Research article

On a nonlinear system of plate equations with variable exponent nonlinearity and logarithmic source terms: Existence and stability results

  • Received: 25 March 2023 Revised: 13 May 2023 Accepted: 21 May 2023 Published: 15 June 2023
  • MSC : 35B37, 35L55, 74D05, 93D15, 93D20

  • In this paper, we consider a coupling non-linear system of two plate equations with logarithmic source terms. First, we study the local existence of solutions of the system using the Faedo-Galerkin method and Banach fixed point theorem. Second, we prove the global existence of solutions of the system by using the potential wells. Finally, using the multiplier method, we establish an exponential decay result for the energy of solutions of the system. Some conditions on the variable exponents that appear in the coupling functions and the involved constants that appear in the source terms are determined to ensure the existence and stability of solutions of the system. A series of lemmas and theorems have been proved and used to overcome the difficulties caused by the variable exponent and the logarithmic nonlinearities. Our result generalizes some earlier related results in the literature from the case of only constant exponent of the nonlinear internal forcing terms to the case of variable exponent and logarithmic source terms, which is more useful from the physical point of view and needed in several applications.

    Citation: Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Nasser-Eddine Tatar. On a nonlinear system of plate equations with variable exponent nonlinearity and logarithmic source terms: Existence and stability results[J]. AIMS Mathematics, 2023, 8(9): 19971-19992. doi: 10.3934/math.20231018

    Related Papers:

  • In this paper, we consider a coupling non-linear system of two plate equations with logarithmic source terms. First, we study the local existence of solutions of the system using the Faedo-Galerkin method and Banach fixed point theorem. Second, we prove the global existence of solutions of the system by using the potential wells. Finally, using the multiplier method, we establish an exponential decay result for the energy of solutions of the system. Some conditions on the variable exponents that appear in the coupling functions and the involved constants that appear in the source terms are determined to ensure the existence and stability of solutions of the system. A series of lemmas and theorems have been proved and used to overcome the difficulties caused by the variable exponent and the logarithmic nonlinearities. Our result generalizes some earlier related results in the literature from the case of only constant exponent of the nonlinear internal forcing terms to the case of variable exponent and logarithmic source terms, which is more useful from the physical point of view and needed in several applications.



    加载中


    [1] K. Bartkowski, P. Górka, One-dimensional klein-gordon equation with logarithmic nonlinearities, J. Phys. A Math. Theor., 41 (2008), 355201. https://doi.org/10.1088/1751-8113/41/35/355201 doi: 10.1088/1751-8113/41/35/355201
    [2] I. Bialynicki-Birula, J. Mycielski, Nonlinear wave mechanics, Ann. Phys., 100 (1976), 62–93. https://doi.org/10.1016/0003-4916(76)90057-9
    [3] J. D. Barrow, P. Parsons, Inflationary models with logarithmic potentials, Phys. Rev. D, 52 (1995), 5576–5587. https://doi.org/10.1103/PhysRevD.52.5576 doi: 10.1103/PhysRevD.52.5576
    [4] K. Enqvist, J. McDonald, Q-balls and baryogenesis in the mssm, Phys. Lett. B, 425 (1998), 309–321. https://doi.org/10.1016/S0370-2693(98)00271-8 doi: 10.1016/S0370-2693(98)00271-8
    [5] T. Cazenave, A. Haraux, Équations d'évolution avec non linéarité logarithmique, Annales de la Faculté des sciences de Toulouse, 2 (1980), 21–51. https://doi.org/10.5802/AFST.543
    [6] T. Hiramatsu, M. Kawasaki, F. Takahashi, Numerical study of q-ball formation in gravity mediation, J. Cosmol. Astropart. P., 2010 (2010), 008. https://doi.org/10.1088/1475-7516/2010/06/008 doi: 10.1088/1475-7516/2010/06/008
    [7] P. Górka, Logarithmic klein-gordon equation, Acta Phys. Pol. B, 40 (2009), 59–66.
    [8] X. Han, Global existence of weak solutions for a logarithmic wave equation arising from q-ball dynamics, Bull. Korean Math. Soc., 50 (2013), 275–283. https://doi.org/10.4134/BKMS.2013.50.1.275 doi: 10.4134/BKMS.2013.50.1.275
    [9] W. Lian, R. Xu, Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term, Adv. Nonlinear Anal., 9 (2020), 613–632. https://doi.org/10.1515/anona-2020-0016 doi: 10.1515/anona-2020-0016
    [10] M. M. Al-Gharabli, S. A. Messaoudi, The existence and the asymptotic behavior of a plate equation with frictional damping and a logarithmic source term, J. Math. Anal. Appl., 454 (2017), 1114–1128. https://doi.org/10.1016/j.jmaa.2017.05.030 doi: 10.1016/j.jmaa.2017.05.030
    [11] A. M. Al-Mahdi, Stability result of a viscoelastic plate equation with past history and a logarithmic nonlinearity, Bound. Value Probl., 2020 (2020), 84. https://doi.org/10.1186/s13661-020-01382-9 doi: 10.1186/s13661-020-01382-9
    [12] H. A. Levine, J. Serrin, A global nonexistence theorem for quasilinear evolution equations with dissipation, Arch. Rational Mech. Anal., 137 (1997), 341–361. https://doi.org/10.1007/s002050050032 doi: 10.1007/s002050050032
    [13] D. R. Pitts, M. A. Rammaha, Global existence and non-existence theorems for nonlinear wave equations, Indiana U. Math. J., 51 (2002), 1479–1509.
    [14] J. Serrin, G. Todorova, E. Vitillaro, Existence for a nonlinear wave equation with damping and source terms, Differ. Integral Equ., 16 (2003), 13–50. https://doi.org/10.57262/die/1356060695 doi: 10.57262/die/1356060695
    [15] G. Todorova, Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms, Nonlinear Anal. Theor., 41 (2000), 891–905. https://doi.org/10.1016/S0362-546X(98)00317-4 doi: 10.1016/S0362-546X(98)00317-4
    [16] X. Han, M. Wang, General decay estimate of energy for the second order evolution equations with memory, Acta Appl. Math., 110 (2010), 195–207. https://doi.org/10.1007/s10440-008-9397-x doi: 10.1007/s10440-008-9397-x
    [17] V. K. Kalantarov, O. A. Ladyzhenskaya, The occurrence of collapse for quasilinear equations of parabolic and hyperbolic types, J. Math. Sci., 10 (1978), 53–70. https://doi.org/10.1007/BF01109723 doi: 10.1007/BF01109723
    [18] H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $p u_tt = -a u+ f (u)$, T. Am. Math. Soc., 192 (1974), 1–21.
    [19] V. Georgiev, G. Todorova, Existence of a solution of the wave equation with nonlinear damping and source terms, J. Differ. Equations, 109 (1994), 295–308. https://doi.org/10.1006/jdeq.1994.1051 doi: 10.1006/jdeq.1994.1051
    [20] Y. Liu, On potential wells and vacuum isolating of solutions for semilinear wave equations, J. Differ. Equations, 192 (2003), 155–169. https://doi.org/10.1016/S0022-0396(02)00020-7 doi: 10.1016/S0022-0396(02)00020-7
    [21] Y. Liu, J. Zhao, On potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Anal. Theor., 64 (2006), 2665–2687. https://doi.org/10.1016/j.na.2005.09.011 doi: 10.1016/j.na.2005.09.011
    [22] S. Antontsev, J. Ferreira, E. Piskin, Existence and blow up of solutions for a strongly damped petrovsky equation with variable-exponent nonlinearities, Electron. J. Differ. Eq., 2021 (2021), 06.
    [23] M. Liao, Z. Tan, On behavior of solutions to a petrovsky equation with damping and variable-exponent sources, Sci. China Math., 66 (2023), 285–302. https://doi.org/10.1007/s11425-021-1926-x doi: 10.1007/s11425-021-1926-x
    [24] D. Andrade, A. Mognon, Global solutions for a system of klein-gordon equations with memory, Bol. Soc. Paran. Mat., 21 (2003), 127–138.
    [25] K. Agre, M. A. Rammaha, Systems of nonlinear wave equations with damping and source terms, Differ. Integral Equ., 19 (2006), 1235–1270. https://doi.org/10.57262/die/1356050301 doi: 10.57262/die/1356050301
    [26] X. Wang, Y. Chen, Y. Yang, J. Li, R. Xu, Kirchhoff-type system with linear weak damping and logarithmic nonlinearities, Nonlinear Anal., 188 (2019), 475–499. https://doi.org/10.1016/j.na.2019.06.019 doi: 10.1016/j.na.2019.06.019
    [27] O. Bouhoufani, I. Hamchi, Coupled system of nonlinear hyperbolic equations with variable-exponents: global existence and stability, Mediterr. J. Math., 12 (2020), 166. https://doi.org/10.1007/s00009-020-01589-1 doi: 10.1007/s00009-020-01589-1
    [28] S. A. Messaoudi, A. A. Talahmeh, M. M. Al-Gharabli, M. Alahyane, On the existence and stability of a nonlinear wave system with variable exponents, Asymptotic Anal., 128 (2021), 1–28. https://doi.org/10.3233/ASY-211704 doi: 10.3233/ASY-211704
    [29] S. A. Messaoudi, N. E. Tatar, Uniform stabilization of solutions of a nonlinear system of viscoelastic equations, Appl. Anal., 87 (2008), 247–263. https://doi.org/10.1080/00036810701668394 doi: 10.1080/00036810701668394
    [30] X. Han, M. Wang, Global existence and blow-up of solutions for a system of nonlinear viscoelastic wave equations with damping and source, Nonlinear Anal. Theor., 71 (2009), 5427–5450. https://doi.org/10.1016/j.na.2009.04.031 doi: 10.1016/j.na.2009.04.031
    [31] B. Said-Houari, S. Messaoudi, A. Guesmia, General decay of solutions of a nonlinear system of viscoelastic wave equations, Nonlinear Differ. Equ. Appl., 18 (2011), 659–684. https://doi.org/10.1007/s00030-011-0112-7 doi: 10.1007/s00030-011-0112-7
    [32] M. I. Mustafa, Well posedness and asymptotic behavior of a coupled system of nonlinear viscoelastic equations, Nonlinear Anal. Real, 13 (2012), 452–463. https://doi.org/10.1016/j.nonrwa.2011.08.002 doi: 10.1016/j.nonrwa.2011.08.002
    [33] S. Messoaudi, M. Al-Gharabli, A. Al-Mahdi, On the existence and decay of a viscoelastic system with variable-exponent nonlinearity, Discrete Cont. Dyn. S, 16 (2023), 1557–1595. https://doi.org/10.3934/dcdss.2022183 doi: 10.3934/dcdss.2022183
    [34] S. A. Messaoudi, M. M. Al-Gharabli, A. M. Al-Mahdi, M. A. Al-Osta, A coupled system of laplacian and bi-laplacian equations with nonlinear dampings and source terms of variable-exponents nonlinearities: existence, uniqueness, blow-up and a large-time asymptotic behavior, AIMS Mathematics, 8 (2023), 7933–7966. https://doi.org/10.3934/math.2023400 doi: 10.3934/math.2023400
    [35] L. Gross, Logarithmic sobolev inequalities, Am. J. Math., 97 (1975), 1061–1083. https://doi.org/10.2307/2373688 doi: 10.2307/2373688
    [36] H. Chen, P. Luo, G. Liu, Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity, J. Math. Anal. Appl., 442 (2015), 84–98. https://doi.org/10.1016/j.jmaa.2014.08.030 doi: 10.1016/j.jmaa.2014.08.030
    [37] L. Diening, P. Harjulehto, P. Hästö, M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Heidelberg: Springer, 2011. https://doi.org/10.1007/978-3-642-18363-8
    [38] M. T. Lacroix-Sonrier, Distributions, espaces de sobolev: applications, Paris: Ellipses, 1998.
    [39] O. Bouhoufani, S. Messaoudi, M. Alahyane, Exsistence, blow up and numerical approximations of solutions for a biharmonic coupled system with variable exponents, 2022. Available from: https://doi.org/10.22541/au.166010582.26966044/v1
    [40] H. Chen, G. Liu, Global existence and nonexistence for semilinear parabolic equations with conical degeneration, J. Pseudo-Differ. Oper., 3 (2012), 329–349. https://doi.org/10.1007/S11868-012-0046-9 doi: 10.1007/S11868-012-0046-9
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(824) PDF downloads(99) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog