Research article Special Issues

Trapezoidal type-2 Pythagorean fuzzy TODIM approach for sensible decision-making with unknown weights in the presence of hesitancy

  • Received: 24 August 2023 Revised: 17 October 2023 Accepted: 29 October 2023 Published: 09 November 2023
  • MSC : 03B52, 03E72, 08A72

  • Motivated by the concept of type-2 fuzzy sets, we introduce a novel framework known as trapezoidal type-2 Pythagorean fuzzy sets (TRT-2-PFSs), an extension of triangular fuzzy sets. Basic operations like addition and scalar multiplication of two TRT-2-Pythagorean fuzzy numbers (TRT-2-PFNs) are defined. We also explore comparative analysis and distance measurements between two TRT-2-PFNs. A methodology for evaluating unknown weight vectors and criteria weights is proposed. Building upon TRT-2-PFSs, an extension of the TODIM (an acronym in Portuguese of interactive and multi-criteria decision-making) method is developed to address intricate decision-making challenges. Ultimately, the newly introduced TRT-2-PFS-based TODIM technique is employed to tackle multi-criteria decision-making (MCDM) problems.

    Citation: Nasser Aedh Alreshidi, Muhammad Rahim, Fazli Amin, Abdulaziz Alenazi. Trapezoidal type-2 Pythagorean fuzzy TODIM approach for sensible decision-making with unknown weights in the presence of hesitancy[J]. AIMS Mathematics, 2023, 8(12): 30462-30486. doi: 10.3934/math.20231556

    Related Papers:

  • Motivated by the concept of type-2 fuzzy sets, we introduce a novel framework known as trapezoidal type-2 Pythagorean fuzzy sets (TRT-2-PFSs), an extension of triangular fuzzy sets. Basic operations like addition and scalar multiplication of two TRT-2-Pythagorean fuzzy numbers (TRT-2-PFNs) are defined. We also explore comparative analysis and distance measurements between two TRT-2-PFNs. A methodology for evaluating unknown weight vectors and criteria weights is proposed. Building upon TRT-2-PFSs, an extension of the TODIM (an acronym in Portuguese of interactive and multi-criteria decision-making) method is developed to address intricate decision-making challenges. Ultimately, the newly introduced TRT-2-PFS-based TODIM technique is employed to tackle multi-criteria decision-making (MCDM) problems.



    加载中


    [1] S. Chakraborty, E. K. Zavadskas, Applications of WASPAS method in manufacturing decision making, Informatica, 25 (2014), 1–20. https://doi.org/10.15388/Informatica.2014.01 doi: 10.15388/Informatica.2014.01
    [2] S. Chakraborty, E. K. Zavadskas, J. Antucheviciene, Applications of WASPAS method as a multi-criteria decision-making tool, Econ. Comput. Econ. Cyb. Stud. Res., 49 (2015), 5–22. https://etalpykla.vilniustech.lt/xmlui/handle/123456789/151097
    [3] J. Lu, C. Wei, TODIM method for performance appraisal on social-integration-based rural reconstruction with interval-valued intuitionistic fuzzy information, J. Intell. Fuzzy Syst., 37 (2019), 1731–1740. https://doi.org/10.3233/JIFS-179236 doi: 10.3233/JIFS-179236
    [4] P. Wang, J. Wang, G. Wei, J. Wu, C. Wei, Y. Wei, CODAS method for multiple attribute group decision making under 2-tuple linguistic neutrosophic environment, Informatica, 31 (2020), 161–184. https://doi.org/10.15388/20-INFOR399 doi: 10.15388/20-INFOR399
    [5] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3
    [6] R. R. Yager, Pythagorean fuzzy subsets, 2013 joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS), 2013, 57–61. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375
    [7] R. R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE T. Fuzzy Syst., 22 (2013), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989
    [8] R. R. Yager, A. M. Abbasov, Pythagorean membership grades, complex numbers, and decision making, Int. J. Intell. Syst., 28 (2013), 436–452. https://doi.org/10.1002/int.21584
    [9] X. Peng, Y. Yang, Some results for Pythagorean fuzzy sets, Int. J. Intell. Syst., 30 (2015), 1133–1160. https://doi.org/10.1002/int.21738 doi: 10.1002/int.21738
    [10] X. Zhang, Z. Xu, Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets, Int. J. Intell. Syst., 29 (2014), 1061–1078. https://doi.org/10.1002/int.21676 doi: 10.1002/int.21676
    [11] F. Amin, M. Rahim, A. Ali, E. Ameer, Generalized Cubic Pythagorean Fuzzy Aggregation Operators and their Application to Multi-attribute Decision-Making Problems, Int. J. Comput. Intell. Syst., 15 (2022), 92. https://doi.org/10.1007/s44196-022-00145-x doi: 10.1007/s44196-022-00145-x
    [12] M. Rahim, F. Amin, A. Ali, K. Shah, An extension of Bonferroni mean under cubic Pythagorean fuzzy environment and its applications in selection-based problems, Math. Probl. Eng., 2022 (2022), 9735100. https://doi.org/10.1155/2022/9735100 doi: 10.1155/2022/9735100
    [13] G. Huang, L. Xiao, W. Pedrycz, D. Pamucar, G. Zhang, L. Martínez, Design alternative assessment and selection: A novel Z-cloud rough number-based BWM-MABAC model, Inf. Sci., 603 (2022), 149–189. https://doi.org/10.1016/j.ins.2022.04.040 doi: 10.1016/j.ins.2022.04.040
    [14] L. Xiao, G. Huang, W. Pedrycz, D. Pamucar, L. Martínez, G. Zhang, A q-rung orthopair fuzzy decision-making model with new score function and best-worst method for manufacturer selection, Inf. Sci., 608 (2022), 153–177. https://doi.org/10.1016/j.ins.2022.06.061 doi: 10.1016/j.ins.2022.06.061
    [15] G. Huang, L. Xiao, W. Pedrycz, G. Zhang, L. Martinez, Failure mode and effect analysis using T-spherical fuzzy maximizing deviation and combined comparison solution methods, IEEE T. Reliab., 72 (2022), 552–573. https://doi.org/10.1109/TR.2022.3194057 doi: 10.1109/TR.2022.3194057
    [16] J. M. Mendel, R. I. John, F. Liu, Interval type-2 fuzzy logic systems made simple, IEEE T. Fuzzy Syst., 14 (2006), 808–821. https://doi.org/10.1109/TFUZZ.2006.879986 doi: 10.1109/TFUZZ.2006.879986
    [17] J. M. Mendel, H. Wu, Type-2 fuzzistics for symmetric interval type-2 fuzzy sets: Part 1, forward problems, IEEE T. Fuzzy Syst., 14 (2006), 781–792. https://doi.org/10.1109/TFUZZ.2006.881441
    [18] J. M. Mendel, H. Wu, Type-2 fuzzistics for symmetric interval type-2 fuzzy sets: Part 2, inverse problems, IEEE T. Fuzzy Syst., 15 (2007), 301–308. https://doi.org/10.1109/TFUZZ.2006.881447
    [19] S.-M. Chen, L.-W. Lee, Fuzzy multiple attributes group decision-making based on the interval type-2 TOPSIS method, Expert Syst. Appl., 37 (2010), 2790–2798. https://doi.org/10.1016/j.eswa.2009.09.012 doi: 10.1016/j.eswa.2009.09.012
    [20] S.-M. Chen, M.-W. Yang, L.-W. Lee, S.-W. Yang, Fuzzy multiple attributes group decision-making based on ranking interval type-2 fuzzy sets, Expert Syst. Appl., 39 (2012), 5295–5308. https://doi.org/10.1016/j.eswa.2011.11.008 doi: 10.1016/j.eswa.2011.11.008
    [21] H. Mitchell, Ranking type-2 fuzzy numbers, IEEE T. Fuzzy Syst., 14 (2006), 287–294. https://doi.org/10.1109/TFUZZ.2005.864078
    [22] W.-L. Hung, M.-S. Yang, Similarity measures between type-2 fuzzy sets, Int. J. Uncertainty, Fuzz. Knowl.-Based Syst., 12 (2004), 827–841. https://doi.org/10.1142/S0218488504003235 doi: 10.1142/S0218488504003235
    [23] S. Dan, M. B. Kar, S. Majumder, B. Roy, S. Kar, D. Pamucar, Intuitionistic type-2 fuzzy set and its properties, Symmetry, 11 (2019), 808. https://doi.org/10.3390/sym11060808 doi: 10.3390/sym11060808
    [24] S. K. Roy, A. Bhaumik, Intelligent water management: A triangular type-2 intuitionistic fuzzy matrix games approach, Water Resour. Manag., 32 (2018), 949–968. https://doi.org/10.1007/s11269-017-1848-6 doi: 10.1007/s11269-017-1848-6
    [25] A. Mondal, S. K. Roy, Application of Choquet integral in interval type‐2 Pythagorean fuzzy sustainable supply chain management under risk, Int. J. Intell. Syst., 37 (2022), 217–263. https://doi.org/10.1002/int.22623 doi: 10.1002/int.22623
    [26] L. Gomes, M. Lima, TODIMI: Basics and application to multicriteria ranking, Found. Comput. Decis. Sci, 16 (1991), 1–16.
    [27] Z.-P. Fan, X. Zhang, F.-D. Chen, Y. Liu, Extended TODIM method for hybrid multiple attribute decision making problems, Knowl.-Based Syst., 42 (2013), 40–48. https://doi.org/10.1016/j.knosys.2012.12.014 doi: 10.1016/j.knosys.2012.12.014
    [28] L. Wang, Y.-M. Wang, L. Martínez, Fuzzy TODIM method based on alpha-level sets, Expert Syst. Appl., 140 (2020), 112899. https://doi.org/10.1016/j.eswa.2019.112899 doi: 10.1016/j.eswa.2019.112899
    [29] C. Wei, Z. Ren, R. M. Rodríguez, A hesitant fuzzy linguistic TODIM method based on a score function, Int. J. Comput. Intell. Syst., 8 (2015) 701–712. https://doi.org/10.1080/18756891.2015.1046329
    [30] R. A. Krohling, A. G. Pacheco, A. L. Siviero, IF-TODIM: An intuitionistic fuzzy TODIM to multi-criteria decision making, Knowl.-Based Syst., 53 (2013), 142–146. https://doi.org/10.1016/j.knosys.2013.08.028 doi: 10.1016/j.knosys.2013.08.028
    [31] M. Zhao, G. Wei, C. Wei, J. Wu, Pythagorean fuzzy TODIM method based on the cumulative prospect theory for MAGDM and its application on risk assessment of science and technology projects, Int. J. Fuzzy Syst., 23 (2021), 1027–1041. https://doi.org/10.1007/s40815-020-00986-8 doi: 10.1007/s40815-020-00986-8
    [32] P. Kaur, V. Dutta, B. L. Pradhan, S. Haldar, S. Chauhan, A pythagorean fuzzy approach for sustainable supplier selection using TODIM, Math. Probl. Eng., 2021 (2021), 4254894. https://doi.org/10.1155/2021/4254894 doi: 10.1155/2021/4254894
    [33] M. Zhao, G. Wei, C. Wei, J. Wu, TODIM method for interval-valued Pythagorean fuzzy MAGDM based on cumulative prospect theory and its application to green supplier selection, Arab. J. Sci. Eng., 46 (2021), 1899–1910. https://doi.org/10.1007/s13369-020-05063-8 doi: 10.1007/s13369-020-05063-8
    [34] Q. Zhang, J. Liu, J. Hu, Z. Yao, J. Yang, New correlation coefficients of Pythagorean fuzzy set and its application to extended TODIM method, J. Intell. Fuzzy Syst., 43 (2022), 509–523. https://doi.org/10.3233/JIFS-212323 doi: 10.3233/JIFS-212323
    [35] F. Zhou, T.-Y. Chen, A hybrid approach combining AHP with TODIM for blockchain technology provider selection under the Pythagorean fuzzy scenario, Artif. Intell. Rev., 55 (2022), 5411–5443. https://doi.org/10.1007/s10462-021-10128-7 doi: 10.1007/s10462-021-10128-7
    [36] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning—I, Inf. Sci., 8 (1975), 199–249. https://doi.org/10.1016/0020-0255(75)90036-5 doi: 10.1016/0020-0255(75)90036-5
    [37] Q. Qin, F. Liang, L. Li, Y.-W. Chen, G.-F. Yu, A TODIM-based multi-criteria group decision making with triangular intuitionistic fuzzy numbers, Appl. Soft Comput., 55 (2017), 93–107. https://doi.org/10.1016/j.asoc.2017.01.041 doi: 10.1016/j.asoc.2017.01.041
    [38] Castillo, P. Melin, R. Tsvetkov, K. T. Atanassov, Short remark on fuzzy sets, interval type-2 fuzzy sets, general type-2 fuzzy sets and intuitionistic fuzzy sets, In: Intelligent Systems' 2014, Cham: Springer, 2015,183–190. https://doi.org/10.1007/978-3-319-11313-5_18
    [39] X. Wang, E. Triantaphyllou, Ranking irregularities when evaluating alternatives by using some ELECTRE methods, Omega, 36 (2008), 45–63. https://doi.org/10.1016/j.omega.2005.12.003 doi: 10.1016/j.omega.2005.12.003
    [40] L. Xiao, G. Huang, G. Zhang, An integrated risk assessment method using Z‐fuzzy clouds and generalized TODIM, Qual. Reliab. Eng. Int., 38 (2022), 1909–1943. https://doi.org/10.1002/qre.3062 doi: 10.1002/qre.3062
    [41] G. Huang, L. Xiao, G. Zhang, An integrated design concept evaluation method based on best-worst best–worst entropy and generalized TODIM considering multiple factors of uncertainty, Appl. Soft Comput., 140 (2023), 110165. https://doi.org/10.1016/j.asoc.2023.110165 doi: 10.1016/j.asoc.2023.110165
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(943) PDF downloads(55) Cited by(0)

Article outline

Figures and Tables

Tables(24)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog