, (1 − β)~u + β~w

)
= (1 − β)

[
T (t) + D1u2

1 (t) + D2u2
2 (t)

]
+ β[T (t) + D1w2

1 (t) + D2w2
2 (t)] − [T (t)

+ D1((1 − β) u1 + βw1)2 + D2((1 − β) u2 + βw2)2].
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Derived through simplification,

(1 − β) S (t,T, ~u) + βS (t,T, ~w) − S (t,T, (1 − β)~u + β~w)
= D1u2

1 − βD1u2
1 + D2u2

2 − βD2u2
2 + βD1w2

1 + βD1w2
2 − D1[(1 − β) u1 + βw1]2

− D2[(1 − β) u2 + βw2]2

= D1 (1 − β) β
(
u2

1 − 2u1w1 + w2
1

)
+ D2 (1 − β) β(u2

2 − 2u2w2 + w2
2)

= D1 (1 − β) β(u1 − w1)2 + D2 (1 − β) β(u2 − w2)2 ≥ 0.

Finally, our proof of condition (5) is as follows:
As S

(
t,T, ~u

)
is a convex function, therefore,

T (t) + D1u2
1 (t) + D2u2

2 (t) ≥ ϕ1(|u1(t)|2 + |u2(t)|2)
ς
2 − ϕ2.

In this case, if we choose ϕ1 = 1
2 min{D1,D2}, ϕ2 > 0, and ς = 2, then condition (5) is also satisfied.

Theorem 5.2. In the optimal control problem formulated by Eqs (5.1) and (5.2), if u∗ =
(
u∗1, u

∗
2

)
,

X∗ = (T ∗, I∗,H∗, P∗) is the optimal solution, then there exists an adjoint variable δi, i = 1, 2, 3, 4 such
that 

Dαδ1(t) = 1 + δ1[r1(1 + u1) − 2
r1(1 + u1)

K1
T − (1 + u2)µ1I − λ1H −

a1c1P
(a1 + T )

]

+ δ2[
a2c2I

(a2 + T )
− µ2I] − δ3µ3H + δ4

a1c1P
(a1 + T )

,

Dαδ2(t) = −δ1(1 + u2)µ1T + δ2(
c2T

a2 + T
− µ2T − d1) − δ4λ2P,

Dαδ3(t) = −δ1λ1T + δ3

(
r2 − 2

r2

K2
H − µ3T

)
,

Dαδ4(t) = −δ1
c1T

a1 + T
+ δ4

(
c1T

a1 + T
− λ2I − d2

)
,

(5.6)

and the intercept condition is δi

(
t f

)
= 0. The optimal control solution is

u∗1 = min{max{0,
δ1r1T (1 − T

K1
)

2D1
}, umax},

u∗2 = min{max{0,
δ1µ1IT

2D2
}, umax}.

Proof. We begin by defining the Lagrangian function Z1 and the Hamiltonian function Z2 as follows:

Z1 = T (t) + D1u2
1 (t) + D2u2

2 (t) ,

Z2 = Z1 + δ1[r1(1 − u1)T (1 −
T
K1

) − (1 + u2)µ1IT − λ1HT −
c1T P

a1 + T
] + δ2[s +

c2T I
a2 + T

− µ2IT − d1I] + δ3[r2H(1 −
H
K2

) − µ3HT ] + δ4[
c1T P

a1 + T
− λ2IP − d2P],
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where δi, i = 1, 2, 3, 4 is the adjoint variable. By further applying the Pontryagin maximum
principle [37], the following state equation can be derived:

Dαδ1(t) =
∂Z2

∂T
= 1 + δ1[r1(1 + u1) − 2

r1(1 + u1)
K1

T − (1 + u2)µ1I − λ1H −
a1c1P

(a1 + T )
]

+ δ2[
a2c2I

(a2 + T )
− µ2I] − δ3µ3H + δ4

a1c1P
(a1 + T )

,

Dαδ2(t) =
∂Z2

∂I
= −δ1(1 + u2)µ1T + δ2(

c2T
a2 + T

− µ2T − d1) − δ4λ2P,

Dαδ3(t) =
∂Z2

∂H
= −δ1λ1T + δ3

(
r2 − 2

r2

K2
H − µ3T

)
,

Dαδ4(t) =
∂Z2

∂P
= −δ1

c1T
a1 + T

+ δ4

(
c1T

a1 + T
− λ2I − d2

)
,

simultaneously satisfying the transversality condition

δ1

(
t f

)
= δ2

(
t f

)
= δ3

(
t f

)
= δ4

(
t f

)
= 0.

According to the necessary conditions of the control equation,

∂Z2

∂ui
= 0, i = 1, 2.

Therefore, the optimal control solution u∗ =
(
u∗1, u

∗
2

)
is

u∗1 =
δ1r1T
2D1

(1 −
T
K1

), u∗2 =
δ1µ1IT

2D2
.

As a result of u∗1 (t) , u∗1 (t) ∈ U, the expression for the optimal control solution is

u∗1 = min{max{0,
δ1r1T (1 − T

K1
)

2D1
}, umax},

u∗2 = min{max{0,
δ1µ1IT

2D2
}, umax}.

6. Numerical simulation and biological significance

In this section, we will conduct numerical simulations to validate the theoretical derivations and
assess the model’s accuracy. Additionally, we will discuss the complex dynamic behaviors of the
system under different parameters and conditions. These simulations help in understanding the
stability and response characteristics of the system and reveal various dynamic phenomena that may
be encountered in practical applications. Through numerical simulations, we can intuitively observe
and explain the nonlinear characteristics of the system, providing a reference for further research and
applications. In the following figures, when K1 = 100, we set the initial values to [10, 12, 15, 2]; when
K1 = 10, the initial values are set to [5, 6, 7, 2].
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6.1. Stability analysis of system (2.3)

From Figure 4, it can be seen that in the initial period, both tumor cells and healthy cells increase
due to the immune system not being severely compromised. However, as time progresses, the immune
system becomes increasingly damaged, and cancer cells continue to proliferate and absorb a large
amount of nutrients, leading to a decrease in healthy cells. Eventually, the four state variables stabilize.
Additionally, when α increases, the number of healthy cells and cancer cells at equilibrium becomes
closer and when α = 1, their numbers are almost equal. This indicates that α has a significant impact
on the stability of system (2.3).

To better analyze the impact of α on each state variable, Figure 5 presents the time series of the
same state variable under different α values. From Figure 5[A], it can be seen that as α increases, the
number of tumor cells at equilibrium continuously rises, indicating that higher α values accelerate the
growth of tumor cells. Figures 5[B–D] show that as α increases, the number of immune cells, healthy
cells, and metastatic cancer cells at equilibrium continuously decreases. However, it is noteworthy that
the maximum number of healthy cells that can be reached is also higher with larger α values, possibly
due to the stronger protective effect on healthy cells during the initial stages. These results indicate that
α has a significant overall impact on the system and that fractional-order models have an advantage in
capturing the dynamic behavior of the system, making them more suitable for predicting and analyzing
complex scenarios.
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Figure 4. The dynamic behavior of system (2.3) with the same α value. Parameters: r1 = 0.5,
K1 = 10, µ1 = 0.03, λ1 = 0.002, c1 = 0.2, a1 = 5, c2 = 0.15, a2 = 5, µ2 = 0.03, d1 = 0.01,
r2 = 0.4, K2 = 12, µ3 = 0.02, λ2 = 0.02, d2 = 0.05, s = 0.5. [A] α = 0.7. [B] α = 0.8. [C]
α = 0.9. [D] α = 1.
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Figure 5. The dynamic behavior of system (2.3) with different α values, with other
parameters the same as in Figure 4.

The basic reproduction number is crucial in cancer treatment. To delve deeper into the effects of
different parameters in the basic regeneration expression on state variables, Figures 6–9 respectively
show the comparative impacts of varying r1, µ1, d1, and s on each state variable. From the figures,
it can be seen that as r1 increases, the quantities of state variables T and P at equilibrium gradually
increase, while I and H gradually decrease. Conversely, increases in µ1 and s have the opposite effect
of r1, leading to decreases in T and P quantities and increases in I and H quantities.

Notably, in Figure 8[A], during the initial period, as d1 increases, T continuously increases while H
gradually decreases. This is due to the high death rate of immune cells, resulting in a sharp decrease in
their number. However, over time, the increase in tumor cells stimulates the proliferation of immune
cells. As a result, the proliferation rate of immune cells far exceeds their death rate, leading to a higher
immune cell production rate with larger d1 values, ultimately reducing the number of tumor cells.

Figure 10 shows the time series and phase plots of the nodes. Subsequently, by fixing other
parameters and adjusting α from 0.84 to 0.9, the state variables no longer stabilize at the nodes but
exhibit periodic fluctuations, eventually settling into a limit cycle, as shown in Figure 11. This indicates
that as α changes, the system (2.3) transitions from one stable state to another, with increasingly
complex dynamic behavior. To more clearly analyze the impact of α changes on the system dynamics,
Figure 12 presents the time series and phase plots of each state variable under different α values,
providing a more intuitive validation of our analysis.
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Figure 6. The dynamic behavior of system (2.3) with different r1 values. Parameters: α =

0.95. Other parameters are the same as in Figure 4.
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Figure 7. The dynamic behavior of system (2.3) with different µ1 values. Parameters: α =

0.95. Other parameters are the same as in Figure 4.
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Figure 8. The dynamic behavior of system (2.3) with different d1 values. Parameters: α =

0.95. Other parameters are the same as in Figure 4.
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Figure 9. The dynamic behavior of system (2.3) with different s values. Parameters: α =

0.95. Other parameters are the same as in Figure 4.

AIMS Mathematics Volume 9, Issue 12, 35759–35799.



35783

0 200 400 600 800 1000

time(day)

0

10

20

30

40

50

T

I

H

P

0
20

20

3015

40

20

60

10 10
5 0

0
20

10

30

20

15

30

20

40

10 10
5 0

0
60

10

30

20

40

30

20

40

20 10
0 0

[A] [B]

[C] [D]

Figure 10. The time series and phase diagram of system (2.3). Parameters: α = 0.84,
r1 = 0.65, K1 = 100, µ1 = 0.02, λ1 = 0.001, c1 = 2, a1 = 50, c2 = 1.5, a2 = 50, µ2 = 0.03,
d1 = 0.01, r2 = 0.15, K2 = 120, µ3 = 0.015, λ2 = 0.02, d2 = 0.01, s = 0.8.
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Figure 11. The time series and phase diagram of system (2.3). Parameters: α = 0.9. Other
parameters are consistent with Figure 10.
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Figure 12. The time series and phase diagram of system (2.3) with other parameters
consistent with Figure 10.

6.2. The chaos analysis of system (2.3)

Next, we will analyze the existence of chaos in system (2.3). First, we computed the Lyapunov
exponent of system (2.3), which is a numerical feature that represents the average exponential
divergence rate of nearby trajectories in phase space and is one of the key indicators for identifying
chaotic motion. The Lyapunov exponents of system (2.3) are shown in Table 2 and Figure 13. By
observing the Lyapunov exponents, we can see that since there is a positive Lyapunov exponent, the
system is expected to exhibit chaotic behavior within the parameter range specified in Table 2.

Table 2. The Lyapunov exponents (α = 0.85).

t LET LEI LEH LEP t LET LEI LEH LEP

10 -0.1551 -0.0131 -1.2056 -1.3859 100 0.8621 -0.1742 -0.6623 -1.0283
20 0.5700 -0.5235 -0.5740 -0.6670 300 0.8337 -0.3379 -0.5994 -1.2045
30 0.7545 -0.3418 -0.6011 -0.6055 500 0.8833 -0.2905 -0.5432 -1.1698
40 0.5516 -0.6181 -1.3066 -1.3565 700 0.8744 -0.3094 -0.5554 -1.1951
50 0.5659 -0.4543 -0.9360 -1.1777 1000 0.8918 -0.2897 -0.5413 -1.1829

Additionally, the dimension of a chaotic attractor serves as a key numerical measure for assessing
its characteristics. In this study, we use the Lyapunov dimension to quantify the chaotic attractor’s
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dimension in system (2.3) [55]. The calculation formula is

dL = j +

j∑
i=1

LEi∣∣∣LE j+1

∣∣∣ , (6.1)

where
j∑

i=1
LEi > 0 and

j∑
i=1

LEi + LE j+1 < 0. For model (2.3), it follows from LET = 0.8918, LEI =

−0.2897, LEH = −0.2897, and LEP = −1.1829 that LET + LEI + LEH = 0.06077 > 0 and LET + LEI +

LEH + LEP = −1.12213 < 0. Therefore, the Lyapunov dimension is dL ≈ 3.05137, indicating that the
model is a fractal with a dimension between 3 and 4.
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Figure 13. The Lyapunov spectrum of model (2.3). The red line represents the Lyapunov
exponent of tumor cells, the black line represents the Lyapunov exponent of immune cells,
the blue line represents the Lyapunov exponent of healthy cells, and the green line represents
the Lyapunov exponent of tumor cells diffusing outward. Parameters: α = 0.85, r1 = 1.1,
K1 = 100, µ1 = 0.02, λ1 = 0.001, c1 = 1.2, a1 = 50, c2 = 2, a2 = 50, µ2 = 0.03, d1 = 0.01,
r2 = 0.4, K2 = 120, µ3 = 0.03, λ2 = 0.01, d2 = 0.01, s = 0.5.

To further investigate the chaotic phenomena in system (2.3), we selected a new set of parameters
and continuously adjusted the value of α. We found that the system tends to exhibit chaos when
α is around 0.85, as shown in Figure 14. To more intuitively demonstrate the presence of chaos,
we plotted two-dimensional phase diagrams of some combinations of state variables (Figure 15),
three-dimensional phase diagrams of combinations of three state variables (Figure 16), and three-
dimensional plots of two state variables over time (Figure 17). Chaotic phenomena can be explained
by the irregular division of tumor cells and the complex dynamic relationships between cells. When
the system exhibits chaos, the unpredictability and extreme sensitivity of chaotic behavior make cancer
treatment more complex and challenging.
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Figure 14. The time series diagram of system (2.3) with parameters consistent with
Figure 13.
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Figure 15. Phase diagram of system (2.3) with parameters consistent with Figure 13.
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Figure 16. Phase diagram of system (2.3) with parameters consistent with Figure 13.
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Figure 17. The time series diagram of system (2.3) with other parameters consistent with
Figure 13.

6.3. Bifurcation analysis of system (2.3)

Combining the above analysis, it can be observed that varying the value of α leads to a transition
of system (2.3) from chaotic behavior to a stable limit cycle, suggesting the presence of bifurcations
within system (2.3). From a dynamical systems perspective, bifurcation refers to a phenomenon in
which the continuous variation of a parameter causes a sudden and significant change in the system’s
behavior, thereby altering its dynamical properties. Bifurcation diagrams are crucial tools for analyzing
how system properties change with respect to parameter variations, and they aid in uncovering the
underlying dynamics of the system. In this study, four parameters are chosen as bifurcation parameters,
and their relationships with the system state variable T are examined. The corresponding bifurcation
diagrams are presented in Figure 18.
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Figure 18. The bifurcation diagram of the system state variable tumor cells T under different
parameter values in system (2.3). Here, blue represents the local maxima of the tumor cells,
and red represents the local minima of the tumor cells with other parameters consistent with
those in Figure 13.

Figure 18[A,C,D] illustrates the occurrence of period-doubling bifurcations in system (2.3) under
specific parameter values α = 0.8, s = 0.3, and µ1 = 0.00187. In Figure 18[A], a period-doubling
bifurcation is observed when r1 = 1.12, and the relationship between the chaotic state and the intensity
of immunotherapy µ1 is also evident. Before µ1 = 0.0196, the system exhibits period-doubling
bifurcations, transitioning into chaotic behavior thereafter. This suggests that even small variations
in these parameters can significantly influence the system’s dynamic behavior. Therefore, in cancer
treatment, adjusting these parameters could lead to more effective therapeutic strategies. For instance,
the value of r1 can be altered through surgery, while µ1 can be regulated via immunotherapy. Next, we
will conduct numerical simulations to investigate the effects of these two treatment methods on cancer,
providing further insight into their role and effectiveness in modulating system parameters.

6.4. Numerical analysis of optimal control

We designate the treatment method combining surgery and immunotherapy as Treatment Strategy
A, surgery alone as Treatment Strategy B, and immunotherapy alone as Treatment Strategy C. Figure 1
shows the time series of the control parameter ui(i = 1, 2) under the three treatment strategies. From
Figure 1[A], it can be seen that in the comprehensive Treatment Strategy A, the highest intensity of
treatment is not required, and as the treatment progresses, the intensity gradually decreases, eventually
reaching a very small value.

Interestingly, in the early stages of treatment, surgery dominates, while over time, immunotherapy
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becomes increasingly important. This aligns with real-world scenarios, where in the early stages,
a larger number of tumor cells are present and surgery is used to remove most of the tumor,
while the remaining tumor cells are eliminated through immunotherapy. This indicates that through
comprehensive treatment, cancer can be effectively controlled without requiring extremely high
treatment intensity, gradually reducing the treatment intensity and improving the sustainability and
effectiveness of the treatment.

Figure 1[B] illustrates the scenario where only surgical treatment is performed. Compared to
treatment strategy A, surgical treatment requires a higher intensity of treatment initially, and the
treatment intensity remains higher even when it stabilizes in the later stages. This presents several
issues: The high intensity of treatment not only demands a lot from doctors but also requires highly
advanced medical facilities, increasing the complexity of the treatment. Therefore, the advantages of
comprehensive treatment are particularly prominent, as it can reduce the intensity of treatment while
improving the sustainability and effectiveness of the treatment.

Figure 1[C] shows the time series of the control function when only immunotherapy is administered.
It can be seen that immunotherapy alone requires a period of high-intensity treatment, and the intensity
remains relatively high in the later stages, which could result in higher costs. Therefore, among these
three treatment strategies, treatment strategy A is preferred, as it can reduce the overall treatment
intensity while improving treatment efficacy and sustainability.

After analyzing the treatment intensity under the three treatment strategies, we further examined
their impact on the objective function, as shown in Figure 2. The objective function reflects the overall
effect and cost of the treatment. From the figure, it can be seen that the objective function value for
treatment strategy A is the lowest, indicating that the combined treatment (surgery and immunotherapy)
is optimal in terms of effectiveness and cost. In contrast, the objective function value for treatment
strategy B (surgery only) is higher. Although surgical treatment is effective in some aspects, it requires
a higher initial treatment intensity, resulting in higher overall costs and less favorable outcomes.

The objective function value for treatment strategy C (immunotherapy only) is the highest,
suggesting that immunotherapy alone not only requires a prolonged period of high-intensity treatment
but also incurs higher costs. Considering both the treatment effect and cost, treatment strategy A is
clearly superior to the other two strategies. This indicates that combining surgery and immunotherapy
can achieve the best treatment outcomes while reducing treatment intensity and costs. Future research
and practical treatments should focus on combined treatment. Finally, Figure 19 presents the time
series of various state variables under different control strategies. It can be seen that treatment strategy
A has the best control effect on cancer cells, followed by treatment strategy B, while treatment strategy
C shows relatively poorer results, although all strategies are better than no treatment at all. Specifically,
treatment strategy A not only significantly reduces the number of cancer cells but also effectively
protects the immune system and healthy cells. In contrast, treatment strategy B is slightly less effective
in controlling cancer cells than strategy A but still performs significantly better than strategy C and no
treatment.

Moreover, although treatment strategy C is not as effective as the other two strategies, it still
manages to control the growth of cancer cells to some extent and better protects healthy cells and
the immune system compared to no treatment. This indicates that although single treatment methods
(such as immunotherapy alone) have limited effectiveness, they still have some therapeutic value.

Overall, treatment strategy A, by combining surgery and immunotherapy, achieves the best results,
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not only excelling in inhibiting cancer cells but also maximizing the protection of the immune system
and healthy cells. Although treatment strategy B is not as effective as strategy A, it still provides
significant therapeutic benefits. Treatment strategy C, despite being weaker, still has its role as an
adjunctive treatment. Therefore, in practical applications, comprehensive treatment strategy A should
be prioritized to achieve the best clinical outcomes and patient prognosis.
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Figure 19. Time series of state variables under different treatment strategies, with parameters
consistent with those in Figure 1.

7. Real data example

Parameter estimation (PE) is crucial in the identification and validation of cancer models. The
occurrence and progression of cancer involve various complex biological processes, and accurately
translating these processes into mathematical models is a significant challenge. Through PE, model
parameters can be determined using real data within a reasonable range, ensuring that the model can
more accurately represent the biological characteristics of cancer. Accurate PE not only improves
the predictive accuracy of the model but also helps reveal the underlying biological mechanisms of
cancer progression, providing stronger support for clinical decision-making, ultimately driving the
optimization and personalized development of cancer treatment plans.

In this section, we used real data on the growth of lung cancer cells over 14 days from a patient
at Kayseri Erciyes University Hospital, with specific data points including 50,000, 80,000, 80,000,
80,000, 100,000, 140,000, 140,000, 200,000, 200,000, 240,000, 240,000, 200,000, 180,000, and
180,000, as mentioned in reference [33]. Given the limited real data points and the relatively large
number of model parameters, we used interpolation to increase the number of data points for fitting
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and then applied the least squares method. The specific fitting process and details are as follows:
Step 1: First, define the real experimental data, including the time series and tumor cell count.

Since the experimental data points are limited, which makes it difficult to fully capture the changes
in tumor cell growth, we use spline interpolation to generate more data points, allowing for a more
accurate reflection of tumor cell growth at different stages.

Step 2: Second, initialize the model parameters, such as tumor growth rate, carrying capacity,
etc., and set reasonable upper and lower bounds for each parameter to ensure the optimization results
are biologically plausible. At the same time, configure the parameters of the least squares optimizer,
such as the maximum number of iterations and convergence tolerance, to ensure the stability of the
optimization process.

Step 3: Next, the lsqcurvefit function is employed to optimize the parameters by minimizing the
sum of squared residuals between the model predictions and experimental data, thereby improving the
fitting accuracy. Additionally, the Akaike information criterion and the Bayesian information criterion
are used to mitigate the risk of overfitting.

Step 4: Finally, a comparison plot of the fitting results is created, showing the real data points,
interpolated data, and the model’s predicted curve. Additionally, a residual analysis plot is generated
to evaluate the model’s prediction bias at different time periods, as shown in Figure 20.
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Figure 20. [A] is the best-fitting curve of system (2.3) with the 14-day real data of a lung
cancer patient and [B] is the residual analysis between the real data and the fitted data.

Using this method, the optimal fitting parameter value at α = 0.9 was obtained, with the specific
results shown in Table 3. In Figure 20[A], the optimal fitting curve is presented, where red points
represent the observed real data, the blue curve represents the fitted curve, and green points indicate
the interpolated data points. Figure 20[B] shows the residual analysis, where smaller differences from
zero indicate better fitting performance. As seen in Figure 20, the fitting performance is relatively good
between days 0–9, while it worsens between days 9–14. This may be due to larger fluctuations in the
later data and the significant influence of the estimated parameter values on the fitting process. This
also suggests that different prediction strategies should be applied based on the data characteristics of
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different stages when making predictions.

Table 3. Parameter values and their fitting status.

Parameter Value (α = 0.9) Status
r1 3.001424e-01 Fitted
r2 4.886303e-01 Fitted
K1 2.686256e+05 Fitted
K2 2.283360e+05 Fitted
µ1 1.000000e-05 Fitted
µ2 1.000000e-05 Fitted
µ3 1.000000e-05 Fitted
λ1 8.912330e-05 Fitted
λ2 8.875427e-05 Fitted
c1 9.836971e-04 Fitted
c2 9.874923e-04 Fitted
a1 2.942564e+04 Fitted
a2 2.959367e+04 Fitted
d1 1.144475e-02 Fitted
d2 1.004176e-02 Fitted
s 4.801490e-01 Fitted

8. Conclusions

Cancer treatment remains a significant challenge. This paper introduces a new Caputo fractional-
order model to describe the progression of lung cancer. The model includes tumor cells, immune cells,
healthy cells, and the spread of tumor cells from the lungs to surrounding organs. The main objective of
this paper is to analyze the complex dynamic behaviors between these cell populations and assess the
impact of different treatment strategies on cancer cell growth. By incorporating Caputo fractional-order
differential equations, we are able to capture the complex interactions between cells more accurately.
Compared to traditional integer-order models, the fractional-order model has a clear advantage in
describing the memory effects and genetic characteristics of biological systems. Its flexibility and
accuracy make it better suited for simulating the growth and spread dynamics of tumor cells.

Our model not only considers the growth of lung tumors but also includes the process of tumor cell
dissemination to surrounding organs. This spread is crucial in the progression of lung cancer, and an
accurate model to predict tumor dissemination is essential for devising effective treatment strategies.
Additionally, the dynamic changes of immune cells and healthy cells included in the model help us
understand the role of the immune system in tumor progression and the impact of different treatment
regimens on the immune system.

We investigated the system’s solutions to ensure that subsequent research is both reasonable and
biologically meaningful, focusing on their existence, uniqueness, and positivity. First, we discussed
the existence and stability conditions of tumor-free equilibria and internal equilibria. Furthermore,
we calculated the basic reproduction number to determine whether the tumor will deteriorate. These
analyses lay the theoretical foundation for introducing control terms and conducting numerical
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simulations in subsequent studies, particularly in selecting sensitive parameters, laying the groundwork
for analyzing how parameters affect the system.

Considering the different impacts of surgery and immunotherapy on tumors, we introduced control
parameters into the model. Surgical treatment directly affects the natural growth rate r1 of tumor
cells, while immunotherapy increases the killing rate µ1 of immune cells against tumor cells. By
incorporating control parameters into these two aspects, we can simulate the effects of surgery and
immunotherapy on the system. After introducing the control terms, we first theoretically proved
the necessary conditions for the existence of optimal control solutions and then used Pontryagin’s
maximum principle to calculate the expressions for the optimal solutions.

We used numerical simulations to verify the correctness of the above theoretical derivations and
explored some complex dynamic behaviors that are difficult to prove theoretically. First, we studied
the system without the control terms and analyzed the effects of key parameters α, r1, and µ1 on the
system’s dynamics. The results showed that small variations in these parameters significantly affect the
system’s dynamic behavior. Since fractional-order systems exhibit more complex dynamic behaviors,
they are more suitable for predicting the growth of tumor cells.

By continuously adjusting the parameters, we found that the system stabilizes at a node, as shown
in Figure 10. This is a positive signal for cancer patients, indicating a lower number of cancer cells
and higher numbers of healthy and immune cells. This suggests that as long as the immune system is
strong enough, it can control tumor cells at a low level and ensure normal immune function, even if it
cannot completely eliminate the tumor cells. Therefore, regular exercise and a consistent daily routine
are crucial for both cancer prevention and treatment.

When only modifying α, the system transitions from a stable node to a stable limit cycle, as
illustrated in Figure 11. Further parameter adjustments lead to chaotic phenomena, which can be
explained by the irregular proliferation of tumor cells and the complex dynamic interactions between
cells. Chaotic behavior is detrimental to cancer treatment because it complicates monitoring cell
growth, necessitating multiple treatment approaches to stabilize the condition before devising a
reasonable treatment strategy. Analysis shows that the system may exhibit bifurcation phenomena.
Therefore, we selected r1, µ1, α, and s as bifurcation parameters and plotted the corresponding period-
doubling or period-halving bifurcation diagrams. These diagrams indicate that small perturbations in
these parameters can shift the system from one state to another, highlighting the importance of closely
monitoring these parameter changes during cancer treatment.

After introducing controls, we studied three treatment strategies: simultaneous surgery and
immunotherapy (Strategy A), surgery alone (Strategy B), and immunotherapy alone (Strategy C).
Through numerical simulations, we evaluated the required control intensity, the size of the objective
function, and the dynamic changes of each state variable for these three treatment strategies during the
treatment process. The results showed that the combined treatment strategy performed best in terms of
treatment intensity, efficacy, and cost, consistent with theoretical predictions. Surgery treatment was
the next most effective, followed by immunotherapy. Regardless of the treatment strategy adopted, all
were more effective than no treatment.

To validate the accuracy of the model, we used real data from lung cancer patients, recording the
changes in cancer cells over a 14-day period. Given the limited amount of real data, we first applied
spline interpolation to augment the dataset, then estimated parameters using the least squares method
and performed curve fitting. Figure 20[A] shows the fitting results when α = 0.9, while Figure 20[B]
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presents the residual analysis between the real data and the fitted data. It can be observed that the
model fits well in the early stages, but the deviation increases in the later stages. This indicates that
while the model effectively captures the trend of cancer cell changes, there are potential limitations in
its ability to predict changes over longer periods.

Considering that in actual treatment processes, the monitored data may have a certain time delay,
we plan to introduce time-delay parameters in future research. This will make the model more
accurately reflect the dynamic processes in clinical treatment, simulating and predicting changes in
tumor cells, immune cells, and healthy cells. By calibrating with actual clinical data, we can optimize
treatment strategies, improve treatment outcomes, and reduce side effects and costs, thus providing
more scientific theoretical support and effective clinical guidance for cancer treatment. Ultimately, this
will help enhance patient outcomes.
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