Processing math: 83%
Research article

Qualitative analysis of a fuzzy Volterra-Fredholm integrodifferential equation with an Atangana-Baleanu fractional derivative

  • Received: 18 April 2022 Revised: 15 June 2022 Accepted: 17 June 2022 Published: 30 June 2022
  • MSC : 34A08, 34A12, 34B15, 47H10

  • The point of this work was to analyze and investigate the sufficient conditions of the existence and uniqueness of solutions for the nonlinear fuzzy fractional Volterra Fredholm integro-differential equation in the frame of the Atangana-Baleanu-Caputo fractional derivative methodology. To begin with, we give the parametric interval form of the Atangana-Baleanu-Caputo fractional derivative on fuzzy set-valued functions. Then, by employing Schauder's and Banach's fixed point procedures, we examine the existence and uniqueness of solutions for fuzzy fractional Volterra Fredholm integro-differential equation with the Atangana-Baleanu-Caputo fractional operator. It turns out that the last interval model is a combined arrangement of nonlinear equations. In addition, we consider results by applying the Adams Bashforth fractional technique and present two examples that have been numerically solved using graphs.

    Citation: Mohammed A. Almalahi, Satish K. Panchal, Fahd Jarad, Mohammed S. Abdo, Kamal Shah, Thabet Abdeljawad. Qualitative analysis of a fuzzy Volterra-Fredholm integrodifferential equation with an Atangana-Baleanu fractional derivative[J]. AIMS Mathematics, 2022, 7(9): 15994-16016. doi: 10.3934/math.2022876

    Related Papers:

    [1] Saima Rashid, Fahd Jarad, Khadijah M. Abualnaja . On fuzzy Volterra-Fredholm integrodifferential equation associated with Hilfer-generalized proportional fractional derivative. AIMS Mathematics, 2021, 6(10): 10920-10946. doi: 10.3934/math.2021635
    [2] Muneerah AL Nuwairan, Ahmed Gamal Ibrahim . The weighted generalized Atangana-Baleanu fractional derivative in banach spaces- definition and applications. AIMS Mathematics, 2024, 9(12): 36293-36335. doi: 10.3934/math.20241722
    [3] Kishor D. Kucche, Sagar T. Sutar, Kottakkaran Sooppy Nisar . Analysis of nonlinear implicit fractional differential equations with the Atangana-Baleanu derivative via measure of non-compactness. AIMS Mathematics, 2024, 9(10): 27058-27079. doi: 10.3934/math.20241316
    [4] Veliappan Vijayaraj, Chokkalingam Ravichandran, Thongchai Botmart, Kottakkaran Sooppy Nisar, Kasthurisamy Jothimani . Existence and data dependence results for neutral fractional order integro-differential equations. AIMS Mathematics, 2023, 8(1): 1055-1071. doi: 10.3934/math.2023052
    [5] Abdelatif Boutiara, Mohammed M. Matar, Jehad Alzabut, Mohammad Esmael Samei, Hasib Khan . On ABC coupled Langevin fractional differential equations constrained by Perov's fixed point in generalized Banach spaces. AIMS Mathematics, 2023, 8(5): 12109-12132. doi: 10.3934/math.2023610
    [6] Shao-Wen Yao, Saima Rashid, Mustafa Inc, Ehab E. Elattar . On fuzzy numerical model dealing with the control of glucose in insulin therapies for diabetes via nonsingular kernel in the fuzzy sense. AIMS Mathematics, 2022, 7(10): 17913-17941. doi: 10.3934/math.2022987
    [7] Muhammad Farman, Ali Akgül, Kottakkaran Sooppy Nisar, Dilshad Ahmad, Aqeel Ahmad, Sarfaraz Kamangar, C Ahamed Saleel . Epidemiological analysis of fractional order COVID-19 model with Mittag-Leffler kernel. AIMS Mathematics, 2022, 7(1): 756-783. doi: 10.3934/math.2022046
    [8] Noorah Mshary, Hamdy M. Ahmed . Discussion on exact null boundary controllability of nonlinear fractional stochastic evolution equations in Hilbert spaces. AIMS Mathematics, 2025, 10(3): 5552-5567. doi: 10.3934/math.2025256
    [9] Abdon Atangana . Existence and uniqueness of nonlinear fractional differential equations with the Caputo and the Atangana-Baleanu derivatives: Maximal, minimal and Chaplygin approaches. AIMS Mathematics, 2024, 9(10): 26307-26338. doi: 10.3934/math.20241282
    [10] A. M. Sayed Ahmed, Hamdy M. Ahmed, Nesreen Sirelkhtam Elmki Abdalla, Assmaa Abd-Elmonem, E. M. Mohamed . Approximate controllability of Sobolev-type Atangana-Baleanu fractional differential inclusions with noise effect and Poisson jumps. AIMS Mathematics, 2023, 8(10): 25288-25310. doi: 10.3934/math.20231290
  • The point of this work was to analyze and investigate the sufficient conditions of the existence and uniqueness of solutions for the nonlinear fuzzy fractional Volterra Fredholm integro-differential equation in the frame of the Atangana-Baleanu-Caputo fractional derivative methodology. To begin with, we give the parametric interval form of the Atangana-Baleanu-Caputo fractional derivative on fuzzy set-valued functions. Then, by employing Schauder's and Banach's fixed point procedures, we examine the existence and uniqueness of solutions for fuzzy fractional Volterra Fredholm integro-differential equation with the Atangana-Baleanu-Caputo fractional operator. It turns out that the last interval model is a combined arrangement of nonlinear equations. In addition, we consider results by applying the Adams Bashforth fractional technique and present two examples that have been numerically solved using graphs.



    Fractional calculus (FC) was introduced around the completion of the seventeenth century as a branch of mathematical analysis that manages the investigations of different prospects of characterizing real number (or complex number) orders of differentiation (and integration) operators. FC is a generalization of classical calculus that is concerned with operations of differentiation (and integration) of non-integer order. This calculus which was first proposed by Leibniz and L'Hôspital in 1695; since then, it has been refined by various mathematicians including Euler, Laplace, Liouville, Riemann and many others. FC has acquired considerable significance due to the fact that it has become a useful tool for modeling various complex phenomena in various fields of science and engineering. The utilization of FC to explain natural phenomena and mathematical models has gotten progressively popular lately. Unlike the classical differential equations, the fractional differential equations (FDEs) have the advantage that they can better describe some natural physics and dynamic system processes [1,2,3,4] due to the fractional operators being nonlocal operators. FC for fuzzy-valued mappings was highly developed in the work of Dubois and Prade [5], wherein real line fuzzy-set-valued mappings were examined and seen as fuzzy relations. The integral of such fuzzy mappings over a crisp interval was established using Zadeh's extension concept. Also the authors of [6,7,8] studied the relationships and the differences between the various points of views regarding several definitions that were proposed. Ahmad et al. [9] used the fixed point theory to prove the existence and uniqueness of the fuzzy fractional Volterra-Fredholm integro-differential equation in the Caputo sense.

    There has been quite a bit of investigations into and studies on approaches to fuzzy fractional derivatives (FDs) like the Riemann-Liouville (RL), Caputo, Hadamard, Caputo-Hadamard and Caputo-Katugampola. In particular, theoretical portions like the existence and uniqueness of fuzzy fractional differential equations (FFDEs) were discussed in the frame of the fuzzy RL operator (see [10,11,12]). The authors of [13,14] discussed the fundamental theories and the numerical solutions of FFDEs by using a fuzzy Caputo FD. In [15], Lupulescu gave a general theory for interval fractional analysis which is an essential tool in the survey of FFDEs. Additionally, diverse approaches to determine the existence and stability of the solution of FFDEs involving a fuzzy Caputo operator have been given in papers [16,17,18]. In addition, sundry types of optimal control problems of fuzzy fractional evolution equations have been studied by Agarwal et al. [19]. In another context, to solve the FFDEs, some modified setups of the Euler, Laplace transform and Adams-Bashforth-Moulton within the fuzzy framework was suggested in papers [20,21,22,23]. Recently, Ahmadian et al. [24,25] proposed a method based on an operational matrix of shifted Chebyshev polynomials and the spectral tau to solve FFDEs. Vinothkumar et al. [26] introduced the finite-difference technique to solve approximate solutions of fuzzy wave equations involving the Caputo operator. There are new analytical studies related to FFDEs that have beeen presented by various researchers [27,28,29]. On the other hand, Atangana and Baleanu [30] proposed a novel operator and used it in many applied science field. Recent works of various problems and epidemic models involving this operator can be seen in [30,31,32,33]. Ndolane Sene [34] introduced a new four-dimensional hyperchaotic financial model using the quadratic function to accurately model the financial market; Sene also studied the existence and uniqueness of its solutions to justify the physical adequacy of the model and the numerical scheme proposed in the resolution. Ndolane Sene [35] presented a modified chaotic system that incorporates the fractional operator with singularity. He studied the influence of the new model's parameters and its fractional order using the bifurcation diagrams and the Lyapunov exponents. Owolabi and colleagues [36,37,38,39,40] studied some applications of the Atangana-Baleanu-Caputo fractional operator to model some symbiotic systems such as commensalism and predator-prey processes, the parasitic predator-prey model, the commensalism system and the mutualism case. He et al. [41] presented a new fractional-order discrete-time susceptible-infected-recovered epidemic model with vaccination. Jin et al. [42] developed the dynamical behavior of the drinking population through the fractional drinking model by applying the Caputo-Fabrizio arbitrary order operator along with the special non-singular kernel. The authors of [43] investigated a fractional model in the Caputo sense to explore the dynamics of the Zika virus.

    Motivated by the preceding works mentioned above, in the current paper, we investigate some existence, uniqueness and numerical results by applying the fractional Adams Bashforth method (FABM) of the following nonlinear fuzzy fractional Volterra Fredholm integro-differential equation (FFVFIE)

    {ABC0Dqηˆω(η,α)=g(η)+a(η)ˆω(η,α)+η0K1(η,s)N1(ˆω(s,α))ds+10K2(η,s)N2(ˆω(s,α))ds,ˆω(0,α)=ˆω0, (1.1)

    where ABC0Dqη represents the ABC-type FDs of order q and ˆω(η,α) is a fuzzy number such that ˆω(η,α)=[ω_(η,α),¯ω(η,α)], K1,K2:J×JR,g:JR are continuous functions, N1,N2:JR are Lipschitz continuous functions J:=[0,1] and ˆω(η,α) CF(J,R)LF(J,R) where CF(J,R) and LF(J,R) are the space of all continuous fuzzy valued functions and the space of all Lebesgue integrable fuzzy valued functions on J respectively.

    We note that the fuzzy calculus and the fuzzy differential equations have attracted a lot of attention from scholars in recent years. This is because fuzzy calculus and fuzzy differential equations have a wide range of applications in many mathematical and computer models of deterministic real-world processes with uncertainty. Because of the applications of FC and FDEs in real-world systems, as well as the existence of uncertainties and disturbances in dynamic systems, fuzzy FC and FDEs have recently emerged as significant topics and the topic of FC and fractional dynamic systems in the fuzzy setting can be used as an important mathematical tool for modeling real-world systems. As a result, considering and analyzing fractional-order uncertain dynamical systems is critical in terms of both study and application and this topic has piqued scholars' interest in recent years.

    In this work, we develop some theorems of FC related to the nonlinear FFVFIE and learn more properties of the proposed ABC problem which makes use of non-singular kernel derivatives with fractional order. The task was to determine whether or not the proposed ABC problem has position solutions. Volterra Fredholm integro-differential equations are used to investigate a more reliable and appropriate ABC problem for some novel real-world problems.

    The major contribution of the current paper is to generalize the idea proposed by Ahmed et al. [9] by using fuzzy concepts and studying the problem FFVFIE (1.1) in the Caputo sense. In the beginning, we define the parametric interval form of the ABC-FD on fuzzy set-valued functions. Then, by utilizing the fixed-point techniques of Schauder and Banach, we investigate the existence and uniqueness of the solution for FFVFIE (1.1). In general, it turns out that the last interval model is a coupled system of nonlinear equations. The numerical results are discussed by applying the FABM. For more clarification, sundry examples are solved numerically and analyzed by using graphs. To the best of our knowledge, this is the first work in the literature that deals with FFVFIEs involving the interval ABC-fractional derivative. The results of this work will therefore make a useful contribution to the existing literature on this subject.

    This paper is organized as follows: In Section 2, we render the rudimentary definitions and prove some lemmas that are applied throughout this paper and present the concepts of some fixed point theorems. In Section 3, we prove the existence and uniqueness of solutions for the proposed problem defined by Eq (3.1). Section 5 gives pertinent examples to illustrate our results. We provide the conclusion in the last section.

    In this section, we introduce the concept of the ABC fractional derivative in the fuzzy sense and supply some fundamental theories. Furthermore, we establish some necessary results employed throughout this paper.

    Definition 2.1. [30] Let (0,b) be an open interval and let ω(η) be a function differentiable in (0,b). Then, the left-sided ABC fractional derivative with the lower limit zero of order q(0,1] of a function ω(η) is given as

    ABCDq0ω(η)=Ψ(q)1qη0Eq(qq1(ηs)q)ds,

    where Ψ(q)=1q+qΓ(q) and Eq is the Mittag-Leffler function defined by

    Eq(η)=i=0ηiΓ(iq+1),Re(q)>0,ηC.

    Definition 2.2. [30] If ω(η) is a continuous function in the interval (0,b), then, the left-sided AB fractional integral with the lower limit zero of order q(0,1] for a function ω is defined as:

    ABIq0ω(η)=1qΨ(q)ω(η)+qΨ(q)1Γ(q)η0(ηs)q1ω(s)ds.

    Definition 2.3. [44] A fuzzy number ϑ is a map ϑ:RJ such that ϑ satisfies the following properties

    ϑ is upper semi-continuous, fuzzy convex and normal.

    The closure of supp(ϑ) is compact.

    Definition 2.4. [44] Let ˆϑ be a fuzzy number. Then the parametric interval form of ˆϑ is given by

    ˆϑ=[ϑ_(α),¯ϑ(α)],α[0,1],

    where

    ϑ_(α) is a left continuous and nondecreasing function with respect to α.

    ¯ϑ(α) is a right-continuous and nondecreasing function with respect to α.

    For each αJ, we have ¯ϑ(α)ϑ_(α).

    Definition 2.5. [44] Let ϑ and v be two fuzzy numbers. Then, the arithmetic operations are given as

    (ˆϑˆv)=[ϑ_(α)+¯ϑ(α),v_(α)+¯v(α)],(λˆϑ)={[λϑ_(α),λ¯ϑ(α)],λ0,[λ¯ϑ(α),λϑ_(α)],λ<0,

    where αJ.

    Assume that the fuzzy valued function ˆω(η,α)CF(J,R)LF(J,R). Then, the parametric interval form of ω(η,α) is

    ˆω(η,α)=[ω_(η;α),¯ω(η;α)],α[0,1].

    Definition 2.6. [45] Let ϑ,v be two fuzzy numbers belonging to RF where RF is the set of all fuzzy numbers on real numbers. If there exists a fuzzy number wRF such that ϑ=v+w, then w is called the Hukuhara difference of ϑ and v and it is denoted by ϑv.

    Definition 2.7. [45] (Generalized Hukuhara derivative) Let ω(η) be a solution of FFVFIE (1.1). Then the gH-derivative of the function ω(η) can be defined as

    gHω(η)=limh0+ω(τ+h)gHω(τ)h=limh0+ω(τ)gHω(τ+h)h, (2.1)

    where

    gHω(η)CF(I)LF(I),

    and

    ω(τ+h)gHω(τ)=g(τ)iff{i) ω(τ+h)=ω(τ)g(τ),      ii) ω(τ)=ω(τ+h)(1)g(τ). (2.2)

    The case (i) definition of Hukuhara difference of ω(τ+h)ω(τ). Taking an α-cut of both sides of Eq (2.1) and using the definition of the gH-difference given by Eq (2.2), we get the following two cases:

    Case 2.1. (i-Differentiability)

    igH[ˆω(η;α)]=[ω_(η;α),¯ω(η;α)].

    Case 2.2. (ii-Differentiability)

    iigH[ˆω(η;α)]=[¯ω(η;α),ω_(η;α)].

    In the forthcoming definitions, we will introduce the concept of the fuzzy fractional derivative and fractional integral in the frame of the ABC fractional operator.

    Definition 2.8. [45] The ABC fractional derivative is given in two cases, as follows:

    ABC0Di,qηˆω(η;α)=[ABC0Di,qηω_(η;α),ABC0Di,qη¯ω(η;α)],   Case (2.1),ABC0Dii,qηˆω(η;α)=[ABC0Dii,qη¯ω(η;α),ABC0Di,qηω_(η;α)],   Case (2.2),

    where

    ABC0Di,qηˆω(η;α)={Ψ(q)1qη0(igHˆω(τ;α))Eq(q1q(ητ)q)Eq0dτ+Ψ(q)1qη0(iigHˆω(τ;α))Eq(q1q(ητ)q)Eq<0dτ,

    and

    ABC0Dii,qηˆω(η;α)={Ψ(q)1qη0(iigHˆω(τ;α))Eq(q1q(ητ)q)Eq0dτ+Ψ(q)1qη0(igHˆω(τ;α))Eq(q1q(ητ)q)Eq<0dτ.

    Then, the end points of the ABC fractional derivative are

    ABC0D,qηω_(η;α)={Ψ(q)1qη0ω_(τ;α)Eq(q1q(ητ)q)Eq0dτ+Ψ(q)1qη0¯ω(τ;α)Eq(q1q(ητ)q)Eq<0dτ,

    and

    ABC0D,qη¯ω(η;α)={Ψ(q)1qη0¯ω(τ;α)Eq(q1q(ητ)q)Eq0dτ+Ψ(q)1qη0ω_(τ;α)Eq(q1q(ητ)q)Eq<0dτ,

    where {i,ii}.

    Definition 2.9. [45] The AB fractional integral associated with the ABC fractional derivative on fuzzy-valued functions of the interval parametric type is defined by

    AB0Iqηˆω(η;α)=[ABC0Iqηω_(η;α),ABC0Iqη¯ω(η;α)]=[1qΨ(q)ω_(η;α)+qΨ(q)Γ(q)η0(ητ)q1ω_(τ;α)dτ,1qΨ(q)¯ω(η;α)+qΨ(q)Γ(q)η0(ητ)q1¯ω(τ;α)dτ].

    Definition 2.10. [45] Let q(0,1). Then

    AB0Iqη(AB0Di,qηˆω(η;α))=[AB0Iqη(ABC0Di,qηω_(η;α)),AB0Iqη(ABC0Di,qη¯ω(η;α))],      Case (2.1),AB0Iqη(ABC0Dii,qηˆω(η;α))=[AB0Iqη(ABC0Dii,qη¯ω(η;α)),AB0Iqη(ABC0Dii,qηω_(η;α))],    Case (2.2),

    where

    AB0Iqη[ABC0D,qηω_(η;α)]={AB0Iqη(Ψ(q)1qη0ω_(τ;α)Eq(q1q(ητ)q)Eq0dτ)+AB0Iqη(Ψ(q)1qη0¯ω(τ;α)Eq(q1q(ητ)q)Eq<0dτ),

    and

    AB0Iqη[ABC0D,qη¯ω(η;α)]={AB0Iqη(Ψ(q)1qη0¯ω(τ;α)Eq(q1q(ητ)q)Eq0dτ)+AB0Iqη(Ψ(q)1qη0ω_(τ;α)Eq(q1q(ητ)q)Eq<0dτ),

    where {i,ii}.

    Lemma 2.1. [46] (Leray-Schauder alternative) Let G:XX be a completely continuous operator and ξ(G)={yX:y=δG(y),δ[0,1]}. Then either the set ξ(G) is unbounded or G has at leastone fixed point.

    Theorem 2.1. [47] (Banach fixed point theorem) Let X be a Banach space, KX be closed, and G:KK be astrict contraction, i.e., ||G(x)G(y)||L||xy|| for some 0<L<1 for all x,yK. Then G has a fixedpoint in K.

    Lemma 2.2. If we suppose that,

    ABC0Dqηˆω(η;α)=ˆϑ(η;α),

    then, the solution is found in each case as

    ω(η;α)={1qΨ(q)ϑ(η;α)qΨ(q)Γ(q)η0ϑ(τ;α)(ητ)q1dτ                  Case (2.1),(1)1qΨ(q)ϑ(η;α)(1)qΨ(q)Γ(q)η0ϑ(τ;α)(ητ)q1dτ,    Case (2.2 ).

    In the interval parametric form, they are

    In Case (2.1)

    [ω_(η;α),¯ω(η;α)]=[1qΨ(q)ϑ_(η;α)+qΨ(q)Γ(q)η0ϑ_(η;α)(ητ)q1dτ,1qΨ(q)¯ϑ(η;α)+qΨ(q)Γ(q)η0¯ϑ(η;α)(ητ)q1dτ].

    In Case (2.2)

    [ω_(η;α),¯ω(η;α)]=[1qΨ(q)¯ϑ(η;α)+qΨ(q)Γ(q)η0¯ϑ(η;α)(ητ)q1dτ,1qΨ(q)ϑ_(η;α)+qΨ(q)Γ(q)η0ϑ_(η;α)(ητ)q1dτ].

    Proof. See [9].

    Remark 2.1. In this research paper, we shall prove the existence and uniqueness results for Case (2.1) only.

    In this part, we discuss the existence and uniqueness of the solution to the problem of FFVFIE (1.1). Let J=[0,1]R and CF(J,R) be the space of all continuous functions ω:JR with the norm ω=max{|ω(σ)|:σJ}. Then (CF(J,R),) is a Banach space. For our analysis, the following hypotheses must be satisfied

    (H1) For each ˆω1,ˆω2CF(J), there exist two constants c1,c2>0 such that

    |N1(ˆω1(η;α))N1(ˆω2(η;α))|c1|ˆω1(η;α)ˆω2(η;α)|,|N2(ˆω1(η;α))N2(ˆω2(η;α))|c2|ˆω1(η;α)ˆω2(η;α)|.

    (H2) For the set

    ϝ={(η,s)R2:0sη1},

    there exist the functions K1 and K2 such that

    K1=supηJη0|K1(η,s)|ds<,K2=supηJη0|K2(η,s)|ds<.

    (H3) The functions a and g are continuous

    Lemma 3.1. Let q(0,1]. Then, the solution of the problem

    ABC0Dqηˆω(η;α)=ˆg(η;α)ˆω(0;α)=ˆω0, (3.1)

    is given by

    ˆω(η;α)=ˆω0+1qΨ(q)ˆg(η;α)+qΨ(q)Γ(q)η0(ηs)q1ˆg(s;α)ds.

    Proof. Assume that ˆω(η;α) is a solution of the first equation of Eq (3.1). Applying the operator AB0Iqη to both sides of the first equation of Eq (3.1), we get

    AB0Iqη ABC0Dqηˆω(η;α)=AB0Iqηˆg(η;α).

    Then, we have

    ˆω(η;α)=ˆω(0;α)+1qΨ(q)ˆg(η;α)+qΨ(q)Γ(q)η0(ηs)q1ˆg(s;α)ds=ˆω0+1qΨ(q)ˆg(η;α)+qΨ(q)Γ(q)η0(ηs)q1ˆg(s;α)ds.

    Theorem 3.1. Assume that (H1)(H3) aresatisfied. If

    Ω1=(1qΨ(q)+qΨ(q)Γ(q+1))a<1, (3.2)

    then the problem given by FFVFIE (1.1) has at least one solution ˆω(η,α).

    Proof. In light of Lemma 3.1, the solution of the FFVFIE (1.1) is given as

    ˆω(η;α)=ˆω0+1qΨ(q)[g(η)+a(η)ˆω(η;α)+η0K1(η,s)N1(ˆω(s,α))ds+10K2(η,s)N2(ˆω(s,α))ds]+qΨ(q)Γ(q)η0(ηs)q1[g(s)+a(s)ˆω(s,α)+s0K1(s,τ)N1(ˆω(τ,α))dτ+10K2(s,τ)N2(ˆω(τ,α))dτ]ds.

    Define the operator Ξ:CF(J,R)LF(J,R)CF(J,R)LF(J,R) as

    Ξˆω(η;α)=ˆω0+1qΨ(q)[g(η)+a(η)ˆω(η;α)+η0K1(η,s)N1(ˆω(s;α))ds+10K2(η,s)N2(ˆω(s;α))ds]+qΨ(q)Γ(q)η0(ηs)q1[g(s)+a(s)ˆω(s;α)+s0K1(s,τ)N1(ˆω(τ;α))dτ+10K2(s,τ)N2(ˆω(τ;α))dτ]ds.

    Now, we will prove that the operator Ξ has a fixed point by using Theorem 2.1. For that, we divide the proof into the following steps.

    Step 1. Ξ is continuous.

    Let ˆωn be a sequence such that ˆωnˆω in C(J,RF). Then, for ηJ, we have

    |Ξˆωn(η,α)Ξˆω(η,α)|1qΨ(q)[|a(η)||ˆωn(η,α)ˆω(η,α)|+η0|K1(η,s)||N1(ˆωn(s,α))N1(ˆω(s,α))|ds+10|K2(η,s)||N2(ˆωn(s,α))N2(ˆω(s,α))|ds]+qΨ(q)Γ(q)η0(ηs)q1[|a(s)||ˆωn(s,α)ˆω(s,α)|+s0|K1(s,τ)||N1(ˆωn(τ,α))N1(ˆω(τ,α))|dτ+10|K2(s,τ)||N2(ˆωn(τ,α))N2(ˆω(τ,α))|dτ]ds.

    Taking the supremum on both sides, we get

    Ξˆωn(η,α)Ξˆω(η,α)1qΨ(q)[aˆωnˆω+K1N1(ˆωn)N1(ˆω)+K2N2(ˆωn)N2(ˆω)]+qηqΨ(q)Γ(q+1)[aˆωnˆω+K1N1(ˆωn)N1(ˆω)+K2N2(ˆωn)N2(ˆω)](1qΨ(q)+qηqΨ(q)Γ(q+1))[aˆωnˆω+K1N1(ˆωn)N1(ˆω)+K2N2(ˆωn)N2(ˆω)].

    N1 and N2 are continuous. Then

    Ξˆωn(η,α)Ξˆω(η,α)0 as ˆωnˆω.

    Hence Ξ is continuous.

    Step 2. Ξ is compact.

    Define a bounded, closed and convex set BR={ˆωC(J,RF):ˆωR} with

    RΩ21Ω1  where   Ω2:=|ˆω0|+(1qΨ(q)+qΨ(q)Γ(q+1))[g+K1ζ1+K2ζ2], (3.3)

    where ζi:=supˆωJ×[0,R]Ni(ˆω(s,α)+1, i=1,2.

    First, we show that Ξ is uniformly bounded on BR. For each ˆωBR, we have

    |Ξˆω(η,α)||ˆω0|+1qΨ(q)[|g(η)|+|a(η)||ˆω(η,α)|+η0|K1(η,s)||N1(ˆω(s,α))|ds+10|K2(η,s)||N2(ˆω(s,α))|ds]+qΨ(q)Γ(q)η0(ηs)q1[|g(s)|+|a(s)||ˆω(s,α)|+s0|K1(s,τ)||N1(ˆω(τ,α))|dτ+10|K2(s,τ)||N2(ˆω(τ,α))|dτ]ds|ˆω0|+1qΨ(q)[|g(η)|+|a(η)||ˆω(η,α)|+K1ζ1+K2ζ2]+qηqΨ(q)Γ(q+1)[|g(η)|+|a(η)||ˆω(η,α)|+K1ζ1+K2ζ2].

    Taking the supremum on both sides, we get

    Ξˆω|ˆω0|+(1qΨ(q)+qΨ(q)Γ(q+1))[g+aR+K1ζ1+K2ζ2]|ˆω0|+(1qΨ(q)+qΨ(q)Γ(q+1))[g+K1ζ1+K2ζ2]+(1qΨ(q)+qΨ(q)Γ(q+1))aRΩ2+Ω1RR.

    Hence Ξ is uniformly bounded. Now, we show that Ξ is equicontinuous. Let η1,η2J such that η1<η2. Then, we have

    |Ξˆω(η2,α)Ξˆω(η1,α)|=|1qΨ(q)(g(η2)+a(η2)ˆω(η2,α)+η20K1(η2,s)N1(ˆω(s,α))ds+10K2(η2,s)N2(ˆω(s,α))ds)+qΨ(q)Γ(q)η20(η2s)q1(g(s)+a(s)ˆω(s,α)+s0K1(s,τ)N1(ˆω(τ,α))dτ+10K2(s,τ)N2(ˆω(τ,α))dτ)ds[1qΨ(q)(g(η1)+a(η1)ˆω(η1,α)+η10K1(η1,s)N1(ˆω(s,α))ds+10K2(η1,s)N2(ˆω(s,α))ds)+qΨ(q)Γ(q)η10(η1s)q1(g(s)+a(s)ˆω(s,α)+s0K1(s,τ)N1(ˆω(τ,α))dτ+10K2(s,τ)N2(ˆω(τ,α))dτ)ds]|1qΨ(q)(|g(η2)g(η1)|+|a(η2)ˆω(η2,α)a(η1)ˆω(η1,α)|+η10(K1(η2,s)K1(η1,s)))N1(ˆω(s,α)ds+η2η1K1(η2,s)N1(ˆω(s,α))ds+10(K2(η2,s)K2(η2,s))N2(ˆω(s,α))ds)+qΨ(q)Γ(q)η10((η2s)q1(η1s)q1)(a(s)ˆω(s,α)+s0K1(s,τ)N1(ˆω(τ,α))dτ+10K2(s,τ)N2(ˆω(τ,α))dτ)ds+qΨ(q)Γ(q)η2η1(η2s)q1(a(s)ˆω(s,α)+s0K1(s,τ)N1(ˆω(τ,α))dτ+10K2(s,τ)N2(ˆω(τ,α))dτ)ds=A1+A2+A3,

    where

    A1=1qΨ(q)(|g(η2)g(η1)|+|a(η2)ˆω(η2,α)a(η1)ˆω(η1,α)|+η10(K1(η2,s)K1(η1,s)))N1(ˆω(s,α)ds+η2η1K1(η2,s)N1(ˆω(s,α))ds+10(K2(η2,s)K2(η2,s))N2(ˆω(s,α))ds)0, as η2η1, (3.4)
    A2=qΨ(q)Γ(q)η10((η2s)q1(η1s)q1)(a(s)ˆω(s,α)+s0K1(s,τ)N1(ˆω(τ,α))dτ+10K2(s,τ)N2(ˆω(τ,α))dτ)ds(aR+K1ζ1+K2ζ2)qΨ(q)Γ(q)η10((η2s)q1(η1s)q1)ds=(aR+K1ζ1+K2ζ2)qΨ(q)Γ(q+1)((η2η1)qηq2+ηq1)0, as η2η1, (3.5)

    and

    A3=qΨ(q)Γ(q)η2η1(η2s)q1(a(s)ˆω(s,α)+s0K1(s,τ)N1(ˆω(τ,α))dτ+10K2(s,τ)N2(ˆω(τ,α))dτ)ds(aR+K1ζ1+K2ζ2)qΨ(q)Γ(q)η2η1(η2s)q1ds(aR+K1ζ1+K2ζ2)qΨ(q)Γ(q+1)(η2η1)q0 as η2η1. (3.6)

    From Eqs (3.4)–(3.6), we get

    Ξˆω(η2,α)Ξˆω(η1,α)0 as η2η1.

    Hence Ξ is equicontinuous. By the Arzelá-Ascoli theorem, we infer that Ξ is compact in C(J,RF). Thus, from the above steps, we infer that Ξ is completely continuous.

    Step 3. The set δ={ˆω(η;α)C(J,RF):ˆω(η;α)=ϱΞˆω(η;α),ϱ(0,1)} is bounded.

    Let ˆω(η;α)δ. Then ˆω(η;α)=ϱΞˆω(η;α). Now, for η[0,1], we have

    |ˆω(η;α)|=|ϱΞˆω(η;α)||Ξˆω(η;α)||ˆω0|+(1qΨ(q)+qΨ(q)Γ(q+1))[g+aR+K1ζ1+K2ζ2]|ˆω0|+(1qΨ(q)+qΨ(q)Γ(q+1))[g+K1ζ1+K2ζ2]+(1qΨ(q)+qΨ(q)Γ(q+1))aRΩ2+Ω2R.

    From Eq (3.2), we get Ω2+Ω2RR. Hence, the set δ is bounded. According to the above steps, and together with Theorem 2.1, we deduce that Ξ has at least one fixed point. Consequently, the problem (1.1) has at least one solution on J.

    In the following theorem, we prove the uniqueness of solutions to problem defined by FFVFIE (1.1) by using Theorem 2.1.

    Theorem 3.2. Suppose (H1)–(H3) hold. Then the problem defined by FFVFIE (1.1) has a unique fuzzy number solution ˆω(η;α), provided that

    Λ=(1qΨ(q)+qηqΨ(q)Γ(q+1))(a+K1c1+K2c2)<1. (3.7)

    Proof. Let us consider the operator Ξ defined in Theorem 3.1. By applying Theorem 2.1, we shall show that Ξ has a unique fuzzy number solution. Let ˆω(η;α),ˆv(η;α)C(J,RF). Then

    |Ξˆω(η;α)Ξˆv(η;α)|1qΨ(q)[a(η)|ˆω(η;α)ˆv(η;α)|+η0|K1(η,s)||N1(ˆω(s;α))N1(ˆv(s;α))|ds+10|K2(η,s)||N2(ˆω(s;α))N2(ˆv(s;α))|ds]+qΨ(q)Γ(q)η0(ηs)q1[a(s)|ˆω(s;α)ˆv(s;α)|+s0|K1(s,τ)||N1(ˆω(τ;α))N1(ˆv(τ;α))|dτ+10|K2(s,τ)||N2(ˆω(τ;α))N2(ˆv(τ;α))|dτ]ds.

    Taking the supremum on both sides, we get

    Ξˆω(η,α)Ξˆv(η,α)1qΨ(q)(a+K1c1+K2c2)ˆωˆv+qηqΨ(q)Γ(q+1)(a+K1c1+K2c2)ˆωˆv=(1qΨ(q)+qηqΨ(q)Γ(q+1))(a+K1c1+K2c2)ˆωˆv.

    Due to Eq (3.7), we have

    Ξˆω(η,α)Ξˆv(η,α)Λˆωˆv.

    Hence Ξ is a contraction mapping. Thus, by Theorem 2.1, Ξ has a unique fixed point. Hence, the FFVFIE (1.1) has a unique fuzzy number solution ˆω(η;α).

    In this portion, we obtain approximation solutions to the problem defined by FFVFIE (1.1) as

    {ABC0Dqηω_(η;α)=P1(η,ω_(η;α),¯ω(η;α))ABC0Dqη¯ω(η;α)=P2(η,ω_(η;α),¯ω(η;α)), (4.1)

    where P1 and P2 are two continuous functions. Applying the AB integral operator to both sides of the two equations in Eq (4.1), we get

    {ω_(η;α)ω_(0;α)=1qΨ(q)IqηP1(η,ω_(η;α),¯ω(η;α))                     +qΨ(q)1Γ(q)η0(ηθ)q1P2(θ,ω_(θ;α),¯ω(θ;α))dθ,¯ω(η;α)¯ω(0;α)=1qΨ(q)IqηP2(η,ω_(η;α),¯ω(η;α))                     +qΨ(q)1Γ(q)η0(ηθ)q1P2(θ,ω_(θ;α),¯ω(θ;α))dθ. (4.2)

    Set η=ηr+1 for r=0,1,2,....; it follows that

    {ω_(ηr+1;α)ω_(0;α)=1qΨ(q)P1(ηr,ω_(ηr;α),¯ω(ηr;α))                     +qΨ(q)1Γ(q)ηr+10(ηr+1θ)q1P2(θ,ω_(θ;α),¯ω(θ;α))dθ,¯ω(ηr+1;α)¯ω(0;α)=1qΨ(q)P2(ηr,ω_(ηr;α),¯ω(ηr;α))                     +qΨ(q)1Γ(q)ηr+10(ηr+1θ)q1P2(θ,ω_(θ;α),¯ω(θ;α))dθ, (4.3)

    which implies

    {ω_(ηr+1;α)ω_(0;α)=1qΨ(q)P1(ηr,ω_(ηr;α),¯ω(ηr;α))               +qΨ(q)1Γ(q)rl=1ηl+1ηl(ηθ)q1P2(θ,ω_(θ;α),¯ω(θ;α))dθ,¯ω(ηr+1;α)¯ω(0;α)=1qΨ(q)P2(ηr,ω_(ηr;α),¯ω(ηr;α))               +qΨ(q)1Γ(q)rl=1ηl+1ηl(ηr+1θ)q1P2(θ,ω_(θ;α),¯ω(θ;α))dθ. (4.4)

    Now, we approximate the functions ˆPi(θ,ω_(θ;α),¯ω(θ;α)),i=1,2 on [ηl,ηl+1] through the use of the interpolation polynomial as follows, and as done in [48]

    {Pi(θ,ω_(θ;α),¯ω(θ;α))Pi(ηl,ω_(ηl;α),¯ω(ηl;α))h(ηηl1)+Pi(ηl1,ω_(ηl1;α),¯ω(ηl1;α))h(ηηl). (4.5)

    By Eqs (4.4) and (4.5), we have

    {ω_(ηr+1;α)ω_(0;α)=1qΨ(q)P1(ηr,ω_(ηr;α),¯ω(ηr;α))             +qΨ(q)1Γ(q)rl=1(P1(ηl,ω_(ηl;α),¯ω(ηl;α))hIl1,qP1(ηl1,ω_(ηl1;α),¯ω(ηl1;α))hIl,q),¯ω(ηr+1;α)¯ω(0;α)=1qΨ(q)P2(ηr,ω_(ηr;α),¯ω(ηr;α))             +qΨ(q)1Γ(q)rl=1(P2(ηl,ω_(ηl;α),¯ω(ηl;α))hIl1,qP2(ηl1,ω_(ηl1;α),¯ω(ηl1;α))hIl,q), (4.6)

    where

    Il1,q=ηr+1ηr(ηηl1)(ηr+1η)q1dη,

    and

    Il,q=ηr+1ηr(ηηl)(ηr+1η)q1dη.

    By simple calculations, we get

    Il1,q=1q[(ηl+1ηl1)(ηr+1ηl+1)q(ηlηl1)(ηr+1ηl)q]1q(q+1)[(ηr+1ηl+1)q+1(ηr+1ηl)q+1],

    and

    Il,q=1q[(ηl+1ηl)(ηr+1ηl+1)q]1q(q+1)[(ηr+1ηl+1)q+1(ηr+1ηl)q+1].

    Setting \eta _{l} = lh, we get

    \begin{equation} \mathcal{I}_{l-1,\mathcal{\mathfrak{q}}} = \frac{h^{\mathcal{\mathfrak{q}}+1}}{ \mathcal{\mathfrak{q}}\left( \mathcal{\mathfrak{q}}+1\right) }\left[ \left( r+1-l\right) ^{\mathcal{\mathfrak{q}}}\left( r-l+2+\mathcal{\mathfrak{q}} \right) -\left( r-l\right) ^{\mathcal{\mathfrak{q}}}\left( r-l+2+2\mathcal{ \mathfrak{q}}\right) \right] , \end{equation} (4.7)

    and

    \begin{equation} \mathcal{I}_{l,\mathcal{\mathfrak{q}}} = \frac{h^{\mathcal{\mathfrak{q}}+1}}{ \mathcal{\mathfrak{q}}\left( \mathcal{\mathfrak{q}}+1\right) }\left[ \left( r+1-l\right) ^{\mathcal{\mathfrak{q}}+1}-\left( r-l\right) ^{\mathcal{ \mathfrak{q}}}\left( r-l+1+\mathcal{\mathfrak{q}}\right) \right] . \end{equation} (4.8)

    Substituting Eqs (4.7) and (4.8) into Eq (4.6), we get

    \begin{equation*} \underline{\omega }(\eta _{r+1};\alpha ) = \left\{ \begin{array}{c} \underline{\omega }(0;\alpha )+\frac{1-\mathfrak{q}}{\Psi \mathcal{( \mathfrak{q})}}\mathcal{P}_{1}\left( \eta _{r},\underline{\omega }(\eta _{r};\alpha ),\overline{\omega }(\eta _{r};\alpha )\right) +\frac{\mathcal{ \mathfrak{q}}}{\Psi \mathcal{(\mathfrak{q})}}\sum _{l = 1}^{r} \ \\ \left( \frac{\mathcal{P}_{1}\left( \eta _{l},\underline{\omega }(\eta _{l};\alpha ),\overline{\omega }(\eta _{l};\alpha )\right) }{\Gamma ( \mathcal{\mathfrak{q}}+2)}h^{\mathcal{\mathfrak{q}}}\left[ \left( r+1-l\right) ^{\mathcal{\mathfrak{q}}}\left( r-l+2+\mathcal{\mathfrak{q}} \right) -\left( r-l\right) ^{\mathcal{\mathfrak{q}}}\left( r-l+2+2\mathcal{ \mathfrak{q}}\right) \right] \right. \\ \left. -\frac{\mathcal{P}_{1}\left( \eta _{l-1},\underline{\omega }(\eta _{l-1};\alpha ),\overline{\omega }(\eta _{l-1};\alpha )\right) }{\Gamma ( \mathcal{\mathfrak{q}}+2)}h^{\mathcal{\mathfrak{q}}}\left[ \left( r+1-l\right) ^{\mathcal{\mathfrak{q}}+1}-\left( r-l\right) ^{\mathcal{ \mathfrak{q}}}\left( r-l+1+\mathcal{\mathfrak{q}}\right) \right] \right) , \end{array} \right. \end{equation*}
    \begin{equation*} \overline{\omega }(\eta _{r+1};\alpha ) = \left\{ \begin{array}{c} \overline{\omega }(0;\alpha )+\frac{1-\mathfrak{q}}{\Psi \mathcal{(\mathfrak{ q})}}\mathcal{P}_{2}\left( \eta _{r},\underline{\omega }(\eta _{r};\alpha ), \overline{\omega }(\eta _{r};\alpha )\right) +\frac{\mathcal{\mathfrak{q}}}{ \Psi \mathcal{(\mathfrak{q})}}\sum _{l = 1}^{r} \ \ \\ \left( \frac{\mathcal{P}_{2}\left( \eta _{l},\underline{\omega }(\eta _{l};\alpha ),\overline{\omega }(\eta _{l};\alpha )\right) }{\Gamma ( \mathcal{\mathfrak{q}}+2)}h^{\mathcal{\mathfrak{q}}}\left[ \left( r+1-l\right) ^{\mathcal{\mathfrak{q}}}\left( r-l+2+\mathcal{\mathfrak{q}} \right) -\left( r-l\right) ^{\mathcal{\mathfrak{q}}}\left( r-l+2+2\mathcal{ \mathfrak{q}}\right) \right] \right. \\ \left. -\frac{\mathcal{P}_{2}\left( \eta _{l-1},\underline{\omega }(\eta _{l-1};\alpha ),\overline{\omega }(\eta _{l-1};\alpha )\right) }{\Gamma ( \mathcal{\mathfrak{q}}+2)}h^{\mathcal{\mathfrak{q}}}\left[ \left( r+1-l\right) ^{\mathcal{\mathfrak{q}}+1}-\left( r-l\right) ^{\mathcal{ \mathfrak{q}}}\left( r-l+1+\mathcal{\mathfrak{q}}\right) \right] \right) . \end{array} \right. \end{equation*}

    Example 5.1. Consider the following fuzzy problem

    \begin{equation} \left\{ \begin{array}{c} _{0}^{ABC}D_{\eta }^{\frac{1}{4}}\widehat{\omega }(\eta ,\alpha ) = -\frac{ \left( 1-\eta ^{2}\right) }{2}\widehat{\omega }(\eta ,\alpha )+\int_{0}^{\eta }e^{\eta }s\widehat{\omega }(s,\alpha )ds \\ +\int_{0}^{1}\left( 1-\eta ^{2}\right) s\widehat{\omega }(s,\alpha )ds \\ \widehat{\omega }(0,\alpha ) = \left[ \underline{\omega }(0,\alpha ),\overline{ \omega }(0,\alpha )\right] = \left[ \alpha -1,1-\alpha \right] . \end{array} \right. \end{equation} (5.1)

    The equivalent form of this problem for the Case (2.1) is given by

    \begin{equation} \left\{ \begin{array}{c} \left\{ \begin{array}{c} _{0}^{ABC}D_{\eta }^{\frac{1}{4}}\underline{\omega }(\eta ,\alpha ) = -\frac{ \left( 1-\eta ^{2}\right) }{2}\underline{\omega }(\eta ,\alpha )+\int_{0}^{\eta }e^{\eta }s\underline{\omega }(s,\alpha )ds \\ +\int_{0}^{1}\left( 1-\eta ^{2}\right) s\underline{\omega }(s,\alpha )ds \\ \underline{\omega }(0,\alpha ) = \alpha -1, \ \end{array} \right. \\ \left\{ \begin{array}{c} _{0}^{ABC}D_{\eta }^{\frac{1}{4}}\overline{\omega }(\eta ,\alpha ) = -\frac{ \left( 1-\eta ^{2}\right) }{2}\overline{\omega }(\eta ,\alpha )+\int_{0}^{\eta }e^{\eta }s\overline{\omega }(s,\alpha )ds \\ +\int_{0}^{1}\left( 1-\eta ^{2}\right) s\overline{\omega }(s,\alpha )ds \\ \overline{\omega }(0,\alpha ) = 1-\alpha . \ \end{array} \right. \end{array} \right. \end{equation} (5.2)

    Here, \mathfrak{g}(\eta) = 0, \mathfrak{a}(\eta) = -\frac{\left(1-\eta ^{2}\right) }{2}.

    We noted that Conditions (H _{1} )–(H _{3} ) are satisfied and \Omega_{1} \simeq 0.62 < 1 . Thus all conditions in Theorem 3.1 are satisfied and hence the nonlinear FFVFIE given by Eq (5.2) has at least one solution. Also, using the given data we can easily confirm that the following inequality holds

    \begin{equation*} \Lambda = \left( \frac{1-\frac{1}{4}}{\Psi (\frac{1}{4})}+\frac{\frac{1}{4}}{ \Psi (\frac{1}{4})\Gamma (\frac{1}{4}+1)}\right) \left( \left\Vert \mathfrak{ a}\right\Vert _{\infty }+\mathcal{K}_{1}^{\ast }c_{1}+\mathcal{K}_{2}^{\ast }c_{2}\right) < 1. \end{equation*}

    Now, consider \underline{\omega }(\eta, \alpha) and apply _{0}^{ABC}I_{\eta }^{\frac{1}{4}} to both sides of the equation given by Eq (5.2); then, we get

    \begin{eqnarray*} \underline{\omega }(\eta ,\alpha ) & = &\alpha -1+\frac{1-\frac{1}{4}}{\Psi ( \frac{1}{4})} \\ &&\left[ -\frac{\left( 1-\eta ^{2}\right) }{2}\underline{\omega }(\eta ,\alpha )+\int_{0}^{\eta }e^{\eta }s\underline{\omega }(s,\alpha )ds+\int_{0}^{1}\left( 1-\eta ^{2}\right) s\underline{\omega }(s,\alpha )ds \right] \\ &&+\frac{\frac{1}{4}}{\Psi (\frac{1}{4})\Gamma (\frac{1}{4})}\int_{0}^{\eta }\left( \eta -s\right) ^{\frac{1}{4}-1} \\ &&\left[ -\frac{\left( 1-s^{2}\right) }{2}\underline{\omega }(s,\alpha )+\int_{0}^{s}e^{s}\tau \underline{\omega }(\tau ,\alpha )d\tau +\int_{0}^{1}\left( 1-\eta ^{2}\right) \tau \underline{\omega }(\tau ,\alpha )d\tau \right] ds, \end{eqnarray*}

    and

    \begin{eqnarray*} \overline{\omega }(\eta ,\alpha ) & = &1-\alpha +\frac{1-\frac{1}{4}}{\Psi ( \frac{1}{4})} \\ &&\left[ -\frac{\left( 1-\eta ^{2}\right) }{2}\overline{\omega }(\eta ,\alpha )+\int_{0}^{\eta }e^{\eta }s\overline{\omega }(s,\alpha )ds+\int_{0}^{1}\left( 1-\eta ^{2}\right) s\overline{\omega }(s,\alpha )ds \right] \\ &&+\frac{\frac{1}{4}}{\Psi (\frac{1}{4})\Gamma (\frac{1}{4})}\int_{0}^{\eta }\left( \eta -s\right) ^{\frac{1}{4}-1} \\ &&\left[ -\frac{\left( 1-s^{2}\right) }{2}\overline{\omega }(s,\alpha )+\int_{0}^{s}e^{s}\tau \overline{\omega }(\tau ,\alpha )d\tau +\int_{0}^{1}\left( 1-\eta ^{2}\right) \tau \overline{\omega }(\tau ,\alpha )d\tau \right] ds \end{eqnarray*}

    Here, we provide the plot of the fuzzy solutions at different values of uncertainty for the given problem in Figure 1.

    Figure 1.  Graphical presentation of fuzzy approximate solutions upto initial three terms at different values of uncertainty \alpha for Example 5.1.

    Further, we present the surface plot of the fuzzy solutions in Figure 2.

    Figure 2.  Surface plot of fuzzy approximate solutions for the initial three terms corresponding to different values of uncertainty \alpha and space variable \eta in Example 5.1.

    Example 5.2. Consider the following FDE with fuzzy number initial values:

    \begin{equation} \left\{ \begin{array}{c} _{0}^{ABC}D_{\eta }^{\frac{1}{3}}\widehat{\omega }(\eta ,\alpha ) = \frac{\eta ^{\frac{1}{2}}}{\Gamma (\frac{1}{2})}-\frac{\eta ^{2}}{2}+\frac{\eta ^{2}e^{\eta }}{2}\widehat{\omega }(\eta ,\alpha )+\int_{0}^{\eta }e^{\eta }s \widehat{\omega }(s,\alpha )ds \\ +\int_{0}^{1}\eta ^{2}s\widehat{\omega }(s,\alpha )ds \\ \widehat{\omega }(0,\alpha ) = \left[ \underline{\omega }(0,\alpha ),\overline{ \omega }(0,\alpha )\right] = \left[ \alpha ,3-2\alpha \right] . \end{array} \right. \end{equation} (5.3)

    The equivalent form of this problem for the Case (2.1) is given by

    \begin{equation*} \left\{ \begin{array}{c} \left\{ \begin{array}{c} _{0}^{ABC}D_{\eta }^{\frac{1}{3}}\underline{\omega }(\eta ,\alpha ) = \frac{ \eta ^{\frac{1}{3}}}{\Gamma (\frac{1}{3})}-\frac{\eta ^{2}}{2}+\frac{\eta ^{2}e^{\eta }}{2}\underline{\omega }(\eta ,\alpha )+\int_{0}^{\eta }e^{\eta }s\underline{\omega }(s,\alpha )ds \\ +\int_{0}^{1}\eta ^{2}s\underline{\omega }(s,\alpha )ds \\ \underline{\omega }(0,\alpha ) = \alpha , \ \end{array} \right. \\ \left\{ \begin{array}{c} _{0}^{ABC}D_{\eta }^{\frac{1}{3}}\overline{\omega }(\eta ,\alpha ) = -\frac{ \eta ^{\frac{1}{3}}}{\Gamma (\frac{1}{3})}-\frac{\eta ^{2}}{2}+\frac{\eta ^{2}e^{\eta }}{2}\overline{\omega }(\eta ,\alpha )+\int_{0}^{\eta }e^{\eta }s \overline{\omega }(s,\alpha )ds \\ +\int_{0}^{1}\eta ^{2}s\overline{\omega }(s,\alpha )ds \\ \overline{\omega }(0,\alpha ) = 3-2\alpha . \ \ \end{array} \right. \end{array} \right. \end{equation*}

    Here \mathfrak{g}(\eta) = \frac{\eta ^{\frac{1}{2}}}{\Gamma (\frac{1}{2})}- \frac{\eta ^{2}}{2} and \mathfrak{a}(\eta) = \frac{\eta ^{2}e^{\eta }}{2}. Thus, the functions \mathfrak{a} and \mathfrak{g} are continuous. Also, Conditions (H _{1} )–(H _{3} ) are satisfied and \Omega _{1} < 1. Thus, all conditions in Theorem 3.1 are satisfied and the nonlinear FFVFIE given by Eq (5.3) has at least one solution. Also, using the given data, we can easily confirm that the following inequality holds

    \begin{equation*} \left( \frac{1-\frac{1}{3}}{\Psi (\frac{1}{3})}+\frac{\frac{1}{3}}{\Psi ( \frac{1}{3})\Gamma (\frac{1}{3}+1)}\right) \left( \left\Vert \mathfrak{a} \right\Vert _{\infty }+\mathcal{K}_{1}^{\ast }c_{1}+\mathcal{K}_{2}^{\ast }c_{2}\right) < 1. \end{equation*}

    Now, consider \underline{\omega }(\eta, \alpha) and apply _{0}^{ABC}I_{\eta }^{\frac{1}{3}} to both sides of the above equation; then, we get

    \begin{eqnarray*} \underline{\omega }(\eta ,\alpha ) & = &\alpha +\frac{1-\frac{1}{3}}{\Psi ( \frac{1}{3})} \\ &&\left[ \frac{\eta ^{\frac{1}{3}}}{\Gamma (\frac{1}{3})}-\frac{\eta ^{2}}{2} +\frac{\eta ^{2}e^{\eta }}{2}\underline{\omega }(\eta ,\alpha )+\int_{0}^{\eta }e^{\eta }s\underline{\omega }(s,\alpha )ds+\int_{0}^{1}\eta ^{2}s\underline{\omega }(s,\alpha )ds\right] \\ &&+\frac{\frac{1}{3}}{\Psi (\frac{1}{3})\Gamma (\frac{1}{3})}\int_{0}^{\eta }\left( \eta -s\right) ^{\frac{1}{3}-1} \\ &&\left[ \frac{s^{\frac{1}{3}}}{\Gamma (\frac{1}{3})}-\frac{s^{2}}{2}+\frac{ s^{2}e^{s}}{2}\underline{\omega }(s,\alpha )+\int_{0}^{\eta }e^{s}\tau \underline{\omega }(\tau ,\alpha )d\tau +\int_{0}^{1}s^{2}\tau \underline{ \omega }(\tau ,\alpha )d\tau \right] ds \end{eqnarray*}

    and

    \begin{eqnarray*} \overline{\omega }(\eta ,\alpha ) & = &3-2\alpha +\frac{1-\frac{1}{3}}{\Psi ( \frac{1}{3})} \\ &&\left[ \frac{\eta ^{\frac{1}{3}}}{\Gamma (\frac{1}{3})}-\frac{\eta ^{2}}{2} +\frac{\eta ^{2}e^{\eta }}{2}\overline{\omega }(\eta ,\alpha )+\int_{0}^{\eta }e^{\eta }s\overline{\omega }(s,\alpha )ds+\int_{0}^{1}\eta ^{2}s\overline{\omega }(s,\alpha )ds\right] \\ &&+\frac{\frac{1}{3}}{\Psi (\frac{1}{3})\Gamma (\frac{1}{3})}\int_{0}^{\eta }\left( \eta -s\right) ^{\frac{1}{3}-1} \\ &&\left[ \frac{s^{\frac{1}{3}}}{\Gamma (\frac{1}{3})}-\frac{s^{2}}{2}+\frac{ s^{2}e^{s}}{2}\overline{\omega }(s,\alpha )+\int_{0}^{\eta }e^{s}\tau \overline{\omega }(\tau ,\alpha )d\tau +\int_{0}^{1}s^{2}\tau \overline{ \omega }(\tau ,\alpha )d\tau \right] ds. \end{eqnarray*}

    Here, we provide the plot of the fuzzy solutions at different values of uncertainty for the given problem in Figure 3.

    Figure 3.  Graphical presentation of fuzzy approximate solutions for up to initial three terms at different values of uncertainty \alpha for Example 5.2.

    In Figure 4, we present the surface plot for Example 5.2.

    Figure 4.  Surface plot of fuzzy approximate solutions for the initial three terms corresponding to different values of uncertainty \alpha and space variable \eta in Example 5.2.

    In this paper, we considered FFVFIE with the ABC fractional derivative. Also, we showed the existence and uniqueness of Eq (3.1) by using the fixed point techniques. We implemented the numerical examples to better grasp the FABM and its enforcement. We presented the curves and surface plots of the fuzzy approximate solutions for up to the initial three terms under the conditions of the given fractional order and took various values of uncertainty. The concerned plots provided us with information about two fuzzy solutions upper and lower. In the concluding observations, addressing the solution of FDEs with uncertainty is an extremely difficult issue, essentially, in the case of advanced differentiability like the fuzzy ABC fractional derivative. This is because the acquired systems, which are described as parametric coupled systems are solved more diligently than classical fuzzy differential equations. Regarding the significance of these systems, we have already found the solutions to the uncertain systems through the use of the ABC fractional derivative sense. It is clear that the solution at each point for every level is an interval, implying that our solutions are fuzzy number functions in each point of the domain.

    The authors Kamal Shah and Thabet Abdeljawad would like to thank Prince Sultan University for paying the APC and support through TAS research lab.

    The authors declare no conflict of interest.



    [1] A. Araraa, M. Benchohraa, N. Hamidia, J. Nieto, Fractional order differential equations on an unbounded domain, Nonlinear Anal.-Theor., 72 (2010), 580–586. http://dx.doi.org/10.1016/j.na.2009.06.106 doi: 10.1016/j.na.2009.06.106
    [2] H. Beyer, S. Kempfle, Definition of physically consistent damping laws with fractional derivatives, ZAMM, 75 (1995), 623–635. http://dx.doi.org/10.1002/zamm.19950750820 doi: 10.1002/zamm.19950750820
    [3] K. Diethelm, N. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 265 (2002), 229–248. http://dx.doi.org/10.1006/jmaa.2000.7194 doi: 10.1006/jmaa.2000.7194
    [4] I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999.
    [5] D. Dubois, H. Prade, Towards fuzzy differential calculus part 1: integration of fuzzy mappings, Fuzzy Set. Syst., 8 (1982), 1–17. http://dx.doi.org/10.1016/0165-0114(82)90025-2 doi: 10.1016/0165-0114(82)90025-2
    [6] D. Dubois, H. Prade, Towards fuzzy differential calculus part 2: integration on fuzzy intervals, Fuzzy Set. Syst., 8 (1982), 105–116. http://dx.doi.org/10.1016/0165-0114(82)90001-X doi: 10.1016/0165-0114(82)90001-X
    [7] M. Puri, D. Ralescu, Differentials for fuzzy functions, J. Math. Anal. Appl., 91 (1983), 552–558. http://dx.doi.org/10.1016/0022-247X(83)90169-5 doi: 10.1016/0022-247X(83)90169-5
    [8] M. Puri, D. Ralescu, Fuzzy random variables, J. Math. Anal. Appl., 114 (1986), 409–422. http://dx.doi.org/10.1016/0022-247X(86)90093-4
    [9] N. Ahmad, A. Ullah, A. Ullah, S. Ahmad, K. Shah, I. Ahmad, On analysis of the fuzzy fractional order Volterra-Fredholm integro-differential equation, Alex. Eng. J., 60 (2021), 1827–1838. http://dx.doi.org/10.1016/j.aej.2020.11.031 doi: 10.1016/j.aej.2020.11.031
    [10] R. Agarwal, V. Lakshmikantham, J. Nieto, On the concept of solution for fractional differential equations with uncertainty, Nonlinear Anal., 72 (2010), 2859–2862. http://dx.doi.org/10.1016/j.na.2009.11.029 doi: 10.1016/j.na.2009.11.029
    [11] R. Agarwal, S. Arshad, D. O'Regan, V. Lupulescu, Fuzzy fractional integral equations under compactness type condition, Fract. Calc. Appl. Anal., 15 (2012), 572–590. http://dx.doi.org/10.2478/s13540-012-0040-1 doi: 10.2478/s13540-012-0040-1
    [12] T. Allahviranloo, S. Salahshour, S. Abbasbandy, Explicit solutions of fractional differential equations with uncertainty, Soft Comput., 16 (2012), 297–302. http://dx.doi.org/10.1007/s00500-011-0743-y doi: 10.1007/s00500-011-0743-y
    [13] M. Mazandarani, A. Kamyad, Modified fractional Euler method for solving fuzzy fractional initial value problem, Commun. Nonlinear. Sci., 18 (2013), 12–21. http://dx.doi.org/10.1016/j.cnsns.2012.06.008 doi: 10.1016/j.cnsns.2012.06.008
    [14] M. Mazandarani, M. Najariyan, Type-2 fuzzy fractional derivatives, Commun. Nonlinear. Sci., 19 (2014), 2354–2372. http://dx.doi.org/10.1016/j.cnsns.2013.11.003 doi: 10.1016/j.cnsns.2013.11.003
    [15] V. Lupulescu, Fractional calculus for interval-valued functions, Fuzzy Set. Syst., 265 (2015), 63–85. http://dx.doi.org/10.1016/j.fss.2014.04.005 doi: 10.1016/j.fss.2014.04.005
    [16] T. Allahviranloo, A. Armand, Z. Gouyandeh, Fuzzy fractional differential equations under generalized fuzzy Caputo derivative, J. Intell. Fuzzy Syst., 26 (2014), 1481–1490. http://dx.doi.org/10.3233/IFS-130831 doi: 10.3233/IFS-130831
    [17] N. Hoa, H. Vu, T. Duc, Fuzzy fractional differential equations under Caputo-Katugampola fractional derivative approach, Fuzzy Set. Syst., 375 (2019), 70–99. http://dx.doi.org/10.1016/j.fss.2018.08.001 doi: 10.1016/j.fss.2018.08.001
    [18] N. Hoa, H. Vu, A survey on the initial value problems of fuzzy implicit fractional differential equations, Fuzzy Set. Syst., 400 (2020), 90–133. http://dx.doi.org/10.1016/j.fss.2019.10.012 doi: 10.1016/j.fss.2019.10.012
    [19] R. Agarwal, D. Baleanu, J. Nieto, D. Torres, Y. Zhou, A survey on fuzzy fractional differential and optimal control nonlocal evolution equations, J. Comput. Appl. Math., 339 (2018), 3–29. http://dx.doi.org/10.1016/j.cam.2017.09.039 doi: 10.1016/j.cam.2017.09.039
    [20] S. Salahshour, T. Allahviranloo, S. Abbasbandy, Solving fuzzy fractional differential equations by fuzzy Laplace transforms, Commun. Nonlinear. Sci., 17 (2012), 1372–1381. http://dx.doi.org/10.1016/j.cnsns.2011.07.005 doi: 10.1016/j.cnsns.2011.07.005
    [21] N. Hoa, Fuzzy fractional functional integral and differential equations, Fuzzy Set. Syst., 280 (2015), 58–90. http://dx.doi.org/10.1016/j.fss.2015.01.009 doi: 10.1016/j.fss.2015.01.009
    [22] M. Mazandarani, A. Kamyad, Modified fractional Euler method for solving fuzzy fractional initial value problem, Commun. Nonlinear. Sci., 18 (2013), 12–21. http://dx.doi.org/10.1016/j.cnsns.2012.06.008 doi: 10.1016/j.cnsns.2012.06.008
    [23] S. Salahshour, T. Allahviranloo, S. Abbasbandy, Solving fuzzy fractional differential equationsby fuzzy Laplace transforms, Commun. Nonlinear. Sci., 17 (2012), 1372–1381. http://dx.doi.org/10.1016/j.cnsns.2011.07.005 doi: 10.1016/j.cnsns.2011.07.005
    [24] A. Ahmadian, S. Salahshour, C. Chan, Fractional differential systems: a fuzzy solution based on operational matrix of shifted Chebyshev polynomials and its applications, IEEE T. Fuzzy Syst., 25 (2017), 218–236. http://dx.doi.org/10.1109/TFUZZ.2016.2554156 doi: 10.1109/TFUZZ.2016.2554156
    [25] A. Ahmadian, F. Ismail, S. Salahshour, D. Baleanu, F. Ghaemi, Uncertain viscoelastic models with fractional order: a new spectral tau method to study the numerical simulations of the solution, Commun. Nonlinear. Sci., 53 (2017), 44–64. http://dx.doi.org/10.1016/j.cnsns.2017.03.012 doi: 10.1016/j.cnsns.2017.03.012
    [26] C. Vinothkumar, J. Nieto, A. Deiveegan, P. Prakash, Invariant solutions of hyperbolic fuzzy fractional differential equations, Mod. Phys. Lett. B, 34 (2020), 2050015. http://dx.doi.org/10.1142/S0217984920500153 doi: 10.1142/S0217984920500153
    [27] S. Hasan, M. Al-Smadi, A. El-Ajou, S. Momani, S. Hadid, Z. Al-Zhour, Numerical approach in the Hilbert space to solve a fuzzy Atangana-Baleanu fractional hybrid system, Chaos Soliton. Fract., 143 (2021), 110506. http://dx.doi.org/10.1016/j.chaos.2020.110506 doi: 10.1016/j.chaos.2020.110506
    [28] M. Al-Smadi, O. Arqub, S. Momani, Numerical computations of coupled fractional resonant Schrödinger equations arising in quantum mechanics under conformable fractional derivative sense, Phys. Scripta, 95 (2020), 075218. http://dx.doi.org/10.1088/1402-4896/ab96e0 doi: 10.1088/1402-4896/ab96e0
    [29] M. Al-Smadi, O. Arqub, Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of dirichlet functions type with error estimates, Appl. Math. Comput., 342 (2019), 280–294. http://dx.doi.org/10.1016/j.amc.2018.09.020 doi: 10.1016/j.amc.2018.09.020
    [30] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. http://dx.doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [31] M. Abdo, K. Shah, H. Wahash, S. Panchal, On a comprehensive model of the novel coronavirus (COVID-19) under Mittag-Leffler derivative, Chaos Soliton. Fract., 135 (2020), 109867. http://dx.doi.org/10.1016/j.chaos.2020.109867 doi: 10.1016/j.chaos.2020.109867
    [32] M. Almalahi, S. Panchal, W. Shatanawi, M. Abdo, K. Shah, K. Abodayeh, Analytical study of transmission dynamics of 2019-nCoV pandemic via fractal fractional operator, Results Phys., 24 (2021), 104045. http://dx.doi.org/10.1016/j.rinp.2021.104045 doi: 10.1016/j.rinp.2021.104045
    [33] M. Abdo, T. Abdeljawad, K. Shah, F. Jarad, Study of impulsive problems under Mittag-Leffler power law, Heliyon, 6 (2020), e05109. http://dx.doi.org/10.1016/j.heliyon.2020.e05109 doi: 10.1016/j.heliyon.2020.e05109
    [34] N. Sene, Analysis of a four-dimensional hyperchaotic system described by the Caputo-Liouville fractional derivative, Complexity, 2020 (2020), 8889831. http://dx.doi.org/10.1155/2020/8889831 doi: 10.1155/2020/8889831
    [35] N. Sene, Qualitative analysis of class of fractional-order chaotic system via bifurcation and Lyapunov exponents notions, J. Math., 2021 (2021), 5548569. http://dx.doi.org/10.1155/2021/5548569 doi: 10.1155/2021/5548569
    [36] K. Owolabi, Z. Hammouch, Mathematical modeling and analysis of two-variable system with noninteger-order derivative, Chaos, 29 (2019), 013145. http://dx.doi.org/10.1063/1.5086909 doi: 10.1063/1.5086909
    [37] K. Owolabi, Behavioural study of symbiosis dynamics via the Caputo and Atangana-Baleanu fractional derivatives, Chaos Soliton. Fract., 122 (2019), 89–101. http://dx.doi.org/10.1016/j.chaos.2019.03.014 doi: 10.1016/j.chaos.2019.03.014
    [38] K. Owolabi, J. Gómez-Aguilar, B. Karaagac, Modelling, analysis and simulations of some chaotic systems using derivative with Mittag-Leffler kernel, Chaos Soliton. Fract., 125 (2019), 54–63. http://dx.doi.org/10.1016/j.chaos.2019.05.019 doi: 10.1016/j.chaos.2019.05.019
    [39] K. Owolabi, A. Atangana, Mathematical analysis and computational experiments for an epidemic system with nonlocal and nonsingular derivative, Chaos Soliton. Fract., 126 (2019), 41–49. http://dx.doi.org/10.1016/j.chaos.2019.06.001 doi: 10.1016/j.chaos.2019.06.001
    [40] K. Owolabi, E. Pindza, Modeling and simulation of nonlinear dynamical system in the frame of nonlocal and non-singular derivatives, Chaos Soliton. Fract., 127 (2019), 146–157. http://dx.doi.org/10.1016/j.chaos.2019.06.037 doi: 10.1016/j.chaos.2019.06.037
    [41] Z. He, A. Abbes, H. Jahanshahi, N. Alotaibi, Y. Wang, Fractional-order discrete-time SIR epidemic model with vaccination: chaos and complexity, Mathematics, 10 (2022), 165. http://dx.doi.org/10.3390/math10020165 doi: 10.3390/math10020165
    [42] F. Jin, Z. Qian, Y. Chu, M. ur Rahman, On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative, J. Appl. Anal. Comput., 12 (2022), 790–806. http://dx.doi.org/10.11948/20210357 doi: 10.11948/20210357
    [43] M. Khan, S. Ullah, M. Farhan, The dynamics of Zika virus with Caputo fractional derivative, AIMS Mathematics, 4 (2019), 134–146. http://dx.doi.org/10.3934/Math.2019.1.134 doi: 10.3934/Math.2019.1.134
    [44] B. Bede, L. Stefanini, Generalized differentiability of fuzzy-valued functions, Fuzzy Set. Syst., 230 (2013), 119–141. http://dx.doi.org/10.1016/j.fss.2012.10.003 doi: 10.1016/j.fss.2012.10.003
    [45] T. Allahviranloo, B. Ghanbari. On the fuzzy fractional differential equation with interval Atangana-Baleanu fractional derivative approach, Chaos Soliton. Fract., 130 (2020), 109397. http://dx.doi.org/10.1016/j.chaos.2019.109397 doi: 10.1016/j.chaos.2019.109397
    [46] A. Granas, J. Dugundji, Fixed point theory, New York: Springer Science, 2003. http://dx.doi.org/10.1007/978-0-387-21593-8
    [47] K. Deimling, Nonlinear functional analysis, Berlin: Springer, 1985. http://dx.doi.org/10.1007/978-3-662-00547-7
    [48] W. Yu, R. Jafari, Modeling and control of uncertain nonlinear systems with fuzzy equations and Z-number, New York: John Wiley, 2019. http://dx.doi.org/10.1002/9781119491514
  • This article has been cited by:

    1. Bandar Bin-Mohsin, Sehrish Rafique, Clemente Cesarano, Muhammad Zakria Javed, Muhammad Uzair Awan, Artion Kashuri, Muhammad Aslam Noor, Some General Fractional Integral Inequalities Involving LR–Bi-Convex Fuzzy Interval-Valued Functions, 2022, 6, 2504-3110, 565, 10.3390/fractalfract6100565
    2. Mohammed A. Almalahi, K. A. Aldwoah, Kamal Shah, Thabet Abdeljawad, Stability and Numerical Analysis of a Coupled System of Piecewise Atangana–Baleanu Fractional Differential Equations with Delays, 2024, 23, 1575-5460, 10.1007/s12346-024-00965-6
    3. Marzieh Najariyan, Li Qiu, Singular fuzzy fractional quadratic regulator problem, 2023, 171, 09600779, 113496, 10.1016/j.chaos.2023.113496
    4. Kaihong Zhao, Generalized UH-stability of a nonlinear fractional coupling (\mathcalligra{p}_{1},\mathcalligra{p}_{2})-Laplacian system concerned with nonsingular Atangana–Baleanu fractional calculus, 2023, 2023, 1029-242X, 10.1186/s13660-023-03010-3
    5. Kaihong Zhao, Study on the stability and its simulation algorithm of a nonlinear impulsive ABC-fractional coupled system with a Laplacian operator via F-contractive mapping, 2024, 2024, 2731-4235, 10.1186/s13662-024-03801-y
    6. Pooja Yadav, Shah Jahan, Kottakkaran Sooppy Nisar, A new generalized Bell wavelet and its applications for solving linear and nonlinear integral equations, 2025, 44, 2238-3603, 10.1007/s40314-024-02999-7
    7. Tharmalingam Gunasekar, Prabakaran Raghavendran, Kottakkaran Sooppy Nisar, Existence, Uniqueness, and Stability Results of Fractional Volterra–Fredholm Integro-Differential Equations with State-Dependent Delay, 2025, 24, 1575-5460, 10.1007/s12346-024-01185-8
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1691) PDF downloads(119) Cited by(7)

Figures and Tables

Figures(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog