Nonlinear differential equations are widely used in everyday scientific and engineering dynamics. Problems involving differential equations of fractional order with initial and phase changes are often employed. Using a novel norm that is comfortable for fractional and non-singular differential equations containing Atangana-Baleanu-Caputo fractional derivatives, we examined a new class of initial values issues in this study. The Perov fixed point theorems that are utilized in generalized Banach spaces form the foundation for the new findings. Examples of the numerical analysis are provided in order to safeguard and effectively present the key findings.
Citation: Abdelatif Boutiara, Mohammed M. Matar, Jehad Alzabut, Mohammad Esmael Samei, Hasib Khan. On $ \mathcal{A B C} $ coupled Langevin fractional differential equations constrained by Perov's fixed point in generalized Banach spaces[J]. AIMS Mathematics, 2023, 8(5): 12109-12132. doi: 10.3934/math.2023610
Nonlinear differential equations are widely used in everyday scientific and engineering dynamics. Problems involving differential equations of fractional order with initial and phase changes are often employed. Using a novel norm that is comfortable for fractional and non-singular differential equations containing Atangana-Baleanu-Caputo fractional derivatives, we examined a new class of initial values issues in this study. The Perov fixed point theorems that are utilized in generalized Banach spaces form the foundation for the new findings. Examples of the numerical analysis are provided in order to safeguard and effectively present the key findings.
[1] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 2006. |
[2] | L. Podlubny, Fractional Differential Equations, New York: Academic Press, 1999. |
[3] | K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, 1993. |
[4] | R. P. Agarwal, M. Meehan, D. O'regan, Fixed Point Theory and Applications, Cambridge University Press, 2001. |
[5] | M. M. Matar, M. abu Jarad, M. Ahmad, A. Zada, S. Etemad, S. Rezapour, On the existence and stability of two positive solutions of a hybrid differential system of arbitrary fractional order via Avery-Anderson-Henderson criterion on cones, Adv. Differ. Equ., 2021 (2021), 423. https://doi.org/10.1186/s13662-021-03576-6 doi: 10.1186/s13662-021-03576-6 |
[6] | K. Deimling, Nonlinear Functional Analysis, New York: Springer-Verlag, 1985. |
[7] | H. Khan, Y. Li, A. Khan, A. Khan, Existence of solution for a fractional‐order Lotka‐Volterra reaction‐diffusion model with Mittag‐Leffler kernel, Math. Meth. Appl. Sci., 42 (2019), 3377–3387. https://doi.org/10.1002/mma.5590 doi: 10.1002/mma.5590 |
[8] | H. Khan, J. F. Gómez-Aguilar, A. Khan, T. S. Khan, Stability analysis for fractional order advection-reaction diffusion system, Physica A, 521 (2019), 737–751. https://doi.org/10.1016/j.physa.2019.01.102 doi: 10.1016/j.physa.2019.01.102 |
[9] | G. Rajchakit, A. Pratap, R. Raja, J. Cao, J. Alzabut, C. Huang, Hybrid control scheme for projective lag synchronization of Riemann-Liouville sense fractional order memristive BAM NeuralNetworks with mixed delays, Mathematics, 7 (2019), 759. https://doi.org/10.3390/math7080759 doi: 10.3390/math7080759 |
[10] | J. Alzabut, Almost periodic solutions for an impulsive delay Nicholson's blowflies model, J. Comput. Appl. Math., 234 (2010), 233–239. https://doi.org/10.1016/j.cam.2009.12.019 doi: 10.1016/j.cam.2009.12.019 |
[11] | O. Nica, R. Precup, On the nonlocal initial value problem for first order differential systems, Fixed Point Theory, 56 (2011), 113–125. |
[12] | A. Boutiara, S. Etemad, J. Alzabut, A. Hussain, M. Subramanian, S. Rezapour, On a nonlinear sequential four-point fractional q-difference equation involving q-integral operators in boundary conditions along with stability criteria, Adv. Differ. Equ., 2021 (2021), 367. https://doi.org/10.1186/s13662-021-03525-3 doi: 10.1186/s13662-021-03525-3 |
[13] | A. Zada, J. Alzabut, H. Waheed, I. L. Popa, Ulam-Hyers stability of impulsive integrodifferential equations with Riemann-Liouville boundary conditions, Adv. Differ. Equ., 2020 (2020), 64. https://doi.org/10.1186/s13662-020-2534-1 doi: 10.1186/s13662-020-2534-1 |
[14] | M. E. Samei, M. M. Matar, S. Etemad, S. Rezapour, On the generalized fractional snap boundary problems via $G$-Caputo operators: Existence and stability analysis, Adv. Differ. Equ., 2021 (2021), 498. https://doi.org/10.1186/s13662-021-03654-9 doi: 10.1186/s13662-021-03654-9 |
[15] | O. Bolojan, Nonlocal initial value problems for first order differential systems, Fixed Point Theory, 13 (2012), 603–612. |
[16] | A. Boutiara, M. M. Matar, M. K. Kaabar, F. Martínez, S. Etemad, S. Rezapour, Some qualitative analyses of neutral functional delay differential equation with generalized Caputo operator, J. Funct. Space, 2021 (2021), 9993177. https://doi.org/10.1155/2021/9993177 doi: 10.1155/2021/9993177 |
[17] | A. Berhail, N. Tabouche, M. M. Matar, J. Alzabut, Boundary value problem defined by system of generalized Sturm-Liouville and Langevin Hadamard fractional differential equations, Math. Meth. Appl. Sci., 2020, 1–13. https://doi.org/10.1002/mma.6507 doi: 10.1002/mma.6507 |
[18] | S. Etemad, B. Tellab, J. Alzabut, S. Rezapour, M. I. Abbas, Approximate solutions and Hyers-Ulam stability for a system of the coupled fractional thermostat control model via the generalized differential transform, Adv. Differ. Equ., 2021 (2021), 428. https://doi.org/10.1186/s13662-021-03563-x doi: 10.1186/s13662-021-03563-x |
[19] | R. Precup, Methods in Nonlinear Integral Equations, Springer Science & Business Media, 2002. |
[20] | A. Boutiara, Multi-term fractional $q$-difference equations with $q$-integral boundary conditions via topological degree theory, Commun. Optim. Theory, 2021. |
[21] | S. A. Jose, R. Ramachandran, J. Cao, J. Alzabut, M. Niezabitowski, V. E. Balas, Stability analysis and comparative study on different eco-epidemiological models: Stage structure for prey and predator concerning impulsive control, Optim. Control. Appl. Meth., 43 (2022), 842–866. https://doi.org/10.1002/oca.2856 doi: 10.1002/oca.2856 |
[22] | M. Al-Refai, Proper inverse operators of fractional derivatives with nonsingular kernels, Rend. Circ. Mat. Palermo, II. Ser., 71 (2022), 525–535. https://doi.org/10.1007/s12215-021-00638-2 doi: 10.1007/s12215-021-00638-2 |
[23] | B. C. Dhage, Quadratic perturbations of periodic boundary value problems of second order ordinary differential equations, Differ. Equ. Appl., 2 (2010), 465–486. https://doi.org/10.7153/dea-02-28 doi: 10.7153/dea-02-28 |
[24] | M. Al-Refai, D. Baleanu, On an extension of the operator with Mittag-Leffler kernel, Fractals, 30 (2022), 2240129. https://doi.org/10.1142/S0218348X22401296 doi: 10.1142/S0218348X22401296 |
[25] | I. E. Abo Amra, M. M. Matar, Coupled system of fractional differential equations with impulsive and nonlocal coupled boundary conditions, Bol. Soc. Mat. Mex., 26 (2020), 477–497. https://doi.org/10.1007/s40590-019-00254-2 doi: 10.1007/s40590-019-00254-2 |
[26] | Y. Zhao, S. Sun, Z. Han, Q. Li, Theory of fractional hybrid differential equations, Comput. Math. Appl., 62 (2011), 1312–1324. https://doi.org/10.1016/j.camwa.2011.03.041 doi: 10.1016/j.camwa.2011.03.041 |
[27] | S. Sitho, S. K. Ntouyas, J. Tariboon, Existence results for hybrid fractional integro-differential equations, Bound. Value Probl., 2015 (2015), 113. https://doi.org/10.1186/s13661-015-0376-7 doi: 10.1186/s13661-015-0376-7 |
[28] | M. Awadalla, K. Abuasbeh, On system of nonlinear sequential hybrid fractional differential equations, Math. Probl. Eng., 2022 (2022), 8556578. https://doi.org/10.1155/2022/8556578 doi: 10.1155/2022/8556578 |
[29] | S. Gul, R. A. Khan, H. Khan, R. George, S. Etemad, S. Rezapour, Analysis on a coupled system of two sequential hybrid BVPs with numerical simulations to a model of typhoid treatment, Alex. Eng. J., 61 (2022), 10085–10098. https://doi.org/10.1016/j.aej.2022.03.020 doi: 10.1016/j.aej.2022.03.020 |
[30] | K. D. Kucche, S. T. Sutar, Analysis of nonlinear fractional differential equations involving Atangana-Baleanu-Caputo derivative, Chaos Solitons Fractals, 143 (2021), 110556. https://doi.org/10.1016/j.chaos.2020.110556 doi: 10.1016/j.chaos.2020.110556 |
[31] | P. Amiri, M. E. Samei, Existence of Urysohn and Atangana-Baleanu fractional integral inclusion systems solutions via common fixed point of multi-valued operators, Chaos Solitons Fractals, 165 (2022), 112822. https://doi.org/10.1016/j.chaos.2022.112822 doi: 10.1016/j.chaos.2022.112822 |
[32] | I. A. Rus, Principles and Applications of the Fixed Point Theory, Editura Dacia, Cluj-Napoca, 1979. |
[33] | S. Rezapour, S. T. Thabet, M. M. Matar, J. Alzabut, S. Etemad, Some existence and stability criteria to a generalized FBVP having fractional Composite-Laplacian operator, J. Funct. Space, 2021 (2021), 9554076. https://doi.org/10.1155/2021/9554076 doi: 10.1155/2021/9554076 |
[34] | A. Boutiara, M. Benbachir, S. Etemad, S. Rezapour, Kuratowski MNC method on a generalized fractional Caputo Sturm-Liouville-Langevin $q$-difference problem with generalized Ulam-Hyers stability, Adv. Differ. Equ., 2021 (2021), 454. https://doi.org/10.1186/s13662-021-03619-y doi: 10.1186/s13662-021-03619-y |
[35] | S. N. Hajiseyedazizi, M. E. Samei, Jehad Alzabut, Y. Chu, On multi-step methods for singular fractional $q$–integro-differential equations, Open Math., 19 (2021), 1378–1405. https://doi.org/10.1515/math-2021-0093 doi: 10.1515/math-2021-0093 |
[36] | A. Boutiara, A coupled system of nonlinear langevin fractional $q$-difference equations associated with two different fractional orders in Banach space, Kragujevac J. Math., 48 (2024), 555–575. |
[37] | A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, arXiv, 2016. https://doi.org/10.48550/arXiv.1602.03408 |
[38] | R. Precup, The role of matrices that are convergent to zero in the study of semilinear operator systems, Math. Comput. Model., 49 (2009), 703–708. https://doi.org/10.1016/j.mcm.2008.04.006 doi: 10.1016/j.mcm.2008.04.006 |