Research article Special Issues

Solutions for Schrödinger equations with variable separated type nonlinear terms

  • Received: 17 July 2023 Revised: 09 October 2023 Accepted: 30 October 2023 Published: 09 November 2023
  • MSC : 35Q55, 47J30

  • In this paper, we consider the following semilinear Schrödinger equation:

    $ \begin{eqnarray*} \left\{ \begin{array}{ll} -\Delta u+V(x)u = a(x)g(u)&{\mbox{for}}\; x\in \mathbb{R}^{N} ,\\ u(x)\rightarrow0&{\mbox{as}}\; |x|\rightarrow \infty , \end{array} \right. \end{eqnarray*} $

    where $ a(x) > 0 $ for all $ \mathbb{R}^{N} $. Under some different superlinear conditions on $ g(u) $, we obtain the existence of solutions for the above problem. In order to regain the compactness of the Sobolev embedding, a competing condition between $ a(x) $ and $ V(x) $ is introduced.

    Citation: Xia Su, Chunhua Deng. Solutions for Schrödinger equations with variable separated type nonlinear terms[J]. AIMS Mathematics, 2023, 8(12): 30487-30500. doi: 10.3934/math.20231557

    Related Papers:

  • In this paper, we consider the following semilinear Schrödinger equation:

    $ \begin{eqnarray*} \left\{ \begin{array}{ll} -\Delta u+V(x)u = a(x)g(u)&{\mbox{for}}\; x\in \mathbb{R}^{N} ,\\ u(x)\rightarrow0&{\mbox{as}}\; |x|\rightarrow \infty , \end{array} \right. \end{eqnarray*} $

    where $ a(x) > 0 $ for all $ \mathbb{R}^{N} $. Under some different superlinear conditions on $ g(u) $, we obtain the existence of solutions for the above problem. In order to regain the compactness of the Sobolev embedding, a competing condition between $ a(x) $ and $ V(x) $ is introduced.



    加载中


    [1] N. Ackermann, A nonlinear superposition principle and multibump solutions of periodic Schrödinger equations, J. Funct. Anal., 234 (2006), 277–320. https://doi.org/10.1016/j.jfa.2005.11.010 doi: 10.1016/j.jfa.2005.11.010
    [2] T. Bartsch, Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on $\mathbb{R}^{N}$, Commun. Partial Differ. Equ., 20 (1995), 1725–1741. https://doi.org/10.1080/03605309508821149 doi: 10.1080/03605309508821149
    [3] R. Castro López, G. H. Sun, O. Camacho-Nieto, C. Yáñez-Márquez, S. H. Dong, Analytical traveling-wave solutions to a generalized Gross-Pitaevskii equation with some new time and space varying nonlinearity coefficients and external fields, Phys. Lett. A, 381 (2017), 2978–2985. https://doi.org/10.1016/j.physleta.2017.07.012 doi: 10.1016/j.physleta.2017.07.012
    [4] Y. H. Ding, S. X. Luan, Multiple solutions for a class of nonlinear Schrödinger equations, J. Differ. Equ., 207 (2004), 423–457. https://doi.org/10.1016/j.jde.2004.07.030 doi: 10.1016/j.jde.2004.07.030
    [5] X. D. Fang, A. Szulkin, Multiple solutions for a quasilinear Schrödinger equation, J. Differ. Equ., 254 (2013), 2015–2032. https://doi.org/10.1016/j.jde.2012.11.017 doi: 10.1016/j.jde.2012.11.017
    [6] Y. S. Guo, W. Li, S. H. Dong, Gaussian solitary solution for a class of logarithmic nonlinear Schrödinger equation in (1+n) dimensions, Results Phys., 44 (2023), 106187. https://doi.org/10.1016/j.rinp.2022.106187 doi: 10.1016/j.rinp.2022.106187
    [7] S. B. Liu, On superlinear Schrödinger equations with periodic potential, Calc. Var. Partial Differ. Equ., 45 (2012), 1–9. https://doi.org/10.1007/s00526-011-0447-2 doi: 10.1007/s00526-011-0447-2
    [8] Y. Q. Li, Z. Q. Wang, J. Zeng, Ground states of nonlinear Schrödinger equations with potentials, Ann. Inst. H. Poincaré Anal. NonLinéaire, 23 (2006), 829–837. https://doi.org/10.1016/j.anihpc.2006.01.003 doi: 10.1016/j.anihpc.2006.01.003
    [9] P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270–291. https://doi.org/10.1007/BF00946631 doi: 10.1007/BF00946631
    [10] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, Providence, RI: American Mathematical Society, 1986.
    [11] B. Sirakov, Existence and multiplicity of solutions of semi-linear elliptic equations in $\mathbb{R}^{N}$, Calc. Var. Partial Differ. Equ., 11 (2000), 119–142. https://doi.org/10.1007/s005260000010 doi: 10.1007/s005260000010
    [12] X. H. Tang, New super-quadratic conditions on ground state solutions for superlinear Schrödinger equation, Adv. Nonlinear Stud., 14 (2014), 361–373. https://doi.org/10.1515/ans-2014-0208 doi: 10.1515/ans-2014-0208
    [13] E. Toon, P. Ubilla, Existence of positive solutions of Schrödinger equations with vanishing potentials, Discrete Contin. Dyn. Syst., 40 (2020), 5831–5843. https://doi.org/10.3934/dcds.2020248 doi: 10.3934/dcds.2020248
    [14] E. Toon, P. Ubilla, Hamiltonian systems of Schrödinger equations with vanishing potentials, Commun. Contemp. Math., 24 (2022), 2050074. https://doi.org/10.1142/S0219199720500741 doi: 10.1142/S0219199720500741
    [15] D. B. Wang, H. B. Zhang, W. Guan, Existence of least-energy sign-changing solutions for Schrödinger-Poisson system with critical growth, J. Math. Anal. Appl., 479 (2019), 2284–2301. https://doi.org/10.1016/j.jmaa.2019.07.052 doi: 10.1016/j.jmaa.2019.07.052
    [16] L. L. Wan, C. L. Tang, Existence of solutions for non-periodic superlinear Schrödinger equations without (AR) condition, Acta Math. Sci., 32 (2012), 1559–1570. https://doi.org/10.1016/s0252-9602(12)60123-4 doi: 10.1016/s0252-9602(12)60123-4
    [17] T. F. Wu, Multiple positive solutions for a class of concave-convex elliptic problems in $\mathbb{R}^{N}$ involving sign-changing weight, J. Funct. Anal., 258 (2010), 99–131. https://doi.org/10.1016/j.jfa.2009.08.005 doi: 10.1016/j.jfa.2009.08.005
    [18] D. L. Wu, F. Y. Li, H. X. Lin, Existence and nonuniqueness of solutions for a class of asymptotically linear nonperiodic Schrödinger equations, J. Fixed Point Theory Appl., 24 (2022), 72. https://doi.org/10.1007/s11784-022-00975-4 doi: 10.1007/s11784-022-00975-4
    [19] Q. Y. Zhang, Q. Wang, Multiple solutions for a class of sublinear Schrödinger equations, J. Math. Anal. Appl., 389 (2012), 511–518. https://doi.org/10.1016/j.jmaa.2011.12.003 doi: 10.1016/j.jmaa.2011.12.003
    [20] H. Zhang, J. X. Xu, F. B. Zhang, On a class of semilinear Schrödinger equations with indefinite linear part, J. Math. Anal. Appl., 414 (2014), 710–724. https://doi.org/10.1016/j.jmaa.2014.01.001 doi: 10.1016/j.jmaa.2014.01.001
    [21] Q. Zheng, D. L. Wu, Multiple solutions for Schrödinger equations involving concave-convex nonlinearities without $(AR)$-type condition, Bull. Malays. Math. Sci. Soc., 44 (2021), 2943–2956. https://doi.org/10.1007/s40840-021-01096-w doi: 10.1007/s40840-021-01096-w
    [22] X. Zhong, W. Zou, Ground state and multiple solutions via generalized Nehari manifold, Nonlinear Anal., 102 (2014), 251–263. https://doi.org/10.1016/j.na.2014.02.018 doi: 10.1016/j.na.2014.02.018
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(487) PDF downloads(42) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog