In this work, we scrutinize the existence and uniqueness of the solution to the Integro differential equations for the Caputo fractional derivative on the time scale. We derive the solution of the neutral fractional differential equations along the finite delay conditions. The fixed point theory is demonstrated, and the solution depends upon the fixed point theorems: Banach contraction principle, nonlinear alternative for Leray-Schauder type, and Krasnoselskii fixed point theorem.
Citation: Ahmed Morsy, Kottakkaran Sooppy Nisar, Chokkalingam Ravichandran, Chandran Anusha. Sequential fractional order Neutral functional Integro differential equations on time scales with Caputo fractional operator over Banach spaces[J]. AIMS Mathematics, 2023, 8(3): 5934-5949. doi: 10.3934/math.2023299
[1] | Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Kottakkaran Sooppy Nisar, Suliman Alsaeed . Discussion on iterative process of nonlocal controllability exploration for Hilfer neutral impulsive fractional integro-differential equation. AIMS Mathematics, 2023, 8(7): 16846-16863. doi: 10.3934/math.2023861 |
[2] | Qi Wang, Chenxi Xie, Qianqian Deng, Yuting Hu . Controllability results of neutral Caputo fractional functional differential equations. AIMS Mathematics, 2023, 8(12): 30353-30373. doi: 10.3934/math.20231550 |
[3] | H. H. G. Hashem, Hessah O. Alrashidi . Qualitative analysis of nonlinear implicit neutral differential equation of fractional order. AIMS Mathematics, 2021, 6(4): 3703-3719. doi: 10.3934/math.2021220 |
[4] | Mohammed A. Almalahi, Satish K. Panchal, Fahd Jarad, Mohammed S. Abdo, Kamal Shah, Thabet Abdeljawad . Qualitative analysis of a fuzzy Volterra-Fredholm integrodifferential equation with an Atangana-Baleanu fractional derivative. AIMS Mathematics, 2022, 7(9): 15994-16016. doi: 10.3934/math.2022876 |
[5] | Qun Dai, Shidong Liu . Stability of the mixed Caputo fractional integro-differential equation by means of weighted space method. AIMS Mathematics, 2022, 7(2): 2498-2511. doi: 10.3934/math.2022140 |
[6] | Ahmed Morsy, C. Anusha, Kottakkaran Sooppy Nisar, C. Ravichandran . Results on generalized neutral fractional impulsive dynamic equation over time scales using nonlocal initial condition. AIMS Mathematics, 2024, 9(4): 8292-8310. doi: 10.3934/math.2024403 |
[7] | Samy A. Harisa, Chokkalingam Ravichandran, Kottakkaran Sooppy Nisar, Nashat Faried, Ahmed Morsy . New exploration of operators of fractional neutral integro-differential equations in Banach spaces through the application of the topological degree concept. AIMS Mathematics, 2022, 7(9): 15741-15758. doi: 10.3934/math.2022862 |
[8] | M. Mallika Arjunan, Nabil Mlaiki, V. Kavitha, Thabet Abdeljawad . On fractional state-dependent delay integro-differential systems under the Mittag-Leffler kernel in Banach space. AIMS Mathematics, 2023, 8(1): 1384-1409. doi: 10.3934/math.2023070 |
[9] | Veliappan Vijayaraj, Chokkalingam Ravichandran, Thongchai Botmart, Kottakkaran Sooppy Nisar, Kasthurisamy Jothimani . Existence and data dependence results for neutral fractional order integro-differential equations. AIMS Mathematics, 2023, 8(1): 1055-1071. doi: 10.3934/math.2023052 |
[10] | Naimi Abdellouahab, Keltum Bouhali, Loay Alkhalifa, Khaled Zennir . Existence and stability analysis of a problem of the Caputo fractional derivative with mixed conditions. AIMS Mathematics, 2025, 10(3): 6805-6826. doi: 10.3934/math.2025312 |
In this work, we scrutinize the existence and uniqueness of the solution to the Integro differential equations for the Caputo fractional derivative on the time scale. We derive the solution of the neutral fractional differential equations along the finite delay conditions. The fixed point theory is demonstrated, and the solution depends upon the fixed point theorems: Banach contraction principle, nonlinear alternative for Leray-Schauder type, and Krasnoselskii fixed point theorem.
The derivatives of arbitrary order, where the integer-order differentiation and n-fold integration are unified and generalized, the theory of integrals is known as Fractional Calculus. Abel in 1823, described the first application of derivative of order. In 1965, the fractional derivative (FD) was introduced by Lebinitz as a generalization of the Integral order derivative. Later it was reconsidered by Euler, Abel, Riemann Liouville, Grunwald and Letnikov. In several field of research, the topic of fractional calculus plays a major role in the real world problems. Among the diverse fields of science, the fractional calculus has the great application, say in physics, thermodynamics, viscoelasticity, biology, control theory, electrochemistry [1,2,3] and acts a controller model for population growth, practically etc. In recent years, fractional differentiation has been drawing increasing attention in the study of social and physical behaviors where scaling power law of fractional order appears universal as an empirical description of such complex phenomena[4]. Over the past few decades, numerous analyses, real-world problems, and numerical methods were resolved by fractional derivatives and integrals[5]. Fractional operators used to illustrate better the reality of real-world phenomena with the hereditary property[6]. The determination of curve's shape such that the time of descent of non-friction point mass sliding down through the curve under the action of gravity is not independent of the starting point is dealt with by the tautochrome problem in which it is the relation of application of fractional calculus with the solution of integral equations. Fractional derivative are amazing tool for illustrating the memory and hereditary properties of diverse materials and processes. On finding the approximation of the solution of the system, numerical analysis have played a major role[7].
The Caputo fractional differential operator is introduced by the Italian mathematician Caputo in 1967[8]. Some problems of visco-elasticity are formulated and solved by M.Caputo [9] with his own definitions of fractional differentiation. The relationship between the Caputo Fractional Derivative(CFD) with Riemann-Liouville(RL) fractional derivative, Atangana-Baleanu(AB) fractional derivative has been very strong which describes the generalized Mittag-Leffler(ML) functions among their kernels, using certain mathematical model to obtain the results in betterment[10].
Neutral differential equations occur when max{n1,n2,......,nk}=n. The past and present values of the function is dependent by the neutral differential equations, which is similar to retarded differential equations, but the neutral differential equations also depends on derivatives with delays. Neutral type differential equations [11,12,13] acts as a model for elastic network arise in high speed computers. That is, for the use of interconnection of switching circuit. Neutral differential equation occur in various branches of applied mathematics, as a result, seeking major heed in recent decades. The development of neutral differential system have been done by many researchers, mentioning the diverse fixed point approaches, mild solutions, and nonlocal conditions[14,15]. The delay differential equations has the major application in the behaviour of real populations. The systems with impulses are utilized for studying the dynamics of processes subject to abrupt changes at discrete moments [16,17].
A set with no empty closed subset of R is called Time scale. The time scale has been introduced to federate and enhance the theory of differential equation, and many other defined difference systems. The differential equations on time scales for the existence and uniqueness of IVP has been stated by Hilger with some applications. The union of disjoint closed real intervals on time scales acts as an excellent framework for the study of population. In the last few years, differential equations in time scale is majorly developed (see for example[18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]).
In [33], by applying fixed point theorems the authors discussed the existence, uniqueness and stability for the non linear fractional differential equations with non linear integral boundary condition on time scales. In our work, we discuss the existence and uniqueness solution to the neutral functional sequential integro differential equations with Caputo fractional derivative on time scale's T Cauchy problem,
cΔρ[cΔϱp(ν)−Φ(ν,pν,∫t0k1(t,s,ps)ds)]=ψ(ν,pν,∫t0k2(t,s,ps)ds),ν∈J:=[0,T]T=[0,T]∩T,p(ν)=ς(ν),ν∈[−ϵ,0]T=[−ϵ,0]∩T,cΔϱp(0)=ϕ∈R. | (1.1) |
Here, cΔρ, cΔϱ are CFD. The given functions are 0<ρ,ρ<1, ϕ:J×C([−ϵ,0]T,R)→R and ς∈C([−ϵ,0]T,R). The function p in [−ϵ,T]T and for ν∈J and ϵ>0, the element of Cϵ : = C([−ϵ,0]T,R) and we denote by pν as,
p(η)=p(ϱ+η),η∈[−ϵ,0]T. |
Definition 2.1. [8] The CFD of order β is defined by, for β>0,t>0,β,x,t∈R. The fractional operator is,
Dβ∗u(t)={1Γ(n−β)∫txu(n)τ(t−τ)β+1−m,m−1<β<m∈N,dmdtmu(t),β=m∈N. | (2.1) |
Definition 2.2. The mapping Σ: T→T, defined as Σ(t)=inf{s∈T:s>t} having inf ϕ=supT. The forward jump operator is defined as a Time scale with an arbitrary non empty closed subset of R and is denoted by T. (i.e., Σ(N) = N if T has a maximum N).
The mapping Ω: T→T, defined by Ω(t)=sup{s∈T:s<t} with sup ϕ=infT. (i.e., Ω(N) = N if T has a maximum N) is called the backward jump operator.
Here, the symbol ϕ denotes the empty set.
Remark 2.3. In definition 2.2, if T contains ˉn a maximum, then inf ϕ=supT (i.e., Σ(ˉn)=ˉn) and if T contains n_ a minimum, then sup ϕ=infT (i.e Ω(n_)=n), ϕ is denoted as the empty set.
Definition 2.4.[30] A continuous function u : T→R at right dense points is called rd-continuous and in left-dense points left sided limit exists.
Definition 2.5.[33] A function U: [x,y]→R is known as Δ anti-derivative of function u: [x,y]→R, where U is continuous on [x,y], Δ differentiable on (x,y), and UΔ(t) = u(t) ∀ t∈(x,y), where [x,y] is the closed bounded interval in T.
The Δ-integral of u from x to y is,
∫yxu(t)Δt:=U(y)−U(x). | (2.2) |
Definition 2.6.[34] The fractional integral of order β of g is,
TxIβth(t):=∫tx(t−s)β−1Γ(β)g(s)Δs, | (2.3) |
where Γ is the Gamma function, T be a time scale with interval [x,y] of T, and g be an integrable function on [x,y].
Definition 2.7.[35] Suppose that T is a time scale. The CFD of order β of g is defined by
cxΔβth(t):=∫tx(t−s)m−β−1Γ(m−β)gΔm(s)Δs, | (2.4) |
where m = [β]+1 and [β] denotes the integer part of β.
Theorem 2.8.[36] Let β, β′ and g be an integrable function on [x,y], then,
TIβxIβ′g(t)=TIβ+β′g(t). |
Lemma 2.9. (Nonlinear alternative for Leray-Schauder type)[37,38,39]. Consider U a mapping from ˉF to C, where C is a closed, convex subset of E, which is a Banach space and F, an open subset of C with 0∈F. Then either of the conditions hold:
(ⅰ) ˉF has a fixed point,
(ⅱ) f=ΛF(f), f∈∂F and Λ∈(0,1).
Lemma 2.10. (Krasnoselskii fixed point theorem)[37]. Let W be closed, bounded, convex and non-empty subset of a Banach space S. Let M, N be the operators such that (a) Mu+Nv∈W whenever u,v∈W; (b) M is continuous and compact; (c) N is a contraction mapping. Then there exists z∈W such that z=Mz+Nz.
Lemma 2.11.[20] Let T be a time scale and g be an increasing continuous function on the interval [x,y]with the time-scale. Let G be the extension of g to the real interval [x,y], then
G(s)={g(s)ifs∈T,g(τ)ifs∈(t,Σ(τ))∉T, |
then,
∫yxg(τ)Δτ≤∫yxG(τ)dτ. |
We need the following assumptions
(A1) There exists Λ>0 such that, |ψ(ν,z)−ψ(ν,ˉz)|≤Λ||z−ˉz||c for ν∈J and every z,ˉz∈Cϵ.
(A2) There exists a non '- ve\textquoteright constant κ such that, |ϕ(ν,z)−ϕ(ν,ˉz)|≤κ||z−ˉz||c for ν∈J and every z,ˉz∈Cϵ.
(A3) The function ψ,ϕ are continuous.
(A4) There exists a continuous non-decreasing function ψ:[0,∞]T→(0,∞) and a function Υ∈C(J,J+) such that, |ψ(ν,z)|≤Υ(ν)ψ(||z||c) for each (ν,z)∈J×Cϵ.
(A5) There exists a constant L>0 such that,
(Γ(ϱ+1)−κTϱ)LH+ψ(L)Tρ+ϱ||Υ||∞Γ(ϱ+1)Γ(ρ+ϱ+1)>1 |
where, H=Γ(ϱ+1)||ς||c+[|ϕ|+κ||ς||c+2Φo]Tϱ
(A6) There exists a continuous function ψ,ϕ:J×Cϵ→R, For each
ps,qs∈J, |ϕ(s,ps,k1ps(ν))−ϕ(s,ps,k1qs(ν))|=k1||ps−qs||. |
(A7) For each ps,qs∈J such that
pandq∈C([0,T]T,R),|ψ(s,ps,k2ps(ν)−ψ(s,ps,k2qs(ν))|=k2||ps−qs||. |
Remark 3.1. By (A2) for each (ν,z)∈J,
|Φ(ν,z)|=|Φ(ν,z)−Φ(ν,0)+Φ(ν,0)|≤|Φ(ν,z)−Φ(ν,0)|+|Φ(ν,0)|≤κ|z|+Φo, |
where Φo=sups∈[0,T]T|Φ(s,0)|.
Remark 3.2. A function p∈ ˜E is said to be a solution of the problem
cΔρ[cΔϱp(ν)−Φ(ν,pν,∫t0k1(t,s,ps)ds)]=ψ(ν,pν,∫t0k2(t,s,ps)ds)ν∈J:=[0,T]T=[0,T]∩T,p(ν)=ς(ν),ν∈[−ϵ,0]T=[−ϵ,0]∩T,cΔϱp(0)=ϕ∈R. |
If p satisfies the equation cΔρ[cΔϱp(ν)−Φ(ν,pν,∫t0k1(t,s,ps)ds)]=ψ(ν,pν,∫t0k2(t,s,ps)ds) on J, the condition p(ν)=ς(ν) on [−ϵ,0]T and cΔϱp(0)=ϕ.
Theorem 3.3. The function p∈ ˜E is the solution of the problem.
cΔρ[cΔϱp(ν)−Φ(ν,pν,∫t0k1(t,s,ps)ds)]=ψ(ν,pν,∫t0k2(t,s,ps)ds)ν∈J:=[0,T]T=[0,T]∩T,p(ν)=ς(ν),ν∈[−ϵ,0]T=[−ϵ,0]∩T,cΔϱp(0)=ϕ∈R. |
If
p(ν)={ς(ν),ifν∈[−ϵ,0]Tς(0)+ϕ−Φ(0,ς(0))Γ(ϱ)∫ν0(ν−s)ϱ−1Δs+1Γ(ϱ)∫ν0(ν−s)ϱ−1Φ(ν,pν,k1p(ν))Δs+1Γ(ρ+ϱ)∫ν0(ν−s)ρ+ϱ−1ψ(ν,pν,k2p(ν))Δs. |
Proof. Using,
cΔρ[cΔϱp(ν)−Φ(ν,pν,∫t0k1(t,s,ps)ds)]=ψ(ν,pν,∫t0k2(t,s,ps)ds),ν∈J, |
we get,
cΔϱp(ν)−Φ[ν,pν,k1p(ν)]=β+1Γ(ϱ)∫ν0(ν−s)ρ−1ψ(s,ps,k2p(s))ds, |
where β∈R.
Dϱp(0)=ϕ, β=ϕ−Φ(0,ς(0)), is given as,
cΔϱ=ϕ−Φ(0,ς(0))+Φ[ν,pν,k1p(ν)]+1Γ(ϱ)∫ν0(ν−s)ρ−1ψ(s,ps,k2p(s))ds. |
Thus,
p(ν)=β+ϕ−Φ(0,ς(0))Γ(ϱ)∫ν0(ν−s)ϱ−1Δs+1Γ(ϱ)∫ν0(ν−s)ϱ−1Φ(ν,pν,k1p(ν))Δs+1Γ(ρ+ϱ)∫ν0(ν−s)ρ+ϱ−1ψ(ν,pν,k2p(ν))Δs. |
we find β=0 and hence the proof.
Theorem 3.4. Assume that (A1) and (A2) holds if,
Tρ(κk1Γ(ϱ+1)+ΛTϱk2Γ(ρ+ϱ+1))<1, |
then there exists a unique element for Initial value problem (1.1) in ˜E. Proof:. Choose E:C([−ϵ,T]T,R)→C([−ϵ,T]T,R) by,
E(p)(ν)={ς(ν),ς(0)+ϕ−Φ(0,ς(0))Γ(ϱ)∫ν0(ν−s)ϱ−1Δs+1Γ(ϱ)∫ν0(ν−s)ϱ−1Φ(s,ps,k1p(ν))Δs+1Γ(ρ+ϱ)∫ν0(ν−s)ρ+ϱ−1ψ(s,ps,k2p(ν))Δs. |
Let p,q∈C([0,T]T,R). Then by (A1) and (A2) we get,
|E(p)(ν)−E(q)(ν)|≤1Γ(ϱ)∫ν0(ν−s)ϱ−1|Φ(s,ps,k1ps(ν))−Φ(s,qs,k1ps(ν))|Δs+1Γ(ρ+ϱ)∫ν0(ν−s)ρ+ϱ−1|ψ(s,ps,k2ps(ν))−Φ(s,qs,k2ps(ν))|Δs≤κΓ(ϱ)∫ν0(ν−s)ϱ−1k1||ps−qs||cΔs+ΛΓ(ρ+ϱ)∫ν0(ν−s)ρ+ϱ−1k2||ps−qs||cΔs. |
By Lemma 2.11 we get,
|E(p)(ν)−E(q)(ν)|≤1Γ(ϱ)∫ν0(ν−s)ϱ−1k1||ps−qs||cds+ΛΓ(ρ+ϱ−1)∫ν0(ν−s)(ρ+ϱ−1)k2||ps−qs||cds≤κνϱΓ(ϱ+1)k1||p−q||[−ϵ,T]T+Λνρ+ϱΓ(ρ+ϱ+1)k2||p−q||[0,T]T≤κTϱΓ(ϱ+1)k1||p−q||[−ϵ,T]T+ΛTρ+ϱΓ(ρ+ϱ+1)k2||p−q||[0,T]T. |
Thus,
|E(p)(ν)−E(q)(ν)|≤Tρ(κk1Γ(ϱ+1)+ΛTϱk2Γ(ρ+ϱ+1))||p−q||[−ϵ,T]T. |
The operator is contraction E. Hence, in problem (1.1) By using Banach contraction principle E is a unique solution on [−ϵ,T]T and it has a unique fixed point.
Theorem 3.5. Assume the hypothesis (A2)–(A5) hold. If κTϱΓ(ϱ+1)<1, then the IVP (1.1) must contain atleast one solution on ˜E.
Proof. Let us prove the operator E:C(−ϵ,T)T,R→C(−ϵ,T)T,R is continuous and completely continuous.
Claim 1: Let Un→y in C(−ϵ,T)T,R then E is continuous, where {Un} is the sequence. Then,
|E(p)(ν)−E(q)(ν)|≤1Γ(ϱ)∫ν0(ν−s)ϱ−1|Φ(s,pns,k1pns(ν))−Φ(s,ps,k1ps(ν))|Δs+1Γ(ρ+ϱ)∫ν0(ν−s)ρ+ϱ−1|ψ(s,pns,k2pns(ν))−ψ(s,ps,k2ps(ν))|Δs≤1Γ(ϱ)∫ν0(ν−s)ϱ−1 sups∈[0,T] |Φ(s,pns,k1pns(ν))|−|Φ(s,ps,k1ps(ν)|Δs+1Γ(ρ+ϱ)∫ν0(ν−s)ρ+ϱ−1 sups∈[0,T]T |ψ(s,pns,k2pns(ν))|−|ψ(s,ps,k2ps(ν)|Δs≤||Φ(⋅,pn,k1pn⋅)−Φ(⋅,p⋅,k1p⋅)||∞Γ(ϱ)∫T0(ν−s)ρ−1Δs+||ψ(⋅,pn,k2pn⋅)−ψ(⋅,p⋅,k2p⋅)||∞Γ(ρ+ϱ)∫T0(ν−s)ρ+ϱ−1Δs. |
By Lemma 2.11 we get,
|E(p)(ν)−E(q)(ν)|≤||Φ(⋅,pn,k1pn⋅)−Φ(⋅,p⋅,k1p⋅)||∞Γ(ϱ)∫T0(ν−s)ρ−1ds+||ψ(⋅,pn,k2pn⋅)−ψ(⋅,p⋅,k2p⋅)||∞Γ(ρ+ϱ)∫T0(ν−s)ρ+ϱ−1ds,≤Tϱ||Φ(⋅,pn,k1pn⋅)−Φ(⋅,p⋅,k1p⋅)||∞Γ(ϱ+1)+Tρ+ϱ||ψ(⋅,pn,k2pn⋅)−ψ(⋅,p⋅,k2p⋅)||∞Γ(ρ+ϱ+1). |
Since ψ and Φ are continuous functions,
|E(p)(ν)−E(q)(ν)|≤Tϱ||Φ(⋅,pn,k1pn⋅)−Φ(⋅,p⋅,k1p⋅)||∞Γ(ϱ+1)+Tρ+ϱ||ψ(⋅,pn,k2pn⋅)−ψ(⋅,p⋅,k2p⋅)||∞Γ(ρ+ϱ+1), |
as n→∞.
Claim 2: E maps bounded sets into bounded sets in C([−ϵ,T]T,R). It is necessary to prove for that k>0, and '+ ve\textquoteright constant ˜Λ such that, for every p∈Bk=p∈C([ϵ,T]T,R):||p||∞≤k. we have, ||E(p)||∞≤˜Λ.
Using (A4) and (A5), for every ν∈J, we have,
|E(p)(ν)|≤||ς||c+|ϕ+κ||ς||c+ΦoΓ(ϱ)∫νs(ν−s)ϱ−1Δs+1Γ(ϱ)∫ν0(ν−s)ϱ−1|Φ(s,ps,k1ps(ν))|Δs+1Γ(ρ+ϱ)∫ν0(ν−s)ρ+ϱ−1|ψ(s,ps,k2ps(ν))|Δs≤||ς||c+|ϕ+κ||ς||c+ΦoΓ(ϱ)∫νs(ν−s)ϱ−1Δs+κ||p||[−ϵ,T]T+k1ΦoΓ(ϱ)∫νs(ν−s)ϱ−1Δs+ψ(||p||[−ϵ,T]T)||Υ||∞k2Γ(ρ+ϱ)∫ν0(ν−s)ρ+ϱ−1Δs. |
By Lemma 2.11 we get,
|E(p)(ν)|≤||ς||c+|ϕ|+κ||ς||c+ΦoΓ(ϱ)∫νs(ν−s)ϱ−1ds+κ||p||[−ϵ,T]T+k1ΦoΓ(ϱ)∫νs(ν−s)ϱ−1ds+ψ(||p||[−ϵ,T]T)||Υ||∞k2Γ(ρ+ϱ)∫ν0(ν−s)ρ+ϱ−1ds,≤||ς||c+[|ϕ|+κ||ς||c+Φo]TϱΓ(ϱ+1)+[κ||p||[−ϵ,T]T+k1Φo]TϱΓ(ϱ+1)+[ψ(||p||[−ϵ,T]T)||Υ||∞k2]Tρ+ϱΓ(ρ+ϱ+1). |
Thus,
||E(p)||∞≤||ς||c+[|ϕ|+κ||ς||c+Φo]TϱΓ(ϱ+1)+[κk+k1Φo]TϱΓ(ϱ+1)+ψ(k)||Υ||∞k2Tρ+ϱΓ(ρ+ϱ+1),=˜Λ. |
Claim 3: E is mapped from bounded to equicontinuous sets of C([ϵ,T]T,R). ν1,ν2∈J,ν1<ν2,Bk is the bounded set of C([ϵ,T]T,R).Let p∈Bk.
|E(p)(ν2)−E(p)(ν1)|≤|(ϕ−Φ(0,ς(0)))|Γ(ϱ)∫ν10((ν2−s)ϱ−1−(ν1−s)ϱ−1)Δs+|(ϕ−Φ(0,ς(0)))|Γ(ϱ)∫ν2ν1((ν2−s)ϱ−1Δs+1Γ(ϱ)∫ν10[(ν2−s)ϱ−1−(ν1−s)ϱ−1]|Φ(s,ps,k1ps(ν))|Δs+1Γ(ϱ)∫ν2ν1(ν2−s)ρ−1|Φ(s,ps,k1ps(ν))|Δs+1Γ(ρ+ϱ)∫ν10[(ν2−s)ρ+ϱ−1−(ν1−s)ρ+ϱ−1]|ψ(s,ps,k2ps(ν))|Δs+1Γ(ρ+ϱ)∫ν2ν1(ν2−s)ρ+ϱ−1|ψ(s,ps,k2ps(ν))|Δs. |
By Lemma 2.11 we get,
|E(p)(ν2)−E(p)(ν1)|≤|(ϕ−Φ(0,ς(0)))|Γ(ϱ)∫ν10((ν2−s)ϱ−1−(ν1−s)ϱ−1)ds+|(ϕ−Φ(0,ς(0)))|Γ(ϱ)∫ν2ν1((ν2−s)ϱ−1ds+1Γ(ϱ)∫ν10[(ν2−s)ϱ−1−(ν1−s)ϱ−1]|Φ(s,ps,k1ps(ν))|ds+1Γ(ϱ)∫ν2ν1(ν2−s)ρ−1|Φ(s,ps,k1ps(ν))|ds+1Γ(ρ+ϱ)∫ν10[(ν2−s)ρ+ϱ−1−(ν1−s)ρ+ϱ−1]|ψ(s,ps,k2ps(ν))|ds+1Γ(ρ+ϱ)∫ν2ν1(ν2−s)ρ+ϱ−1|ψ(s,ps,k2ps(ν))|ds. |
Thus,
|E(p)(ν2)−E(p)(ν1)|≤|ϕ|+κ||ς||c+ΦoΓ(ϱ+1)[νϱ2−νϱ1]+κk+Φok1Γ(ϱ+1)[|νϱ2−νϱ1|+|ν2−ν1|ϱ]+ψ(k)||Υ||∞k2Γ(ρ+ϱ+1)[|νρ+ϱ2−νρ+ϱ1+|ν2−ν1|ρ+ϱ]. |
As ν1→ν2, the R.H.S of the above inequality → 0. The equicontinuity for the case ν1≤ν2≤0 & ν1≤0≤ν2 is obvious. By using Arzela Ascoli theorem, C([−ϵ,T]T,R)→C([−ϵ,T]T,R) is continuous and completely continuous.
Claim 4: A set U⊆C([−ϵ,T]T,R) with p≠mE(p) and for m∈(0,1)and p∈∂p.
Let U∈C([−ϵ,T]T,R) & p=mE(p) for some 0<m<1. Then, for each ν∈J, we have,
p(ν)=m(ς(0))+(ϕ−Φ(0,ς(0)))∫ν0(ν−s)ϱ−1Γ(ϱ)Δs+1Γ(ϱ)∫ν0(ν−s)ϱ−1Φ(s,ps,k1p(s))Δs+1Γ(ρ+ϱ)∫ν0(ν−s)ρ+ϱ−1ψ(s,ps,k2p(s))Δs. |
Considering, for every ν∈J, we obtain,
p(ν)≤||ς||c+||ϕ||+κ||ς||c+Φo∫ν0(ν−s)ϱ−1Γ(ϱ)Δs+κ||p||[−ϵ,T]T+Φok1Γ(ϱ)∫ν0(ν−s)ϱ−1Δs+1Γ(ρ+ϱ)∫ν0(ν−s)ρ+ϱ−1Υ(s)ψ(||ps||c)Δs≤||ς||c+||ϕ||+κ||ς||c+Φo∫ν0(ν−s)ϱ−1Γ(ϱ)ds+κ||p||[−ϵ,T]T+Φok1Γ(ϱ)∫ν0(ν−s)ϱ−1ds+1Γ(ρ+ϱ)∫ν0(ν−s)ρ+ϱ−1Υ(s)ψ(||p||s||c)ds≤||ς||c+||ϕ||+κ||ς||c+ΦoTϱT(ϱ+1)+κ||p||[−ϵ,T]T+Φok1TϱΓ(ϱ+1)+||Υ||∞k2ψ(||p||[−ϵ,T]T)Γ(ρ+ϱ+1)Tρ+ϱ. |
Thus,
(Γ(ϱ+1)−κTϱ)||p||[−ϵ,T]T≤Γ(ϱ+1)||ς||c+[|ϕ+κ||ς||c+2Φok1]Tϱ+Tρ+ϱ||Υ||∞k2ψ(||p||[−ϵ,T]T)Γ(ϱ+1)ρ+ϱ+1, |
which can be expressed as
(Γ(ϱ+1)−κTϱ)||p||[−ϵ,T]TH+Tρ+ϱ||Υ||∞k2ψ(||p||[−ϵ,T]T)Γ(ϱ+1)ρ+ϱ+1≤1. |
There exists L and such that ||p||−ϵ,TT≠L, Setting for p∈{p∈C([−ϵ,T]T,R):||p||[−ϵ,T]T≤L}. From p, there is no p∈∂p such that p=mEp there exists m∈(0,1). E has a fixed point u∈ˉU by using the nonlinear alternative for Leary-Schauder type as the solution of the problem (1.1).
Theorem 3.6. Consider that (A2)–(A3) and κTϱΓ(ϱ+1)<1 holds, and (A6) |ψ(ν,x)|≤X1(ν),|Φ(ν,x)|≤X2(ν) for all (p,x)∈J×R, where X1,X2∈(J,R+). On ˜E the problem (1.1) has atleast one solution defined.
Proof. The operator Q1 and Q2:
Q1p(ν)={0,ifν∈[−ϵ,0]T,(ϕ−Φ(0,ς(0)))1Γ(ϱ)∫ν0(ν−s)ϱ−1Δs+1Γ(ϱ)∫ν0(ν−s)ϱ−1Φ(s,ps,k1ps(ν))Δsifν∈[0,T]T, | (2.5) |
Q2p(ν)={ς(p),ifν∈[−ϵ,0]T,ς(0)+1Γ(ρ+ϱ)∫ν0(ν−s)ρ+ϱ−1ψ(s,ps,k2ps(ν))Δsifν∈[0,T]T. | (2.6) |
Put
supν∈[0,T]T X1(ν)=||X1||∞,supν∈[0,T]T X2(ν)=||X2||∞, |
and
ω≥||ς||c+Tϱ[[|ϕ|+2||X2||∞]Γ(ϱ+1)+Tρ||X1||∞Γ(ρ+ϱ+1)], |
and define Dω=p∈C([ϵ,T]T,R)=||p||∞≤ω
Claim 1: Any sort of p,q∈Dω:Q1p+Q2q∈Dω: Any sort of p,q∈Dω. From (2.5), (2.6) and Lemma 2.11, we have,
|Q1p(ν)+Q2q(ν)|≤supν∈[0,T]T (ϕ−Φ(0,ς(0))Γ(ϱ)∫ν0(ν−s)ϱ−1Δs+1Γ(ϱ)∫ν0(ν−s)ϱ−1Φ(s,ps,k1ps(ν))Δs+ς(0)+1Γ(ρ+ϱ)∫ν0(ν−s)ρ+ϱ−1ψ(s,ps,k2ps(ν))Δs)≤supν∈[0,T]T (ϕ−Φ(0,ς(0))Γ(ϱ)∫ν0(ν−s)ϱ−1ds+1Γ(ϱ)∫ν0(ν−s)ϱ−1Φ(s,ps,k1ps(ν))ds+ς(0)+1Γ(ρ+ϱ)∫ν0(ν−s)ρ+ϱ−1ψ(s,ps,k2ps(ν))ds)≤||ς||c+Tϱ[k1[|ϕ|+2|X2|∞]Γ(ϱ+1)+Tρk2||X||∞Γ(ρ+ϱ+1)]≤ωk1k2. |
This shows that Q1y+Q2z=Dω.
Claim 2: On Dω, Q1 is a contraction mapping:
Let p,q∈Dω. By (2.5) and Lemma 2.11 we have,
|Q1p(ν)+Q2q(ν)|≤1Γ(ϱ)∫ν0(ν−s)ϱ−1|Φ(s,ps,k1ps(ν))−Φ(s,qs,k1ps(ν))|Δs≤1Γ(ϱ)∫ν0(ν−s)ϱ−1k1||ps−qs||cΔs≤κΓ(ϱ)∫ν0(ν−s)ϱ−1k1||ps−qs||cds≤κνϱΓ(ϱ+1)k1||p−q||[−ϵ,T]T≤κTϱΓ(ϱ+1)k1||p−q||[−ϵ,T]T. |
Thus,
||Q1p(ν)+Q2q(ν)||[−ϵ,T]T≤κTϱΓ(ϱ+1)k1||p−q||[−ϵ,T]T. |
Claim 3: Q2 and ψ is continuous so Q2 is continuous. Q2 is uniformly bounded on Dω. i.e.,
||Q2p||≤||ς||c+Tρ+ϱk2||X1||∞Γ(ρ+ϱ+1). |
Claim 4: Q2 is equicontinuous. Defining
ψo=sup(ν,p)∈[0,T]T×Dω |ψ(ν,p)|≤∞. |
For ν1,ν2∈[0,T]T,ν1,ν2 by (2.6) and Lemma 2.11 we have,
|Q2p(ν2)−Q2p(ν1)|≤ψok1Γ(ρ+ϱ)∫ν10|(ν2−s)ρ+ϱ−1−(ν1−s)ρ+ϱ−1|Δs+ψok2Γ(ρ+ϱ)∫ν10(ν2−s)ρ+ϱ−1Δs≤ψok1Γ(ρ+ϱ)∫ν10|(ν2−s)ρ+ϱ−1−(ν1−s)ρ+ϱ−1|ds+ψok2Γ(ρ+ϱ)∫ν10(ν2−s)ρ+ϱ−1ds≤ψok1k2Γ(ρ+ϱ+1)[|νρ+ϱ2|+|ν2−ν1|ρ+ϱ]. |
As ν1→ν2 the R.H.S of the above inequality → 0. Therefore Q2 is equicontinuous, where on Dω Q2 is relatively compact. Therefore, by Arzela-Ascoli theorem Q2 is compact on Dω.
The problem (1.1) has atleast one solution [−ϵ,T]T.
Let us consider the fractional functional integro-differential equation on a Time scale T.
cΔ13[cΔ12p(ν)−11000(νcos||pν||c−||pν||csinν)∫t0k1(t,νcos||pν||c,||pν||csinν)dν]=1100eν||pν||c5+||pν||c∫t0k1(t,νcos||pν||c,||pν||csinν)dν,ν∈J:[0,1]∩T,p(ν)=ς(ν),ν∈[−∈,0]∩T,D12p(0)=13. |
Let
ψ(ν,x)=1100eνx5+x∫t0k2(t,νcosx,xsinν)dν,ϕ(ν,x)=11000(νcosx−xsinν)∫t0k1(t,νcosx,xsinν)dν,(ν,x)∈[0,1]∩T×[0,∞]. |
For p,q∈[0,∞] and ν∈J, we have
|ψ(ν,p)−ψ(ν,q)|=1100eν|p5+p−q5+q|∫t0k2(t,νcospq,pqsinν)dν=5|p−q|100eν(5+p)(5+q)∫t0k2(t,νcospq,pqsinν)dν≤1500|p−q|∫t0k2(t,νcospq,pqsinν)dν, |
and
|ϕ(ν,p)−ϕ(ν,q)|≤[11000|ν||cosp−cosq+11000|sinν||p−q|]∫t0k2(t,νcospq,pqsinν)dν≤11000|p−q|+11000|p−q|∫t0k2(t,νcospq,pqsinν)dν≤1500|p−q|∫t0k2(t,νcospq,pqsinν)dν. |
And put k1=k2,
Tρ(κk1Γ(ϱ+1)+ΛTϱΓ(ρ+ϱ+1))=(1500Γ(12+1)+1500Γ(13+12+1))∫t0k2(t,νcospq,pqsinν)dν≈0.04385118∫t0k2(t,νcospq,pqsinν)dν<∫t0k2(t,νcospq,pqsinν)dν. |
Hence the conditions (A1) and (A2) hold with Λ=κ = 1500. Thus the problem has a unique solution on [−∈,1]T.
In this work, we obtain the existence and uniqueness solution to the integro differential equations for the Caputo fractional derivative on Time scale. The solution of the neutral fractional differential equations along the finite delay condition is derived by using the fixed point theory.
In future we look forward more on circuit analysis, in particular by using Sequential fractional order Neutral functional Integro differential equations on time scales with Caputo fractional operator over Banach spaces.
The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number (IF2/PSAU/2022/01/21626).
The authors declare that they have no conflicts of interest.
[1] |
S. Abbas, M. Benchohra, J. E. Lagreg, A. Alsaedi, Y. Zhou, Existence and Ulam stability for fractional differential equations of Hilfer-Hadmard type, Adv. Differ. Equ., 2017 (2017), 180. https://doi.org/10.1186/s13662-017-1231-1 doi: 10.1186/s13662-017-1231-1
![]() |
[2] |
S. Abbas, M. Benchohra, J. E. Lazreg, Y. Zhou, A survey on Hadamard and Hilfer fractional differential equations: analysis and stability, Chaos Soliton. Fract., 102 (2017), 47–71. https://doi.org/10.1016/j.chaos.2017.03.010 doi: 10.1016/j.chaos.2017.03.010
![]() |
[3] | S. Abbas, M. Benchohra, G. M. N’Guerekata, Advanced fractional differential and integral equations, New York: Nova Science Publishers, 2014. |
[4] |
K. Logeswari, C. Ravichandran, K. S. Nisar, Mathematical model for spreading of COVID-19 virus with the Mittag-Leffler kernel, Numer. Meth. Part. Differ. Eq., 2020, 1–16. https://doi.org/10.1002/num.22652 doi: 10.1002/num.22652
![]() |
[5] |
K. S. Nisar, K. Logeswari, V. Vijayaraj, H. M. Baskonus, C. Ravichandran, Fractional order modeling the Gemini Virus in capsicum annuum with optimal control, Fractal Fract., 6 (2022), 61. https://doi.org/10.3390/fractalfract6020061 doi: 10.3390/fractalfract6020061
![]() |
[6] |
S. Belmor, R. Ravichandran, F. Jarad, Nonlinear generalized fractional differential equations with generalized fractional integral conditions, J. Taibah Uni. Sci., 14 (2020), 114–123. https://doi.org/10.1080/16583655.2019.1709265 doi: 10.1080/16583655.2019.1709265
![]() |
[7] |
K. S. Nisar, K. Jothimani, C. Ravichandran, D. Baleanu, D.Kumar, New approach on controllability of Hilfer fractional derivatives with nondense domain, AIMS Math., 7 (2022), 10079–10095. https://doi.org/10.3934/math.2022561 doi: 10.3934/math.2022561
![]() |
[8] |
J. E. Lazreg, N. Benkhettou, M. Benchora, E. Karapinar, Neutral functional sequential differential equations with Caputo fractional derivative on time scales, Fixed Point Theory Algorithms Sci. Eng., 2022 (2022), 6. https://doi.org/10.1186/s13663-022-00716-9 doi: 10.1186/s13663-022-00716-9
![]() |
[9] | I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their solution and some of their applications, San Diego: Academic Press, 1999. |
[10] |
C. Ravichandran, V. Sowbakiya, K. S. Nisar, Study on existence and data dependence results for fractional order differential equations, Chaos Soliton. Fract., 160 (2022), 112232. https://doi.org/10.1016/j.chaos.2022.112232 doi: 10.1016/j.chaos.2022.112232
![]() |
[11] | B. Ahmad, S. Ntouyas, Existence and uniqueness of solutions for Caputo Hadamard sequential fractional order neutral functional differential equations, Electron. J. Differ. Eq., 36 (2017), 1–11. |
[12] |
A. Domoshnitsky, A. Maghakyan, R. Shklyar, Maximum principles and Boundary value problems for first order Neutral functional differential equations, J. Inequal. Appl., 2009 (2009), 141959. https://doi.org/10.1155/2009/141959 doi: 10.1155/2009/141959
![]() |
[13] |
A. D. Khalaf, M. Abouagwa, A. Mustafa, X. Wang, Stochastic Volterra integral equations with jumps and the strong superconvergence of the Euler Maruyama approximation, J. Comput. Appl. Math., 382 (2021), 113071. doilinkhttps://doi.org/10.1016/j.cam.2020.113071 doi: 10.1016/j.cam.2020.113071
![]() |
[14] |
K. Kaliraj, M. Manjula, C. Ravichandran, New existence results on nonlocal neutral fractional differential equation in concepts of Caputo derivative with impulsive conditions, Chaos Soliton. Fract., 161 (2022), 112284. https://doi.org/10.1016/j.chaos.2022.112284 doi: 10.1016/j.chaos.2022.112284
![]() |
[15] |
X. B. Shu, Y. J. Shi, A study on the mild solution of impulsive fractional evolution equations, Appl. Math. Comput., 273 (2016), 465–476, https://doi.org/10.1016/j.amc.2015.10.020 doi: 10.1016/j.amc.2015.10.020
![]() |
[16] |
M. Abouagwa, R. A. R. Bantan, W. Almutiry, A. D. Khalaf, M. Elgarhy, Mixed Caputo fractional neutral stochastic differential equations with impulses and variable delay, Fractal Fract., 5 (2021), 239. https://doi.org/10.3390/fractalfract5040239 doi: 10.3390/fractalfract5040239
![]() |
[17] |
M. Abouagwa, L. S. Aljoufi, R. A. R. Bantan, A. D. Khalaf, M. Elgarhy, Mixed neutral Caputo fractional stochastic evolution equations with infinite delay: existence, uniqueness and averaging principle, Fractal Fract., 6 (2022), 105. https://doi.org/10.3390/fractalfract6020105 doi: 10.3390/fractalfract6020105
![]() |
[18] | S. Abbas, M. Benchohra, M. Graef, J. R. Henderson, Implicit fractional differential and integral equations existence and stability, Berlin: De Gruyter, 2018. https://doi.org/10.1515/9783110553819 |
[19] | R. Agarwal, D. O' Regan, S. Saker, Dynamic inequalities on time scales, Berlin: Springer, 2014. |
[20] |
R. P. Agarwal, U. Aksoy, E. Karapinar, I. M. Erhan, F-contraction mappings on metric-like spaces in connection with integral equations on time scales, RACSAM, 114 (2020), 147. https://doi.org/10.1007/s13398-020-00877-5 doi: 10.1007/s13398-020-00877-5
![]() |
[21] |
R. P. Agarwal, M. Bohner, Basic calculus on time scales and some of its applications, Results Math., 35 (2013), 3–22. https://doi.org/10.1007/BF03322019 doi: 10.1007/BF03322019
![]() |
[22] |
R. P. Agarwal, M. R. Sidi Ammi, J. Asad, Existence and uniqueness results on time scales for fractional nonlocal thermistor problem in the comfortable sense, Adv. Differ. Equ., 2021 (2021), 162. https://doi.org/10.1186/s13662-021-03319-7 doi: 10.1186/s13662-021-03319-7
![]() |
[23] | A. Ahmadhhanlu, M. Jahanshahi, On the existence of solution of initial value problem for fractional order differential equations on time scales, B. Iran. Math. Soc., 38 (2012), 241–252. |
[24] |
N. Benkhettou, A. M. C. Brito da Cruz, D. F. M. Torres, A fractional calculus on arbitrary time scales: fractional differentiation and fractional integration, Signal Process., 107 (2015), 230–237. https://doi.org/10.1016/j.sigpro.2014.05.026 doi: 10.1016/j.sigpro.2014.05.026
![]() |
[25] |
N. Benkhettou, S. Hassani, D. F. M. Torres, A conformable fractional calculus on arbitrary time scales, J. King Saud Uni. Sci., 28 (2016), 93–98. https://doi.org/10.1016/j.jksus.2015.05.003 doi: 10.1016/j.jksus.2015.05.003
![]() |
[26] | M. Bohner, A. Peterson, Advances in dynamic equations on time scales, Boston: Birkhauser, 2003. |
[27] | M. Bohner, S. G. Georgiev, Multivariable dynamic calculus on time scales, Berlin: Springer, 2016. |
[28] | A. B. Cherif, F.Z. Ladrani, New properties of the time-scale fractional operators with application to dynamic equations, Math. Moranica, 25 (2021), 123–136. |
[29] | S. G. Georgiev, Functional dynamic equations on time scales, Berlin: Springer, 2019. |
[30] | S. G. Georgiev, Integral equations on time sales, Paris: Atlantis Press, 2016. |
[31] |
Y. C. Guo, M. Q. Chen, X. B. Shu, F. Xu, The existence and Hyers-Ulam stability of solution for almost periodical fractional stochastic differential equation with fBm, Stoch. Anal. Appl., 39 (2020), 643–666. https://doi.org/10.1080/07362994.2020.1824677 doi: 10.1080/07362994.2020.1824677
![]() |
[32] | Y. Zhou, Basic theory of fractional differential equations, Singapore: World Scientific, 2014. |
[33] | K. Vipin, M. Muslim, Existence and stability results of nonlinear fractional differential equations with nonlinear integral boundary condition on time scales, Appl. Appl. Math., 15 (2020), 129–145. |
[34] |
B. C. Damasceno, L. Barbanti, Ordinary fractional differential equations are in fact usual entire ordinary differential equations on time scales, AIP Confer. P., 1637 (2014), 279–282. https://doi.org/10.1063/1.4904589 doi: 10.1063/1.4904589
![]() |
[35] |
A. A. Kilbas, M. Rivero, L. Rodriguez-Germa, J. J. Trujillo, Caputo linear fractional differential equations, IFAC P., 39 (2006), 52–57. https://doi.org/10.3182/20060719-3-PT-4902.00008 doi: 10.3182/20060719-3-PT-4902.00008
![]() |
[36] |
A. E. Hamzaa, K. M. Oraby, Semigroups of operators and abstract dynamic equations on time scales, Appl. Math. Comput., 270 (2015), 334–348. https://doi.org/10.1016/j.amc.2015.07.110 doi: 10.1016/j.amc.2015.07.110
![]() |
[37] |
K. Kaliraj, M. Manjula, C. Ravichandran, K. S. Nisar, Results on neutral differential equation of sobolev type with nonlocal conditions, Chaos Soliton. Fract., 158 (2022), 112060. https://doi.org/10.1016/j.chaos.2022.112060 doi: 10.1016/j.chaos.2022.112060
![]() |
[38] |
A. D. Khalaf, T. Saeed, R. Abu-Shanab, W. Almutiry, M. Abouagwa, Estimating drift parameters in a sub-fractional Vasicek-type process, Entropy, 24 (2022), 594. https://doi.org/10.3390/e24050594 doi: 10.3390/e24050594
![]() |
[39] |
A. D. Khalaf, A. Zeb, T. Saeed, M. Abouagwa, S. Djilai, H. M. Alshehri, A special study of the mixed weighted fractional Brownian motion, Fractal Fract., 5 (2021), 192. https://doi.org/10.3390/fractalfract5040192 doi: 10.3390/fractalfract5040192
![]() |
1. | Ahmed Salem, Sanaa Abdullah, Controllability results to non-instantaneous impulsive with infinite delay for generalized fractional differential equations, 2023, 70, 11100168, 525, 10.1016/j.aej.2023.03.004 | |
2. | Kottakkaran Sooppy Nisar, R. Jagatheeshwari, C. Ravichandran, P. Veeresha, High performance computational method for fractional model of solid tumour invasion, 2023, 20904479, 102226, 10.1016/j.asej.2023.102226 | |
3. | Sumbel Shahid, Shahid Saifullah, Usman Riaz, Akbar Zada, Sana Ben Moussa, Existence and Stability Results for Nonlinear Implicit Random Fractional Integro-Differential Equations, 2023, 22, 1575-5460, 10.1007/s12346-023-00772-5 | |
4. | K. Munusamy, C. Ravichandran, Kottakkaran Sooppy Nisar, Shankar Rao Munjam, Investigation on continuous dependence and regularity solutions of functional integrodifferential equations, 2024, 14, 26667207, 100376, 10.1016/j.rico.2024.100376 | |
5. | Chandran Anusha, Chokkalingam Ravichandran, Kottakkaran Sooppy Nisar, Suliman Alsaeed, Shankar Rao Munjam, Periodic Boundary Value problem for the Dynamical system with neutral integro-differential equation on time scales, 2024, 10, 26668181, 100691, 10.1016/j.padiff.2024.100691 | |
6. | Elkhateeb S. Aly, M. Latha Maheswari, K. S. Keerthana Shri, Waleed Hamali, A novel approach on the sequential type ψ-Hilfer pantograph fractional differential equation with boundary conditions, 2024, 2024, 1687-2770, 10.1186/s13661-024-01861-3 | |
7. | Sadeq Taha Abdulazeez, Mahmut Modanli, Analytic solution of fractional order Pseudo-Hyperbolic Telegraph equation using modified double Laplace transform method, 2023, 1, 2956-7068, 105, 10.2478/ijmce-2023-0008 | |
8. | Iqra Javed, Shaukat Iqbal, Javaid Ali, Imran Siddique, H.M. Younas, Unveiling the intricacies: Analytical insights into time and space fractional order inviscid burger's equations using adomian decomposition method, 2024, 11, 26668181, 100817, 10.1016/j.padiff.2024.100817 | |
9. | Haroon Niaz Ali Khan, Akbar Zada, Ishfaq Khan, Analysis of a Coupled System of $$\psi $$-Caputo Fractional Derivatives with Multipoint–Multistrip Integral Type Boundary Conditions, 2024, 23, 1575-5460, 10.1007/s12346-024-00987-0 | |
10. | Liping Yu, S. Berlin Shaheema, J. Sunil, Vediyappan Govindan, P. Mahimiraj, Yijie Li, Wasim Jamshed, Ahmed M. Hassan, Breast cancer segmentation using a hybrid AttendSeg architecture combined with a gravitational clustering optimization algorithm using mathematical modelling, 2023, 21, 2391-5471, 10.1515/phys-2023-0105 | |
11. | Muhammad Rahim, Harish Garg, Fazli Amin, Luis Perez-Dominguez, Ahmed Alkhayyat, Improved cosine similarity and distance measures-based TOPSIS method for cubic Fermatean fuzzy sets, 2023, 73, 11100168, 309, 10.1016/j.aej.2023.04.057 | |
12. | Muhammad Farman, Cicik Alfiniyah, A constant proportional caputo operator for modeling childhood disease epidemics, 2024, 10, 27726622, 100393, 10.1016/j.dajour.2023.100393 | |
13. | S. Vivek, V. Vijayakumar, New discussion on optimal feedback control for Caputo fractional neutral evolution systems governed by hemivariational inequalities, 2024, 47, 0170-4214, 3903, 10.1002/mma.9794 | |
14. | Kottakkaran Sooppy Nisar, Suliman Alsaeed, Kalimuthu Kaliraj, Chokkalingam Ravichandran, Wedad Albalawi, Abdel-Haleem Abdel-Aty, Existence criteria for fractional differential equations using the topological degree method, 2023, 8, 2473-6988, 21914, 10.3934/math.20231117 | |
15. | Ahmed Morsy, C. Anusha, Kottakkaran Sooppy Nisar, C. Ravichandran, Results on generalized neutral fractional impulsive dynamic equation over time scales using nonlocal initial condition, 2024, 9, 2473-6988, 8292, 10.3934/math.2024403 | |
16. | Kottakkaran Sooppy Nisar, K. Logeswari, C. Ravichandran, S. Sabarinathan, New frame of fractional neutral ABC-derivative with IBC and mixed delay, 2023, 175, 09600779, 114050, 10.1016/j.chaos.2023.114050 | |
17. | Kottakkaran Sooppy Nisar, R. Jagatheeshwari, C. Ravichandran, P. Veeresha, An effective analytical method for fractional Brusselator reaction–diffusion system, 2023, 46, 0170-4214, 18749, 10.1002/mma.9589 | |
18. | Kottakkaran Sooppy Nisar, Efficient results on Hilfer pantograph model with nonlocal integral condition, 2023, 80, 11100168, 342, 10.1016/j.aej.2023.08.061 | |
19. | Kottakkaran Sooppy Nisar, Kasilingam Munusamy, Chokkalingam Ravichandran, Sriramulu Sabarinathan, Interpretation on nonlocal neutral functional differential equations with delay, 2023, 8, 2473-6988, 25611, 10.3934/math.20231307 | |
20. | Kottakkaran Sooppy Nisar, K. Munusamy, C. Ravichandran, Results on existence of solutions in nonlocal partial functional integrodifferential equations with finite delay in nondense domain, 2023, 73, 11100168, 377, 10.1016/j.aej.2023.04.050 | |
21. | Cheng-Cheng Zhu, Jiang Zhu, Fractional-Order Sequential Linear Differential Equations with Nabla Derivatives on Time Scales, 2024, 13, 2075-1680, 447, 10.3390/axioms13070447 | |
22. | Kottakkaran Sooppy Nisar, C. Anusha, C. Ravichandran, A non-linear fractional neutral dynamic equations: existence and stability results on time scales, 2023, 9, 2473-6988, 1911, 10.3934/math.2024094 | |
23. | Adnan Ahmad Mahmud, Tanfer Tanriverdi, Kalsum Abdulrahman Muhamad, Exact traveling wave solutions for (2+1)-dimensional Konopelchenko-Dubrovsky equation by using the hyperbolic trigonometric functions methods, 2023, 1, 2956-7068, 11, 10.2478/ijmce-2023-0002 | |
24. | Carlos-Antonio Cruz-López, Gilberto Espinosa-Paredes, Analytical solution of the fractional neutron point kinetic equations using the Mittag-Leffler function, 2024, 296, 00104655, 109028, 10.1016/j.cpc.2023.109028 | |
25. | Zeshan Faiz, Shumaila Javeed, Iftikhar Ahmed, Dumitru Baleanu, Numerical investigation of a fractional order Wolbachia invasive model using stochastic Bayesian neural network, 2024, 93, 11100168, 303, 10.1016/j.aej.2024.03.030 | |
26. | Syed Omar Shah, Sanket Tikare, Rizwan Rizwan, Usman Riaz, Analysis of Nonlinear Impulsive Adjoint Integro-Dynamic Equations on Time Scale, 2025, 24, 1575-5460, 10.1007/s12346-025-01223-z |