Research article Special Issues

Multi-directional gated recurrent unit and convolutional neural network for load and energy forecasting: A novel hybridization

  • Received: 19 February 2023 Revised: 21 May 2023 Accepted: 23 May 2023 Published: 15 June 2023
  • MSC : 62J02, 62J99

  • Energy operations and schedules are significantly impacted by load and energy forecasting systems. An effective system is a requirement for a sustainable and equitable environment. Additionally, a trustworthy forecasting management system enhances the resilience of power systems by cutting power and load-forecast flaws. However, due to the numerous inherent nonlinear properties of huge and diverse data, the classical statistical methodology cannot appropriately learn this non-linearity in data. Energy systems can appropriately evaluate data and regulate energy consumption because of advanced techniques. In comparison to machine learning, deep learning techniques have lately been used to predict energy consumption as well as to learn long-term dependencies. In this work, a fusion of novel multi-directional gated recurrent unit (MD-GRU) with convolutional neural network (CNN) using global average pooling (GAP) as hybridization is being proposed for load and energy forecasting. The spatial and temporal aspects, along with the high dimensionality of the data, are addressed by employing the capabilities of MD-GRU and CNN integration. The obtained results are compared to baseline algorithms including CNN, Long Short-Term Memory (LSTM), Bidirectional Long Short-Term Memory (Bi-LSTM), Gated Recurrent Unit (GRU), and Bidirectional Gated Recurrent Unit (Bi-GRU). The experimental findings indicate that the proposed approach surpasses conventional approaches in terms of accuracy, Mean Absolute Percentage Error (MAPE), and Root Mean Square Error (RSME).

    Citation: Fazeel Abid, Muhammad Alam, Faten S. Alamri, Imran Siddique. Multi-directional gated recurrent unit and convolutional neural network for load and energy forecasting: A novel hybridization[J]. AIMS Mathematics, 2023, 8(9): 19993-20017. doi: 10.3934/math.20231019

    Related Papers:

  • Energy operations and schedules are significantly impacted by load and energy forecasting systems. An effective system is a requirement for a sustainable and equitable environment. Additionally, a trustworthy forecasting management system enhances the resilience of power systems by cutting power and load-forecast flaws. However, due to the numerous inherent nonlinear properties of huge and diverse data, the classical statistical methodology cannot appropriately learn this non-linearity in data. Energy systems can appropriately evaluate data and regulate energy consumption because of advanced techniques. In comparison to machine learning, deep learning techniques have lately been used to predict energy consumption as well as to learn long-term dependencies. In this work, a fusion of novel multi-directional gated recurrent unit (MD-GRU) with convolutional neural network (CNN) using global average pooling (GAP) as hybridization is being proposed for load and energy forecasting. The spatial and temporal aspects, along with the high dimensionality of the data, are addressed by employing the capabilities of MD-GRU and CNN integration. The obtained results are compared to baseline algorithms including CNN, Long Short-Term Memory (LSTM), Bidirectional Long Short-Term Memory (Bi-LSTM), Gated Recurrent Unit (GRU), and Bidirectional Gated Recurrent Unit (Bi-GRU). The experimental findings indicate that the proposed approach surpasses conventional approaches in terms of accuracy, Mean Absolute Percentage Error (MAPE), and Root Mean Square Error (RSME).



    加载中


    [1] Y. Lu, G. Wang, A load forecasting model based on support vector regression with whale optimization algorithm, Multimed Tools Appl., 82 (2023), 9939–9959. https://doi.org/10.1007/s11042-022-13462-2 doi: 10.1007/s11042-022-13462-2
    [2] H. Habbak, M. Mahmoud, K. Metwally, M. M. Fouda, M. I. Ibrahem, Load forecasting techniques and their applications in smart grids, Energies, 16 (2023), 1480. https://doi.org/10.3390/en16031480 doi: 10.3390/en16031480
    [3] L. Zhang, J. Wen, Y. Li, J. Chen, Y. Ye, Y. Fu, et al., A review of machine learning in building load prediction, Appl. Energy, 285 (2021), 116452. https://doi.org/10.1016/j.apenergy.2021.116452 doi: 10.1016/j.apenergy.2021.116452
    [4] M. Zulfiqar, M. Kamran, M. B. Rasheed, T. Alquthami, A. H. Milyani, A short-term load forecasting model based on self-adaptive momentum factor and wavelet neural network in smart grid, IEEE Access, 10 (2022), 77587–77602. https://doi.org/10.1109/ACCESS.2022.3192433 doi: 10.1109/ACCESS.2022.3192433
    [5] R. Liu, T. Chen, G. Sun, S. M. Muyeen, S. Lin, Y. Mi, Short-term probabilistic building load forecasting based on feature integrated artificial intelligent approach, Electr. Pow. Syst. Res., 206 (2022), 107802. https://doi.org/10.1016/j.epsr.2022.107802 doi: 10.1016/j.epsr.2022.107802
    [6] I. Yazici, O. F Beyca, D. Delen, Deep-learning-based short-term electricity load forecasting: A real case application, Eng. Appl. Artif. Intell., 109 (2022), 104645. https://doi.org/10.1016/j.engappai.2021.104645 doi: 10.1016/j.engappai.2021.104645
    [7] A. Goia, C. May, G. Fusai, Functional clustering and linear regression for peak load forecasting, Int. J. Forecast, 26 (2010), 700–711. https://doi.org/10.1016/j.ijforecast.2009.05.015 doi: 10.1016/j.ijforecast.2009.05.015
    [8] A. H. Nury, K. Hasan, A. M. J. Bin, Comparative study of wavelet-ARIMA and wavelet-ANN models for temperature time series data in northeastern Bangladesh, J. King, Saud. Univ. Sci., 29 (2017), 47–61. https://doi.org/10.1016/j.jksus.2015.12.002 doi: 10.1016/j.jksus.2015.12.002
    [9] G. Y. Chen, M. Gan, G. L. Chen, Generalized exponential autoregressive models for nonlinear time series: Stationarity, estimation and applications, Inf. Sci., 438 (2018), 46–57. https://doi.org/10.1016/j.ins.2018.01.029 doi: 10.1016/j.ins.2018.01.029
    [10] S. Deng, F. Chen, X. Dong, G. Gao, X. Wu, Short-term load forecasting by using improved GEP and abnormal load recognition, ACM Trans. Inter. Technol., 21 (2021), 1–28. https://doi.org/10.1145/3447513 doi: 10.1145/3447513
    [11] J. Lee, Y. Cho, National-scale electricity peak load forecasting: Traditional, machine learning, or hybrid model? Energy, 239 (2022), 122366. https://doi.org/10.1016/j.energy.2021.122366 doi: 10.1016/j.energy.2021.122366
    [12] T. Alquthami, M. Zulfiqar, M. Kamran, A. H. Milyani, M. B. Rasheed, A performance comparison of machine learning algorithms for load forecasting in smart grid, IEEE Access, 10 (2022), 48419–48433. https://doi.org/10.1109/ACCESS.2022.3171270 doi: 10.1109/ACCESS.2022.3171270
    [13] Z. Li, J. Wang, J. Huang, M. Ding, Development and research of triangle-filter convolution neural network for fuel reloading optimization of block-type HTGRs, Appl. Soft Comput., 136 (2023), 110126. https://doi.org/10.1016/j.asoc.2023.110126 doi: 10.1016/j.asoc.2023.110126
    [14] S. Deng, F. Chen, D. Wu, Y. He, H. Ge, Y. Ge, Quantitative combination load forecasting model based on forecasting error optimization, Comput. Elec Engin, 101 (2022), 108125. https://doi.org/10.1016/j.compeleceng.2022.108125 doi: 10.1016/j.compeleceng.2022.108125
    [15] S. Sun, Y. Liu, Q. Li, T. Wang, F. Chu, Short-term multi-step wind power forecasting based on spatio-temporal correlations and transformer neural networks, Energy Convers. Manage., 283 (2023), 116916. https://doi.org/10.1016/j.enconman.2023.116916 doi: 10.1016/j.enconman.2023.116916
    [16] Z. Xiao, S. J. Ye, B. Zhong, C. X. Sun, Short term load forecasting using neural network with rough set, Conference: Advances in Neural Networks-ISNN 2006, Third International Symposium on Neural Networks, Chengdu, China, May 28-June 1, 2006, Proceedings, Part Ⅱ. https://doi.org/10.1007/11760023_183
    [17] C. X. Li, D. X. Niu, L. M. Meng, Rough set combine BP neural network in next day load curve forcasting, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 5264 LNCS: 2008, 1–10. https://doi.org/10.1007/978-3-540-87734-9_1
    [18] Z. Xiao, S. J. Ye, B. Zhong, C. X. Sun, BP neural network with rough set for short term load forecasting, Expert Syst. Appl., 36 (2009), 273–279. https://doi.org/10.1016/j.eswa.2007.09.031 doi: 10.1016/j.eswa.2007.09.031
    [19] D. Yi, S. Bu, I. Kim, An Enhanced Algorithm of RNN Using Trend in Time-Series, Symmetry, 11 (2019), 912. https://doi.org/10.3390/sym11070912 doi: 10.3390/sym11070912
    [20] V. Kusuma, A. Privadi, A. L. S. Budi, V. L. B. Putri, Photovoltaic Power Forecasting Using Recurrent Neural Network Based on Bayesian Regularization Algorithm. ICPEA 2021-2021 IEEE International Conference in Power Engineering Application, (2021), 109–114. https://doi.org/10.1109/ICPEA51500.2021.9417833 doi: 10.1109/ICPEA51500.2021.9417833
    [21] G. Li, H. Wang, S. Zhang, J. Xin, H. Liu, Recurrent neural networks based photovoltaic power forecasting approach, Energies, 12 (2019), 2538. https://doi.org/10.3390/en12132538 doi: 10.3390/en12132538
    [22] A. Buonanno, M. Caliano, A. Pontecorvo, G. Sforza, M. Valenti, G. Graditi, Global vs. local models for short‐term electricity demand prediction in a Residential/Lodging scenario, Energies, 15 (2022), 2037. https://doi.org/10.3390/en15062037 doi: 10.3390/en15062037
    [23] R. Quan, Z. Li, P. Liu, Y. Li, Y. Chang, H. Yan, Minimum hydrogen consumption-based energy management strategy for hybrid fuel cell unmanned aerial vehicles using direction prediction optimal foraging algorithm, Fuel Cells, 23 (2023), 221–236. https://doi.org/10.1002/fuce.202200121 doi: 10.1002/fuce.202200121
    [24] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput., 9 (1997), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735 doi: 10.1162/neco.1997.9.8.1735
    [25] J. Chung, C. Gulcehre, K. H. Cho, Y. Bengio, Empirical evaluation of gated recurrent neural networks on sequence modeling, NIPS 2014 Deep Learning and Representation Learning Workshop, 2014. https://doi.org/10.48550/arXiv.1412.3555
    [26] A. K. Tyagi, N. Sreenath, Cyber physical systems: Analyses, challenges and possible solutions, Int. Thing. Cyber-Physical Syst., 1 (2021), 22–33. https://doi.org/10.1016/j.iotcps.2021.12.002 doi: 10.1016/j.iotcps.2021.12.002
    [27] J. Moon, S. Park, S. Rho, E. Hwang, A comparative analysis of artificial neural network architectures for building energy consumption forecasting, Int. J. Distrib. Sens. N., 15 (2019). https://doi.org/10.1177/1550147719877616 doi: 10.1177/1550147719877616
    [28] T. Walser, A. Sauer, Typical load profile-supported convolutional neural network for short-term load forecasting in the industrial sector, Energy AI., 5 (2021), 100104. https://doi.org/10.1016/j.egyai.2021.100104 doi: 10.1016/j.egyai.2021.100104
    [29] X. Ke, L. Shi, W. Guo, D. Chen, Multi-Dimensional traffic congestion detection based on fusion of visual features and convolutional neural network, IEEE T. Intell. Transp., 20 (2019), 2157–2170. http://www.ieee.org/publications_standards/publications/rights/index.html
    [30] P. H. Kuo, C. J. Huang, A high precision artificial neural networks model for short-term energy load forecasting, Energies, 11 (2018) 213. https://doi.org/10.3390/en11010213 doi: 10.3390/en11010213
    [31] J. Walther, D. Spanier, N. Panten, E. Abele, Very short-term load forecasting on factory level—A machine learning approach, Procedia CIRP, 80 (2019), 705–710. https://doi.org/10.1016/j.procir.2019.01.060 doi: 10.1016/j.procir.2019.01.060
    [32] T. Hong, J. Wilson, J. Xie, Long term probabilistic load forecasting and normalization with hourly information, IEEE T. Smart Grid, 5 (2014), 456–462. https://doi.org/10.1109/TSG.2013.2274373 doi: 10.1109/TSG.2013.2274373
    [33] B. M. Hodge, D. Lew, M. Milligan, Short-term load forecast error distributions and implications for renewable integration studies, IEEE Green Technologies Conference, (2013), 435–442. https://doi.org/10.1109/GreenTech.2013.73 doi: 10.1109/GreenTech.2013.73
    [34] H. M. Al-Hamadi, S. A. Soliman, Long-term/mid-term electric load forecasting based on short-term correlation and annual growth, Electr. Pow. Syst. Res., 74 (2005), 353–361.
    [35] X. Sun, Z. Ouyang, D. Yue, Short-term load forecasting model based on multi-label and BPNN. Comm. Comp. Infor. Sci., 761 (2017), 263–272. https://doi.org/10.1007/978-981-10-6370-1_26 doi: 10.1007/978-981-10-6370-1_26
    [36] W. Tang, F. He, Y. Liu, YDTR: Infrared and visible image fusion via Y-shape dynamic transformer, IEEE T. Multimedia, (2022), 1–16. https://doi.org/10.1109/TMM.2022.3192661 doi: 10.1109/TMM.2022.3192661
    [37] A. A. Peñaloza, R. C. Leborgne, A. Balbinot, Comparative analysis of residential load forecasting with different levels of aggregation, Eng. Proc, 18 (2022), 29. https://doi.org/10.3390/engproc2022018029 doi: 10.3390/engproc2022018029
    [38] T. Bashir, C. Haoyong, M. F. Tahir, Z. Liqiang, Short term electricity load forecasting using hybrid prophet-LSTM model optimized by BPNN, Energy Rep., 8 (2022), 1678–1686. https://doi.org/10.1016/j.egyr.2021.12.067 doi: 10.1016/j.egyr.2021.12.067
    [39] Y. Song, F. He, Y. Duan, Y. Liang, X. Yan, A kernel correlation-based approach to adaptively acquire local features for learning 3D point clouds, Comput. Aided Design, 146 (2022), 103196. https://doi.org/10.1016/j.cad.2022.103196 doi: 10.1016/j.cad.2022.103196
    [40] A. H. Nury, K. Hasan, M. J. B. Alam, Comparative study of wavelet-ARIMA and wavelet-ANN models for temperature time series data in northeastern Bangladesh, J. King Saud. Univ. Sci., 29 (2017), 47–61. https://doi.org/10.1016/j.jksus.2015.12.002 doi: 10.1016/j.jksus.2015.12.002
    [41] C. M. Lee, C. N. Ko, Short-term load forecasting using lifting scheme and ARIMA models, Expert Syst. Appl., 38 (2011), 5902–5911. https://doi.org/10.1016/j.eswa.2010.11.033 doi: 10.1016/j.eswa.2010.11.033
    [42] A. Baliyan, K. Gaurav, S. K. Mishra, A Review of short term load forecasting using artificial neural network models, Procedia Comput. Sci., 48 (2015), 121–125. https://doi.org/10.1016/j.procs.2015.04.160 doi: 10.1016/j.procs.2015.04.160
    [43] J. P. Liu, C. L. Li, The short-term power load forecasting based on sperm whale algorithm and wavelet least square support vector machine with DWT-IR for feature selection, Sustainability, 9 (2017), 1188. https://doi.org/10.3390/su9071188 doi: 10.3390/su9071188
    [44] A. Jadidi, R. Menezes, N. D. Souza, A. C. D. C. Lima, Energies, E. Sciubba, Short-term electric power demand forecasting using NSGA Ⅱ-ANFIS model, Energies, 12 (2019), 1891. https://doi.org/10.3390/en12101891 doi: 10.3390/en12101891
    [45] J. Zhang, F. He, Y. Duan, Y. Duan, S. Yang, AIDEDNet: Anti-interference and detail enhancement dehazing network for real-world scenes, Front Comput. Sci., 17 (2023), 1–11. https://doi.org/10.1007/s11704-022-1523-9 doi: 10.1007/s11704-022-1523-9
    [46] S. Zhang, F. He, DRCDN: learning deep residual convolutional dehazing networks, Visual Comput., 36 (2020), 1797–1808. https://doi.org/10.1007/s00371-019-01774-8 doi: 10.1007/s00371-019-01774-8
    [47] D. Niu, Y. Wang, D. D. Wu, Power load forecasting using support vector machine and ant colony optimization, Expert Syst. Appl., 37 (2010), 2531–2539. https://doi.org/10.1016/j.eswa.2009.08.019 doi: 10.1016/j.eswa.2009.08.019
    [48] H. H. Çevik, M. Çunkaş, Short-term load forecasting using fuzzy logic and ANFIS, Neural Comput. Appl., 26 (2015), 1355–1367. https://doi.org/10.1007/s00521-014-1809-4 doi: 10.1007/s00521-014-1809-4
    [49] G. Li, H. Wang, S. Zhang, J. Xin, H. Liu, Recurrent neural networks based photovoltaic power forecasting approach, Energies, 12 (2019), 2538. https://doi.org/10.3390/en12132538 doi: 10.3390/en12132538
    [50] X. Xiong, P. Zhou, C. Ailian, Asymptotic normality of the local linear estimation of the conditional density for functional time-series data, Commum, Statis. Theory Meth., 47 (2017), 3418–3440. https://doi.org/10.1080/03610926.2017.1359292 doi: 10.1080/03610926.2017.1359292
    [51] Deep Learning, Available from: https://mitpress.mit.edu/9780262035613/deep-learning/.
    [52] N. Ahmad, Y. Ghadi, M. Adnan, M. Ali, Load forecasting techniques for power system: Research challenges and survey, IEEE Access, 10 (2022), 71054–71090. https://doi.org/10.1109/ACCESS.2022.3187839 doi: 10.1109/ACCESS.2022.3187839
    [53] A. S. Santra, J. L. Lin, Integrating long short-term memory and genetic algorithm for short-term load forecasting, Energies, 12 (2019), 2040. https://doi.org/10.3390/en12112040 doi: 10.3390/en12112040
    [54] W. Li, T. Logenthiran, W. L Woo, Multi-GRU prediction system for electricity generation's planning and operation, IET Gener. Transm. Dis., 13 (2019), 1630–1637. https://doi.org/10.1049/iet-gtd.2018.6081 doi: 10.1049/iet-gtd.2018.6081
    [55] X. Gao, X. Li, B. Zhao, W. Ji, X. Jing, Y. He, Short-term electricity load forecasting model based on EMD-GRU with feature selection, Energies, 12 (2019), 1140. https://doi.org/10.3390/en12061140 doi: 10.3390/en12061140
    [56] T. Mikolov, M. Karafiát, L. Burget, J. H. Cernocky, S. Khudanpur, Recurrent neural network based language model, Conference: INTERSPEECH 2010, 11th Annual Conference of the International Speech Communication Association, Makuhari, Chiba, Japan, September 26–30, 2010
    [57] H. Salehinejad, S. Sankar, J. Barfett, E. Colak, S. Valaee, Recent advances in recurrent neural networks, Neural Evolu. Comput., (2018), 1–21. https://doi.org/10.48550/arXiv.1801.01078 doi: 10.48550/arXiv.1801.01078
    [58] M. Schuster, K. K. Paliwal, Bidirectional recurrent neural networks, IEEE T. Signal Proces., 45 (1997), 2673–2681. https://doi.org/10.1109/78.650093 doi: 10.1109/78.650093
    [59] T. Mikolov, S. Kombrink, L. Burget, J. Černocký, S. Khudanpur, Extensions of recurrent neural network language model, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, (2011), 5528–5531. https://doi.org/10.1109/ICASSP.2011.5947611
    [60] A. G. Ororbia, T. Mikolov, D. Reitter, Learning simpler language models with the differential state framework, Neural Comput., 29 (2017), 3327–3352. https://doi.org/10.1162/neco_a_01017 doi: 10.1162/neco_a_01017
    [61] S. Hochreiter, The vanishing gradient problem during learning recurrent neural nets and problem solutions, Int. J. Uncertain Fuzz., 6 (1998), 107–116. https://doi.org/10.1142/S0218488598000094 doi: 10.1142/S0218488598000094
    [62] B. Y. Lin, F. F. Xu, Z. Luo, K. Zhu, Multi-channel BiLSTM-CRF model for emerging named entity recognition in social media, Proceedings of the 3rd Workshop on Noisy User-generated Text, Stroudsburg, PA, USA, Association for Computational Linguistics, (2018), 160–165. https://doi.org/10.18653/v1/W17-4421
    [63] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, et al., Going deeper with convolutions, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, (2015), 1–9. https://doi.org/10.1109/CVPR.2015.7298594
    [64] K. He, J. Sun, Convolutional neural networks at constrained time cost, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (2015), 5353–5360. https://doi.org/10.48550/arXiv.1412.1710 doi: 10.48550/arXiv.1412.1710
    [65] F. Abid, M. Alam, M. Yasir, C. Li, Sentiment analysis through recurrent variants latterly on convolutional neural network of Twitter, Future Generation Computer Systems, 95 (2019), 292–308. https://doi.org/10.1016/j.future.2018.12.018 doi: 10.1016/j.future.2018.12.018
    [66] S. Wang, J. Jiang, Learning natural language inference with LSTM, 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL HLT 2016-Proceedings of the Conference, (2016), 1442–1451. https://doi.org/10.18653/v1/N16-1170
    [67] N. F. F. da Silva, E. R. Hruschka, E. R. Hruschka Jr., Tweet sentiment analysis with classifier ensembles, Decis. Support Syst., 66 (2014), 170–179. https://doi.org/10.1016/j.dss.2014.07.003 doi: 10.1016/j.dss.2014.07.003
    [68] S. Makonin, F. Popowich, L. Bartram, B. Gill, I. V. Bajić, AMPds: A public dataset for load disaggregation and eco-feedback research, 2013 IEEE Electrical Power & Energy Conference, Halifax, NS, Canada, (2013) 1–6. https://doi.org/10.1109/EPEC.2013.6802949
    [69] Smart-Grid Smart-City Customer Trial Data |Datasets| data.gov.au-beta Available from: https://data.gov.au/dataset/ds-dga-4e21dea3-9b87-4610-94c7-15a8a77907ef/details
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1561) PDF downloads(114) Cited by(0)

Article outline

Figures and Tables

Figures(17)  /  Tables(15)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog