Research article

Controllability results of neutral Caputo fractional functional differential equations

  • Received: 14 September 2023 Revised: 18 October 2023 Accepted: 23 October 2023 Published: 08 November 2023
  • MSC : 34H05

  • In this paper, using the properties of the phase space on infinite delay, generalized Gronwall inequality and fixed point theorems, the existence and controllability results of neutral fractional functional differential equations with multi-term Caputo fractional derivatives were obtained under Lipschitz and non-Lipschitz conditions.

    Citation: Qi Wang, Chenxi Xie, Qianqian Deng, Yuting Hu. Controllability results of neutral Caputo fractional functional differential equations[J]. AIMS Mathematics, 2023, 8(12): 30353-30373. doi: 10.3934/math.20231550

    Related Papers:

  • In this paper, using the properties of the phase space on infinite delay, generalized Gronwall inequality and fixed point theorems, the existence and controllability results of neutral fractional functional differential equations with multi-term Caputo fractional derivatives were obtained under Lipschitz and non-Lipschitz conditions.



    加载中


    [1] R. Sakthivel, N. I. Mahmudov, J. H. Kim, Approximate controllability of nonlinear impulsive differential systems, Rep. Math. Phys., 60 (2007), 85–96. https://doi.org/10.1016/S0034-4877(07)80100-5 doi: 10.1016/S0034-4877(07)80100-5
    [2] X. L. Fu, K. D. Mei, Approximate controllability of semilinear partial functional differential systems, J. Dyn. Control Syst., 15 (2009), 425–443. https://doi.org/10.1007/s10883-009-9068-x doi: 10.1007/s10883-009-9068-x
    [3] Z. M. Yan, Approximate controllability of fractional neutral integro-differential inclusions with state-dependent delay in Hilbert spaces, IMA J. Math. Control I., 30 (2013), 443–462. https://doi.org/10.1093/imamci/dns033 doi: 10.1093/imamci/dns033
    [4] F. Mokkedem, X. L. Fu, Approximate controllability of semi-linear neutral integro-differential systems with finite delay, Appl. Math. Comput., 242 (2014), 202–215. https://doi.org/10.1016/j.amc.2014.05.055 doi: 10.1016/j.amc.2014.05.055
    [5] P. Balasubramaniam, P. Tamilalagan, Approximate controllability of a class of fractional neutral stochastic integro-differential inclusions with infinite delay by using Mainardi's function, Appl. Math. Comput., 256 (2015), 232–246. https://doi.org/10.1016/j.amc.2015.01.035 doi: 10.1016/j.amc.2015.01.035
    [6] K. Jeet, D. Bahuguna, Approximate controllability of nonlocal neutral fractional integro-differential equations with finite delay, J. Dyn. Control Syst., 22 (2016), 485–504. https://doi.org/10.1007/s10883-015-9297-0 doi: 10.1007/s10883-015-9297-0
    [7] S. Liu, A. Debbouche, J. R. Wang, ILC Method for solving approximate controllability of fractional differential equations with noninstantaneous impulses, J. Comput. Appl. Math., 339 (2018), 343–355. https://doi.org/10.1016/j.cam.2017.08.003 doi: 10.1016/j.cam.2017.08.003
    [8] V. Vijayakunnar, Approximate controllability results for non-densely defined fractional neutral differential inclusions with Hille-Yosida operators, Int. J. Control, 92 (2019), 2210–2222. https://doi.org/10.1080/00207179.2018.1433331 doi: 10.1080/00207179.2018.1433331
    [9] J. Kamal, N. Sukavanam, Approximate controllability of nonlocal and impulsive neutral integro-differential equations using the resolvent operator theory and an approximating technique, Appl. Math. Comput., 364 (2020), 124690. https://doi.org/10.1016/j.amc.2019.124690 doi: 10.1016/j.amc.2019.124690
    [10] K. Kavitha, V. Vijayakumar, A. Shukla, K. S. Nisar, R. Udhayakumar, Results on approximate controllability of Sobolev-type fractional neutral differential inclusions of Clarke subdifferential type, Chaos Soliton. Fract., 151 (2021), 111264. https://doi.org/10.1016/j.chaos.2021.111264 doi: 10.1016/j.chaos.2021.111264
    [11] K. Kavitha, V. Vijayakumar, K. S. Nisar, A note on approximate controllability of the Hilfer fractional neutral differential inclusions with infinite delay, Math. Method. Appl. Sci., 44 (2021), 4428–4447. https://doi.org/10.1002/mma.7040 doi: 10.1002/mma.7040
    [12] K. S. Nisar, V. Vijayakumar, Results concerning to approximate controllability of non-densely defined Sobolev-type Hilfer fractional neutral delay differential system, Math. Method. Appl. Sci., 44 (2021), 13615–13632. https://doi.org/10.1002/mma.7647 doi: 10.1002/mma.7647
    [13] C. Dineshkumar, R. Udhayakumar, K. S. Nisar, A discussion on the approximate controllability of Hilfer fractional neutral stochastic integro-differential systems, Chaos Soliton. Fract., 142 (2021), 110472. https://doi.org/10.1016/j.chaos.2020.110472 doi: 10.1016/j.chaos.2020.110472
    [14] C. Dineshkumar, R. Udhayakumar, V. Vijayakumar, K. S. Nisar, A. Shukla, A note concerning to approximate controllability of Atangana-Baleanu fractional neutral stochastic systems with infinite delay, Chaos Soliton. Fract., 157 (2022), 111916. https://doi.org/10.1016/j.chaos.2022.111916 doi: 10.1016/j.chaos.2022.111916
    [15] Z. M. Yan, Controllability of fractional-order partial neutral functional integrodifferential inclusions with infinite delay, J. Franklin I., 348 (2011), 2156–2173. https://doi.org/10.1016/j.jfranklin.2011.06.009 doi: 10.1016/j.jfranklin.2011.06.009
    [16] A. Debbouche, D. Baleanu, Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems, Comput. Math. Appl., 62 (2011), 1442–1450. https://doi.org/10.1016/j.camwa.2011.03.075 doi: 10.1016/j.camwa.2011.03.075
    [17] K. Balachandran, J. Kokila, On the controllability of fractional dynamical systems, Int. J. Appl. Math. Comput. Sci., 22 (2012), 523–531. https://doi.org/10.2478/v10006-012-0039-0 doi: 10.2478/v10006-012-0039-0
    [18] Z. X. Tai, S. X. Lun, On controllability of fractional impulsive neutral infinite delay evolution integro-differential systems in Banach spaces, Appl. Math. Lett., 25 (2012), 104–110. https://doi.org/10.1016/j.aml.2011.07.002 doi: 10.1016/j.aml.2011.07.002
    [19] R. Sakthivel, N. I. Mahmudov, J. J. Nieto, Controllability for a class of fractional-order neutral evolution control systems, Appl. Math. Comput., 218 (2012), 10334–10340. https://doi.org/10.1016/j.amc.2012.03.093 doi: 10.1016/j.amc.2012.03.093
    [20] X. F. Zhou, J. Wei, L. G. Hu, Controllability of a fractional linear time-invariant neutral dynamical system, Appl. Math. Lett., 26 (2013), 418–424. https://doi.org/10.1016/j.aml.2012.10.016 doi: 10.1016/j.aml.2012.10.016
    [21] V. Vijayakumar, A. Selvakumar, R. Murugesu, Controllability for a class of fractional neutral integro-differential equations with unbounded delay, Appl. Math. Comput., 232 (2014), 303–312. https://doi.org/10.1016/j.amc.2014.01.029 doi: 10.1016/j.amc.2014.01.029
    [22] Y. Zhou, V. Vijayakumar, R. Murugesu, Controllability results for fractional order neutral functional differential inclusions with infinite delay, Fixed Point Theory, 18 (2017), 773–798.
    [23] B. S. Vadivoo, R. Ramachandran, J. Cao, H. Zhang, X. D. Li, Controllability analysis of nonlinear neutral-type fractional-order differential systems with state delay and impulsive effects, Int. J. Control Autom., 16 (2018), 659–669. https://doi.org/10.1007/s12555-017-0281-1 doi: 10.1007/s12555-017-0281-1
    [24] A. Kumar, M. Malik, R. Sakthivel, Controllability of the second-order nonlinear differential equations with non-instantaneous impulses, Dyn. Control Syst., 24 (2018), 325–342. https://doi.org/10.1007/s10883-017-9376-5 doi: 10.1007/s10883-017-9376-5
    [25] B. G. Priya, P. Muthukumar, Controllability and minimum energy of fractional neutral delay syste control of fractional neutral delay system, IFAC Pap. OnLine, 51 (2018), 592–597.
    [26] M. Muslim, A. Kumar, Controllability of fractional differential equation of order $\alpha \in(1, 2]$ with noninstantaneous impulses, Asian J. Control, 20 (2018), 935–942. https://doi.org/10.1002/asjc.1604 doi: 10.1002/asjc.1604
    [27] J. R. Wang, A. G. Ibrahim, M. Feckan, Y. Zhou, Controllability of fractional non-instantaneous impulsive differential inclusions without compactness, IMA J. Math. Control I., 36 (2019), 443–460. https://doi.org/10.1093/imamci/dnx055 doi: 10.1093/imamci/dnx055
    [28] Y. Huang, Z. Liu, Controllability of nonlinear impulsive integro-differential fractional time-invariant systems, J. Integral Equ. Appl., 31 (2019), 329–341. https://doi.org/10.1216/JIE-2019-31-3-329 doi: 10.1216/JIE-2019-31-3-329
    [29] M. Malik, R. Dhayal, S. Abbas, A. Kumar, Controllability of non-autonomous nonlinear differential system with non-instantaneous impulses, Racsam Rev. R. Acad. A, 113 (2019), 103–118. https://doi.org/10.1007/s13398-017-0454-z doi: 10.1007/s13398-017-0454-z
    [30] M. Malik, R. Dhayal, S. Abbas, Exact controllability of a retarded fractional differential equation with non-instantaneous impulses, Dynam. Cont. Dis. Ser. B, 26 (2019), 53–69.
    [31] K. Kavitha, V. Vijayakumar, R. Udhayakumar, Results on controllability of Hilfer fractional neutral differential equations with infinite delay via measures of noncompactness, Chaos Soliton. Fract., 139 (2020), 110035. https://doi.org/10.1016/j.chaos.2020.110035 doi: 10.1016/j.chaos.2020.110035
    [32] K. Jothimani, K. Kaliraj, S. K. Panda, Results on controllability of non-densely characterized neutral fractional delay differential system, Evol. Equ. Control The., 10 (2021), 619–631. https://doi.org/10.3934/eect.2020083 doi: 10.3934/eect.2020083
    [33] W. K. Williams, V. Vijayakumar, Discussion on the controllability results for fractional neutral impulsive Atangana-Baleanu delay integro-differential systems, Math. Method. Appl. Sci., 2021.
    [34] P. Balasubramaniam, Controllability of semilinear noninstantaneous impulsive ABC neutral fractional differential equations, Chaos Soliton. Fract., 152 (2021), 111276. https://doi.org/10.1016/j.chaos.2021.111276 doi: 10.1016/j.chaos.2021.111276
    [35] K. S. Nisar, K. Jothimani, K. Kaliraj, C. Ravichandran, An analysis of controllability results for nonlinear Hilfer neutral fractional derivatives with non-dense domain, Chaos Soliton. Fract., 146 (2021), 110915. https://doi.org/10.1016/j.chaos.2021.110915 doi: 10.1016/j.chaos.2021.110915
    [36] K. Kavitha, V. Vijayakumar, C. Ravichandran, Results on controllability of Hilfer fractional differential equations with infinite delay via measures of noncompactness, Asian J. Control, 24 (2022), 1406–1415. https://doi.org/10.1002/asjc.2549 doi: 10.1002/asjc.2549
    [37] J. Huang, D. Luo, Existence and controllability for conformable fractional stochastic differential equations with infinite delay via measures of noncompactness, Chaos, 33 (2023), 013120. https://doi.org/10.1063/5.0125651 doi: 10.1063/5.0125651
    [38] H. P. Ma, L. Biu, Exact controllability and continuos dependent of fractional neutral integro-differential equations with state-dependent delay, Acta Math. Sci., 37B (2017), 235–258. https://doi.org/10.1016/S0252-9602(16)30128-X doi: 10.1016/S0252-9602(16)30128-X
    [39] C. Ravichandran, N. Valliammal, J. J. Nieto, New results on exact controllability of a class of fractional neutral integro-differential systems with state-dependent delay in Banach spaces, J. Franklin I., 356 (2019), 1535–1565. https://doi.org/10.1016/j.jfranklin.2018.12.001 doi: 10.1016/j.jfranklin.2018.12.001
    [40] V. Kumar, M. Malik, A. Debbouche, Total controllability of neutral fractional differential equation with non-instantaneous impulsive effects, J. Comput. Appl. Math., 383 (2021), 113158. https://doi.org/10.1016/j.cam.2020.113158 doi: 10.1016/j.cam.2020.113158
    [41] K. Balachandran, V. Govindaraj, Numerical controllability of fractional dynamical systems, Optimization, 63 (2014), 1267–1279. https://doi.org/10.1080/02331934.2014.906416 doi: 10.1080/02331934.2014.906416
    [42] V. Govindaraj, K. Balachandran, R. K. George, Numerical approach for the controllability of composite fractional dynamical systems, J. Appl. Nonlinear Dyn., 7 (2018), 59–72. https://doi.org/10.5890/JAND.2018.03.005 doi: 10.5890/JAND.2018.03.005
    [43] K. Balachandran, S. Divya, R. L. Germá, J. J. Trujillo, Relative controllability of nonlinear neutral fractional integro-differential systems with distributed delays in control, Math. Method. Appl. Sci., 39 (2016), 214–224. https://doi.org/10.1002/mma.3470 doi: 10.1002/mma.3470
    [44] M. Li, A. Debbouche, J. R. Wang, Relative controllability in fractional differential equations with pure delay, Math. Method. Appl. Sci., 41 (2018), 8906–8914. https://doi.org/10.1002/mma.4651 doi: 10.1002/mma.4651
    [45] Z. M. Yan, F. X. Lu, The optimal control of a new class of impulsive stochastic neutral evolution integro-differential equations with infinite delay, Int. J. Control, 89 (2016), 1592–1612. https://doi.org/10.1080/00207179.2016.1140229 doi: 10.1080/00207179.2016.1140229
    [46] J. Losada, J. J. Nieto, E. Pourhadi, On the attractivity of solutions for a class of multi-term fractional functional differential equations, J. Comput. Appl. Math., 312 (2017), 2–21. https://doi.org/10.1016/j.cam.2015.07.014 doi: 10.1016/j.cam.2015.07.014
    [47] F. F. Du, J. G. Lu, Finite-time stability of neutral fractional order time delay systems with Lipschitz nonlinearities, Appl. Math. Comput., 375 (2020), 125079. https://doi.org/10.1016/j.amc.2020.125079 doi: 10.1016/j.amc.2020.125079
    [48] Z. S. Aghayan, A. Alfi, J. T. Machado, Robust stability analysis of uncertain fractional order neutral-type delay nonlinear systems with actuator saturation, Appl. Math. Model., 90 (2021), 1035–1048. https://doi.org/10.1016/j.apm.2020.10.014 doi: 10.1016/j.apm.2020.10.014
    [49] H. T. Tuan, H. D. Thai, G. Roberto, An analysis of solutions to fractional neutral differential equations with delay, Commun. Nonlinear Sci., 100 (2021), 105854. https://doi.org/10.1016/j.cnsns.2021.105854 doi: 10.1016/j.cnsns.2021.105854
    [50] J. Ren, C. B. Zhai, Stability analysis of generalized neutral fractional differential systems with time delays, Appl. Math. Lett., 116 (2021), 106987. https://doi.org/10.1016/j.aml.2020.106987 doi: 10.1016/j.aml.2020.106987
    [51] T. Ismail, N. M. Huseynov, Analysis of positive fractional-order neutral time-delay systems, J. Franklin I., 359 (2022), 294–330. https://doi.org/10.1016/j.jfranklin.2021.07.001 doi: 10.1016/j.jfranklin.2021.07.001
    [52] Q. L. Han, Stability of linear neutral systems with linear fractional norm-bounded uncertainty, Proceedings of the 2005, American Control Conference, 2005, Portland: IEEE, 4 (2005), 2827–2832. https://doi.org/10.1109/ACC.2005.1470398
    [53] L. Hong, S. M. Zhong, H. B. Li, Asymptotic stability analysis of fractional-order neutral systems with time delay, Adv. Differ. Equ., 2015 (2015), 325–335. https://doi.org/10.1186/s13662-015-0659-4 doi: 10.1186/s13662-015-0659-4
    [54] S. Liu, X. Wu, Y. J. Zhang, R. Yang, Asymptotical stability of Riemann-Liouville fractional neutral systems, Appl. Math. Lett., 69 (2017), 168–173. https://doi.org/10.1016/j.aml.2017.02.016 doi: 10.1016/j.aml.2017.02.016
    [55] K. Kavitha, V. Vijayakumar, R. Udhayakumar, K. S. Nisar, Results on the existence of Hilfer fractional neutral evolution equations with infinite delay via measures of noncompactness, Math. Method. Appl. Sci., 44 (2021), 1438–1455. https://doi.org/10.1002/mma.6843 doi: 10.1002/mma.6843
    [56] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Amsterdam: Elsevier Science B. V., 2006.
    [57] V. Lakshmikantham, S. Leela, J. V. Devi, Theory of fractional dynamic systems, Cambridge Scientific Publishers, 2009.
    [58] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993.
    [59] Y. Hino, S. Murakami, T. Naito, Functional differential equations with infinite delay, Berlin/Heidelberg: Springer, 1991. https://doi.org/10.1007/BFb0084432
    [60] Y. Jalilian, Fractional integral inequalities and their applications to fractional differential equations, Acta Math. Sci., 36B (2016), 1317–1330. https://doi.org/10.1016/S0252-9602(16)30071-6 doi: 10.1016/S0252-9602(16)30071-6
    [61] C. Chen, Q. X. Dong, Existence and Hyers-Ulam stability for a multi-term fractional differential equation with infinite delay, Mathematics, 10 (2022), 1013. https://doi.org/10.3390/math10071013 doi: 10.3390/math10071013
    [62] J. K. Liu, W. Xu, An averaging result for impulsive fractional neutral stochastic differential equations, Appl. Math. Lett., 114 (2021), 106892. https://doi.org/10.1016/j.aml.2020.106892 doi: 10.1016/j.aml.2020.106892
    [63] J. K. Liu, W. Wei, W. Xu, An averaging principle for stochastic fractional differential equations driven by fBm involving impulses, Fractal. Fract., 6 (2022), 256. https://doi.org/10.3390/fractalfract6050256 doi: 10.3390/fractalfract6050256
    [64] D. F. Luo, M. Q. Tian, Q. X. Zhu, Some results on finite-time stability of stochastic fractional-order delay differential equations, Chaos Soliton. Fract., 158 (2022), 111996. https://doi.org/10.1016/j.chaos.2022.111996 doi: 10.1016/j.chaos.2022.111996
    [65] J. K. Liu, W. Wei, J. B. Wang, W. Xu, Limit behavior of the solution of Caputo-Hadamard fractional stochastic differential equations, Appl. Math. Lett., 140 (2023), 108586. https://doi.org/10.1016/j.aml.2023.108586 doi: 10.1016/j.aml.2023.108586
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(816) PDF downloads(68) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog