Research article Special Issues

Multiple solutions to Kirchhoff-Schrödinger equations involving the $ p(\cdot) $-Laplace-type operator

  • Received: 30 November 2022 Revised: 03 February 2023 Accepted: 06 February 2023 Published: 17 February 2023
  • MSC : 35D30, 35J20, 35J60, 35J92, 47J30

  • This paper is devoted to deriving several multiplicity results of nontrivial weak solutions to Kirchhoff-Schrödinger equations involving the $ p(\cdot) $-Laplace-type operator. The aims of this paper are stated as follows. First, under some conditions on a nonlinear term, we show that our problem has a sequence of infinitely many large energy solutions. Second, we obtain the existence of a sequence of infinitely many small energy solutions to the problem on a new class of nonlinear term. The primary tools to obtain such multiplicity results are the fountain theorem and the dual fountain theorem, respectively.

    Citation: Yun-Ho Kim. Multiple solutions to Kirchhoff-Schrödinger equations involving the $ p(\cdot) $-Laplace-type operator[J]. AIMS Mathematics, 2023, 8(4): 9461-9482. doi: 10.3934/math.2023477

    Related Papers:

  • This paper is devoted to deriving several multiplicity results of nontrivial weak solutions to Kirchhoff-Schrödinger equations involving the $ p(\cdot) $-Laplace-type operator. The aims of this paper are stated as follows. First, under some conditions on a nonlinear term, we show that our problem has a sequence of infinitely many large energy solutions. Second, we obtain the existence of a sequence of infinitely many small energy solutions to the problem on a new class of nonlinear term. The primary tools to obtain such multiplicity results are the fountain theorem and the dual fountain theorem, respectively.



    加载中


    [1] C. O. Alves, S. B. Liu, On superlinear $p(x)$-Laplacian equations in $\mathbb R^{N}$, Nonlinear Anal., 73 (2010), 2566–2579. https://doi.org/10.1016/j.na.2010.06.033 doi: 10.1016/j.na.2010.06.033
    [2] S. N. Antontsev, S. Shmarev, Evolution PDEs with nonstandard growth conditions, Atlantis Press, Amsterdam, 2015. https://doi.org/10.2991/978-94-6239-112-3
    [3] D. Arcoya, J. Carmona, P. J. Martínez-Aparicio, Multiplicity of solutions for an elliptic Kirchhoff equation, Milan J. Math., 90 (2022), 679–689. https://doi.org/10.1007/s00032-022-00365-y doi: 10.1007/s00032-022-00365-y
    [4] M. Avci, B. Cekic, R. A. Mashiyev, Existence and multiplicity of the solutions of the $p(x)$-Kirchhoff type equation via genus theory, Math. Method. Appl. Sci., 34 (2011), 1751–1759. https://doi.org/10.1002/mma.1485 doi: 10.1002/mma.1485
    [5] J. Cen, S. J. Kim, Y. H. Kim, S. Zeng, Multiplicity results of solutions to the double phase anisotropic variational problems involving variable exponent, Adv. Differential Equ., 2013, In press.
    [6] W. Chen, X. Huang, The existence of normalized solutions for a fractional Kirchhoff-type equation with doubly critical exponents, Z. Angew. Math. Phys., 73 (2022), 1–18. https://doi.org/10.1007/s00033-022-01866-x doi: 10.1007/s00033-022-01866-x
    [7] G. Dai, R. Hao, Existence of solutions for a $p(x)$-Kirchhoff-type equation, J. Math. Anal. Appl., 359 (2009), 275–284. https://doi.org/10.1016/j.jmaa.2009.05.031 doi: 10.1016/j.jmaa.2009.05.031
    [8] L. Diening, P. Harjulehto, P. Hästö, M. R${\rm{\dot u}}$žička, Lebesgue and Sobolev spaces with variable exponents, In: Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2011. https://doi.org/10.1007/978-3-642-18363-8
    [9] D. E. Edmunds, J. Rákosník, Density of smooth functions in $W^{k, p(x)}(\Omega)$, Proc. Roy. Soc. London Ser. A, 437 (1992), 229–236. https://doi.org/10.1098/rspa.1992.0059 doi: 10.1098/rspa.1992.0059
    [10] D. E. Edmunds, J. Rákosník, Sobolev embedding with variable exponent, Stud. Math., 143 (2000), 267–293. https://doi.org/10.4064/sm-143-3-267-293 doi: 10.4064/sm-143-3-267-293
    [11] M. Fabian, P. Habala, P. Hajék, V. Montesinos, V. Zizler, Banach space theory: The basis for linear and nonlinear analysis, Springer, New York, 2011. https://doi.org/10.1007/978-1-4419-7515-7
    [12] X. L. Fan, On nonlocal $p(x)$-Laplacian Dirichlet problems, Nonlinear Anal., 729 (2010), 3314–3323. https://doi.org/10.1016/j.na.2009.12.012 doi: 10.1016/j.na.2009.12.012
    [13] X. Fan, X. Han, Existence and multiplicity of solutions for $p(x)$-Laplacian equations in $\mathbb R^{N}$, Nonlinear Anal., 59 (2004), 173–188. https://doi.org/10.1016/j.na.2004.07.009 doi: 10.1016/j.na.2004.07.009
    [14] X. Fan, D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424–446. https://doi.org/10.1006/jmaa.2000.7617 doi: 10.1006/jmaa.2000.7617
    [15] A. Fiscella, A fractional Kirchhoff problem involving a singular term and a critical nonlinearity, Adv. Nonlinear Anal., 8 (2019), 645–660. https://doi.org/10.1515/anona-2017-0075 doi: 10.1515/anona-2017-0075
    [16] Y. Gao, Y. Jiang, L. Liu, N. Wei, Multiple positive solutions for a logarithmic Kirchhoff type problem in $\mathbb R^3$, Appl. Math. Lett., 139 (2023), 108539. https://doi.org/10.1016/j.aml.2022.108539 doi: 10.1016/j.aml.2022.108539
    [17] B. Ge, D. J. Lv, J. F. Lu, Multiple solutions for a class of double phase problem without the Ambrosetti-Rabinowitz conditions, Nonlinear Anal., 188 (2019), 294–315. https://doi.org/10.1016/j.na.2019.06.007 doi: 10.1016/j.na.2019.06.007
    [18] B. Ge, L. Y. Wang, J. F. Lu, On a class of double-phase problem without Ambrosetti-Rabinowitz-type conditions, Appl. Anal., 100 (2021), 1–16. https://doi.org/10.1080/00036811.2019.1679785 doi: 10.1080/00036811.2019.1679785
    [19] S. Gupta, G. Dwivedi, Kirchhoff type elliptic equations with double criticality in Musielak-Sobolev spaces, Math. Meth. Appl. Sci., 2023, In press. https://doi.org/10.1002/mma.8991
    [20] E. J. Hurtado, O. H. Miyagaki, R. S. Rodrigues, Existence and multiplicity of solutions for a class of elliptic equations without Ambrosetti-Rabinowitz type conditions, J. Dyn. Differ. Equ., 30 (2018), 405–432. https://doi.org/10.1007/s10884-016-9542-6 doi: 10.1007/s10884-016-9542-6
    [21] L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landsman-Lazer-type problem set on $\mathbb R^{N}$, P. Roy. Soc. Edinb. A, 129 (1999), 787–809. https://doi.org/10.1017/S0308210500013147 doi: 10.1017/S0308210500013147
    [22] S. Jiang, S. Liu, Multiple solutions for Schrödinger equations with indefinite potential, Appl. Math. Lett., 124 (2022), 107672. https://doi.org/10.1016/j.aml.2021.107672 doi: 10.1016/j.aml.2021.107672
    [23] F. Júlio, S. Corrêa, G. Figueiredo, On an elliptic equation of p-Kirchhoff type via variational methods, Bull. Aust. Math. Soc., 74 (2006), 263–277. https://doi.org/10.1017/S000497270003570X doi: 10.1017/S000497270003570X
    [24] I. H. Kim, Y. H. Kim, C. Li, K. Park, Multiplicity of solutions for quasilinear schrödinger type equations with the concave-convex nonlinearities, J. Korean Math. Soc., 58 (2021), 1461–1484. https://doi.org/10.4134/JKMS.j210099 doi: 10.4134/JKMS.j210099
    [25] I. H. Kim, Y. H. Kim, M. W. Oh, S. Zeng, Existence and multiplicity of solutions to concave-convex-type double-phase problems with variable exponent, Nonlinear Anal.-Real, 67 (2022), 103627. https://doi.org/10.1016/j.nonrwa.2022.103627 doi: 10.1016/j.nonrwa.2022.103627
    [26] I. H. Kim, Y. H Kim, K. Park, Existence and multiplicity of solutions for Schrödinger-Kirchhoff type problems involving the fractional $p(\cdot)$-Laplacian in $ {\mathbb R}^N$, Bound. Value Probl., 2020 (2020), 1–24. https://doi.org/10.1186/s13661-020-01419-z doi: 10.1186/s13661-020-01419-z
    [27] J. M. Kim, Y. H. Kim, Multiple solutions to the double phase problems involving concave-convex nonlinearities, AIMS Math., 8 (2023), 5060–5079. https://doi.org/10.3934/math.2023254 doi: 10.3934/math.2023254
    [28] J. M. Kim, Y. H. Kim, J. Lee, Existence and multiplicity of solutions for equations of $p(x)$-Laplace type in $\mathbb R^{N}$ without AR-condition, Differ. Integral Equ., 31 (2018), 435–464. https://doi.org/10.57262/die/1516676437 doi: 10.57262/die/1516676437
    [29] G. R. Kirchhoff, Vorlesungen über Mathematische Physik, Mechanik, Teubner, Leipzig, 1876.
    [30] V. K. Le, On a sub-supersolution method for variational inequalities with Leray-Lions operators in variable exponent spaces, Nonlinear Anal., 71 (2009), 3305–3321. https://doi.org/10.1016/j.na.2009.01.211 doi: 10.1016/j.na.2009.01.211
    [31] J. Lee, J. M. Kim, Y. H. Kim, Existence and multiplicity of solutions for Kirchhoff-Schrödinger type equations involving $p(x)$-Laplacian on the entire space $\mathbb R^{N}$, Nonlinear Anal.-Real, 45 (2019), 620–649. https://doi.org/10.1016/J.NONRWA.2018.07.016 doi: 10.1016/J.NONRWA.2018.07.016
    [32] J. Lee, J. M. Kim, Y. H. Kim, A. Scapellato, On multiple solutions to a non-local fractional $p(\cdot)$-Laplacian problem with concave-convex nonlinearities, Adv. Cont. Discr. Mod., 2022 (2022), 1–25. https://doi.org/10.1186/s13662-022-03689-6 doi: 10.1186/s13662-022-03689-6
    [33] S. D. Lee, K. Park, Y. H. Kim, Existence and multiplicity of solutions for equations involving nonhomogeneous operators of $p(x)$-Laplace type in $\mathbb R^{N}$, Bound. Value Probl., 2014 (2014), 1–17. https://doi.org/10.1186/s13661-014-0261-9 doi: 10.1186/s13661-014-0261-9
    [34] X. Lin, X. H. Tang, Existence of infinitely many solutions for $p$-Laplacian equations in $\mathbb R^{N}$, Nonlinear Anal., 92 (2013), 72–81. https://doi.org/10.1016/j.na.2013.06.011 doi: 10.1016/j.na.2013.06.011
    [35] J. L. Lions, On some questions in boundary value problems of mathematical physics, North-Holland Mathematics Studies, 30 (1978), 284–346. https://doi.org/10.1016/S0304-0208(08)70870-3 doi: 10.1016/S0304-0208(08)70870-3
    [36] D. C. Liu, On a $p(x)$-Kirchhoff-type equation via fountain theorem and dual fountain theorem, Nonlinear Anal., 72 (2010), 302–308. https://doi.org/10.1016/j.na.2009.06.052 doi: 10.1016/j.na.2009.06.052
    [37] S. B. Liu, On ground states of superlinear $p$-Laplacian equations in $\mathbb R^{N}$, J. Math. Anal. Appl., 61 (2010), 48–58. https://doi.org/10.1016/j.jmaa.2009.09.016 doi: 10.1016/j.jmaa.2009.09.016
    [38] S. B. Liu, S. J. Li, Infinitely many solutions for a superlinear elliptic equation, Acta Math. Sinica (Chin. Ser.), 46 (2003), 625–630 (in Chinese). https://doi.org/10.1155/2013/769620 doi: 10.1155/2013/769620
    [39] L. Li, X. Zhong, Infinitely many small solutions for the Kirchhoff equation with local sublinear nonlinearities, J. Math. Anal. Appl., 435 (2016), 955–967. https://doi.org/10.1016/j.jmaa.2015.10.075 doi: 10.1016/j.jmaa.2015.10.075
    [40] M. Mihăilescu, V. Rădulescu, A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462 (2006), 2625–2641. https://doi.org/10.1098/rspa.2005.1633 doi: 10.1098/rspa.2005.1633
    [41] O. H. Miyagaki, M. A. S. Souto, Superlinear problems without Ambrosetti and Rabinowitz growth condition, J. Differential Equ., 245 (2008), 3628–3638. https://doi.org/10.1016/j.jde.2008.02.035 doi: 10.1016/j.jde.2008.02.035
    [42] P. Pucci, M. Xiang, B. Zhang, Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional $p$-Laplacian in $\mathbb{R}^N$, Calc. Var. Partial Dif., 54 (2015), 2785–2806. https://doi.org/10.1007/S00526-015-0883-5 doi: 10.1007/S00526-015-0883-5
    [43] M. R${\rm{\dot u}}$žička, Electrorheological fluids: Modeling and mathematical theory, In: Lecture Notes in Mathematics, Springer, Berlin, 1748 (2000).
    [44] R. Stegliński, Infinitely many solutions for double phase problem with unbounded potential in $ {\mathbb R}^N$, Nonlinear Anal., 214 (2022), 112580. https://doi.org/10.1016/j.na.2021.112580 doi: 10.1016/j.na.2021.112580
    [45] Z. Tan, F. Fang, On superlinear $p(x)$-Laplacian problems without Ambrosetti and Rabinowitz condition, Nonlinear Anal., 75 (2012), 3902–3915. https://doi.org/10.1016/j.na.2012.02.010 doi: 10.1016/j.na.2012.02.010
    [46] K. Teng, Multiple solutions for a class of fractional Schrödinger equations in $\mathbb R^N$, Nonlinear Anal.-Real, 21 (2015), 76–86. https://doi.org/10.1016/j.nonrwa.2014.06.008 doi: 10.1016/j.nonrwa.2014.06.008
    [47] M. Willem, Minimax theorems, Birkhauser, Basel, 1996.
    [48] Q. Wu, X. P. Wu, C. L. Tang, Existence of positive solutions for the nonlinear Kirchhoff type equations in $\mathbb R^3$, Qual. Theory Dyn. Syst., 21 (2022), 1–16. https://doi.org/10.1007/s12346-022-00696-6 doi: 10.1007/s12346-022-00696-6
    [49] Z. Yucedag, M. Avci, R. Mashiyev, On an elliptic system of $p(x)$-Kirchhoff type under Neumann boundary condition, Math. Model. Anal., 17 (2012), 161–170. https://doi.org/10.3846/13926292.2012.655788 doi: 10.3846/13926292.2012.655788
    [50] Y. Zhou, J. Wang, L. Zhang, Basic theory of fractional differential equations, 2 Eds., World Scientific Publishing Co. Pte. Ltd., Singapore, 2017.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1250) PDF downloads(139) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog