The Ambartsumian delay differential equation with a variable coefficient is considered in this paper. An effective transformation is produced to convert the extended Ambartsumian equation to the pantograph model. Two kinds of analytical solutions are determined. The first solution is expressed as an exponential function multiplied by an infinite power series. The second solution is obtained as an infinite series in terms of exponential functions. Several exact solutions are established for different forms of the extended Ambartsumian equation under specific relations. In addition, the convergence analysis is addressed theoretically. Moreover, numeric calculations are conducted to estimate the accuracy. The results reveal that the present analysis is efficient and accurate and can be further applied to similar delay models in a straightforward manner.
Citation: Rana M. S. Alyoubi, Abdelhalim Ebaid, Essam R. El-Zahar, Mona D. Aljoufi. A novel analytical treatment for the Ambartsumian delay differential equation with a variable coefficient[J]. AIMS Mathematics, 2024, 9(12): 35743-35758. doi: 10.3934/math.20241696
The Ambartsumian delay differential equation with a variable coefficient is considered in this paper. An effective transformation is produced to convert the extended Ambartsumian equation to the pantograph model. Two kinds of analytical solutions are determined. The first solution is expressed as an exponential function multiplied by an infinite power series. The second solution is obtained as an infinite series in terms of exponential functions. Several exact solutions are established for different forms of the extended Ambartsumian equation under specific relations. In addition, the convergence analysis is addressed theoretically. Moreover, numeric calculations are conducted to estimate the accuracy. The results reveal that the present analysis is efficient and accurate and can be further applied to similar delay models in a straightforward manner.
[1] | V. A. Ambartsumian, On the fluctuation of the brightness of the milky way, Dokl. Akad. Nauk. USSR, 44 (1994), 223–226. |
[2] | J. Patade, S. Bhalekar, On analytical solution of Ambartsumian equation, Natl. Acad. Sci. Lett., 40 (2017), 291–293. https://doi.org/10.1007/s40009-017-0565-2 doi: 10.1007/s40009-017-0565-2 |
[3] | H. O. Bakodah, A. Ebaid, Exact solution of Ambartsumian delay differential equation and comparison with Daftardar-Gejji and Jafari approximate method, Mathematics, 6 (2018), 331. https://doi.org/10.3390/math6120331 doi: 10.3390/math6120331 |
[4] | A. Ebaid, A. A. Enazi, B. Z. Albalawi, M. D. Aljoufi, Accurate approximate solution of Ambartsumian delay differential equation via decomposition method, Math. Comput. Appl., 24 (2019), 7. https://doi.org/10.3390/mca24010007 doi: 10.3390/mca24010007 |
[5] | E. A. Algehyne, E. R. E. Zahar, F. M. Alharbi, A. Ebaid, Development of analytical solution for a generalized Ambartsumian equation, AIMS Math., 5 (2019), 249–258. https://doi.org/10.3934/math.2020016 doi: 10.3934/math.2020016 |
[6] | D. Kumar, J. Singh, D. Baleanu, S. Rathore, Analysis of a fractional model of the Ambartsumian equation, Eur. Phys. J. Plus, 133 (2018), 259. https://doi.org/10.1140/epjp/i2018-12081-3 doi: 10.1140/epjp/i2018-12081-3 |
[7] | M. Sezera, A. A. Dascıoglu, A Taylor method for numerical solution of generalized pantograph equations with linear functional argument, J. Comput. Appl. Math., 200 (2007), 217–225. https://doi.org/10.1016/j.cam.2005.12.015 doi: 10.1016/j.cam.2005.12.015 |
[8] | S. Sedaghat, Y. Ordokhani, M. Dehghan, Numerical solution of the delay differential equations of pantograph type via Chebyshev polynomials, Commun. Nonlinear Sci., 17 (2012), 4815–4830. https://doi.org/10.1016/j.cnsns.2012.05.009 doi: 10.1016/j.cnsns.2012.05.009 |
[9] | E. Tohidi, A. H. Bhrawy, K. Erfani, A collocation method based on Bernoulli operational matrix for numerical solution of generalized pantograph equation, Appl. Math. Model., 37 (2013), 4283–4294. https://doi.org/10.1016/j.apm.2012.09.032 doi: 10.1016/j.apm.2012.09.032 |
[10] | S. Javadi, E. Babolian, Z. Taheri, Solving generalized pantograph equations by shifted orthonormal Bernstein polynomials, J. Comput. Appl. Math., 303 (2016), 1–14. https://doi.org/10.1016/j.cam.2016.02.025 doi: 10.1016/j.cam.2016.02.025 |
[11] | J. Shen, T. Tang, L. Wang, Spectral methods: Algorithms, analysis and applications, Springer, 41 2011. https://doi.org/10.1007/978-3-540-71041-7 |
[12] | S. S. E. Eldien, On solving systems of multi-pantograph equations via spectral tau method, Appl. Math. Comput., 321 (2018), 63–73. https://doi.org/10.1016/j.amc.2017.10.014 doi: 10.1016/j.amc.2017.10.014 |
[13] | H. Jafari, M. Mahmoudi, M. H. N. Skandari, A new numerical method to solve pantograph delay differential equations with convergence analysis, Adv. Differ. Equ., 2021,129. https://doi.org/10.1186/s13662-021-03293-0 |
[14] | O. R. Isik, T. Turkoglu, A rational approximate solution for generalized pantograph-delay differential equations, Math. Method. Appl. Sci., 39 (2016), 2011–2024. https://doi.org/10.1002/mma.3616 doi: 10.1002/mma.3616 |
[15] | A. Ebaid, A. M. Wazwaz, E. Alali, B. Masaedeh, Hypergeometric series solution to a class of second-order boundary value problems via Laplace transform with applications to nanofuids, Commun. Theor. Phys., 67 (2017), 231. https://doi.org/10.1088/0253-6102/67/3/231 doi: 10.1088/0253-6102/67/3/231 |
[16] | P. V. Pavani, U. L. Priya, B. A. Reddy, Solving differential equations by using Laplace transforms, Int. J. Res. Anal. Rev., 5 (2018), 1796–1799. |
[17] | H. S. Ali, E. Alali, A. Ebaid, F. M. Alharbi, Analytic solution of a class of singular second-order boundary value problems with applications, Mathematics, 7 (2019), 172. https://doi.org/10.3390/math7020172 doi: 10.3390/math7020172 |
[18] | N. Dogan, Solution of the system of ordinary differential equations by combined Laplace transform-Adomian decomposition method, Math. Comput. Appl., 17 (2012), 203–211. https://doi.org/10.3390/mca17030203 doi: 10.3390/mca17030203 |
[19] | A. Atangana, B. S. Alkaltani, A novel double integral transform and its applications, J. Nonlinear Sci. Appl., 9 (2016), 424–434. https://doi.org/10.22436/jnsa.009.02.08 doi: 10.22436/jnsa.009.02.08 |
[20] | K. Abbaoui, Y. Cherruault, Convergence of Adomian's method applied to nonlinear equations, Math. Comput. Model., 20 (1994), 69–73. https://doi.org/10.1016/0895-7177(94)00163-4 doi: 10.1016/0895-7177(94)00163-4 |
[21] | Y. Cherruault, G. Adomian, Decomposition methods: A new proof of convergence, Math. Comput. Model., 18 (1993), 103–106. https://doi.org/10.1016/0895-7177(93)90233-O doi: 10.1016/0895-7177(93)90233-O |
[22] | A. Alshaery, A. Ebaid, Accurate analytical periodic solution of the elliptical Kepler equation using the Adomian decomposition method, Acta Astronaut., 140 (2017), 27–33. https://doi.org/10.1016/j.actaastro.2017.07.034 doi: 10.1016/j.actaastro.2017.07.034 |
[23] | Z. Ayati, J. Biazar, On the convergence of homotopy perturbation method, J. Egypt. Math. Soc., 23 (2015), 424–428. https://doi.org/10.1016/j.joems.2014.06.015 doi: 10.1016/j.joems.2014.06.015 |
[24] | S. A. Pasha, Y. Nawaz, M. S. Arif, The modified homotopy perturbation method with an auxiliary term for the nonlinear oscillator with discontinuity, J. Low Freq. Noise V. A., 38 (2019), 1363–1373. https://doi.org/10.1177/0962144X18820454 doi: 10.1177/0962144X18820454 |
[25] | M. Bayat, I. Pakar, M. Bayat, Approximate analytical solution of nonlinear systems using homotopy perturbation method, P. I. Mech. Eng. E-J. Pro., 230 (2016), 10–17. https://doi.org/10.1177/0954408914533104 doi: 10.1177/0954408914533104 |
[26] | S. Ahmad, A. Ullah, A. Akgül, M. D. L. Sen, A novel homotopy perturbation method with applications to nonlinear fractional order KdV and Burger equation with exponential-decay kernel, J. Funct. Space., 2021, 8770488. https://doi.org/10.1155/2021/8770488 |
[27] | A. Arikoglu, I. Ozkol, Solution of fractional differential equations by using differential transform method, Chaos Soliton. Fract., 34 (2007), 1473–1481. https://doi.org/10.1016/j.chaos.2006.09.004 doi: 10.1016/j.chaos.2006.09.004 |
[28] | S. H. Chang, I. L. Chang, A new algorithm for calculating one-dimensional differential transform of nonlinear functions, Appl. Math. Comput., 195 (2008), 799–808. https://doi.org/10.1016/j.amc.2007.05.026 doi: 10.1016/j.amc.2007.05.026 |
[29] | S. J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, Ph. D. Thesis, Shanghai Jiao Tong University, Shanghai, China, 1992. |
[30] | S. J. Liao, Homotopy analysis method: A new analytical technique for nonlinear problems, Commun. Nonlinear Sci., 2 (1997), 95–100. https://doi.org/10.1016/S1007-5704(97)90047-2 doi: 10.1016/S1007-5704(97)90047-2 |
[31] | S. J. Liao, An explicit, totally analytic approximation of Blasius' viscous flow problems, Int. J. Nonlin. Mech., 34 (1999), 759–778. https://doi.org/10.1016/S0020-7462(98)00056-0 doi: 10.1016/S0020-7462(98)00056-0 |
[32] | S. J. Liao, Beyond perturbation: Introduction to the homotopy analysis method, Chapman & Hall/CRC Press: Boca Raton, FL, USA, 2003. |
[33] | S. J. Liao, On the homotopy analysis method for nonlinear problems, Appl. Math. Comput., 147 (2004), 499–513. https://doi.org/10.1016/S0096-3003(02)00790-7 doi: 10.1016/S0096-3003(02)00790-7 |
[34] | O. Nave, Modification of semi-analytical method applied system of ODE, Modern Appl. Sci. CCSE, 14 (2020), 75–81. https://doi.org/10.5539/mas.v14n6p75 doi: 10.5539/mas.v14n6p75 |
[35] | A. H. S. A. Enazy, A. Ebaid, E. A. Algehyne, H. K. A. Jeaid, Advanced study on the delay differential equation $y'(t) = ay(t)+by(ct)$, Mathematics, 10 (2022), 4302. https://doi.org/10.3390/math10224302 doi: 10.3390/math10224302 |
[36] | S. M. Khaled, Applications of standard methods for solving the electric train mathematical model with proportional delay, Int. J. Anal. Appl., 20 (2022), 27. https://doi.org/10.28924/2291-8639-20-2022-27 doi: 10.28924/2291-8639-20-2022-27 |
[37] | A. B. Albidah, N. E. Kanaan, A. Ebaid, H. K. A. Jeaid, Exact and numerical analysis of the pantograph delay differential equation via the homotopy perturbation method, Mathematics, 11 (2023), 944. https://doi.org/10.3390/math11040944 doi: 10.3390/math11040944 |
[38] | E. R. E. Zahar, A. Ebaid, Analytical and numerical simulations of a delay model: The pantograph delay equation, Axioms, 11 (2022), 741. https://doi.org/10.3390/axioms11120741 doi: 10.3390/axioms11120741 |
[39] | R. Alrebdi, H. K. A. Jeaid, Accurate solution for the pantograph delay differential equation via Laplace transform, Mathematics, 11 (2023), 2031. https://doi.org/10.3390/math11092031 doi: 10.3390/math11092031 |
[40] | Y. Plusquellec, J. L. Steimer, An analytical solution for a class of delay-differential equations in pharmacokinetic compartment modeling, Math. Biosci., 70 (1984), 39–56. https://doi.org/10.1016/0025-5564(84)90045-2. doi: 10.1016/0025-5564(84)90045-2 |
[41] | F. V. Difonzo, P. Przybyłowicz, Y. Wu, Existence, uniqueness and approximation of solutions to Carathéodory delay differential equations, J. Comput. Appl. Math., 436 (2024), 115411. https://doi.org/10.1016/j.cam.2023.115411 doi: 10.1016/j.cam.2023.115411 |