Research article

Closure properties for second-order $ \lambda $-Hadamard product of a class of meromorphic Janowski function

  • Received: 27 January 2023 Revised: 23 February 2023 Accepted: 02 March 2023 Published: 21 March 2023
  • MSC : 30C45, 30C65

  • In this paper, we define second-order $ \lambda $-Hadamard product of a class of meromorphic Janowski function and study the closure properties of the above product.

    Citation: Tao He, Shu-Hai Li, Li-Na Ma, Huo Tang. Closure properties for second-order $ \lambda $-Hadamard product of a class of meromorphic Janowski function[J]. AIMS Mathematics, 2023, 8(5): 12133-12142. doi: 10.3934/math.2023611

    Related Papers:

  • In this paper, we define second-order $ \lambda $-Hadamard product of a class of meromorphic Janowski function and study the closure properties of the above product.



    加载中


    [1] R. M. El-Ashwah, M. K. Aouf, Hadamard product of certain meromorphic starlike and convex function, Comput. Math. Appl., 57 (2009), 1102–1106. https://doi.org/10.1016/j.camwa.2008.07.044 doi: 10.1016/j.camwa.2008.07.044
    [2] H. Tang, S.-H. Li, L. -N. Ma, H. -Y. Zhang, Quasi-Hadamard product of meromorphic starlike functions and convex functions of reciprocal order, J. Math. Pract. Theory, 46 (2016), 261–266.
    [3] T. He, S. -H. Li, L. -N. Ma, H. Tang, Closure properties of generalized $\lambda$-Hadamard procduct for a class of meromorphic Janowski functions, AIMS Mathematics, 6 (2021), 1715–1726. https://doi.org/10.3934/math.2021102 doi: 10.3934/math.2021102
    [4] P. L. Duren, Univalent functions, In: Grundlehren der Mathematischen Wissenschaften, New York: Springer, 1983.
    [5] W. Janowski, Some extremal problems for certain families of analytic functions, Ann. Pol. Math., 28 (1973), 297–326. https://doi.org/10.4064/AP-28-3-297-326 doi: 10.4064/AP-28-3-297-326
    [6] S. Mahmood, Q. Z. Ahmad, H. M. Srivastava, N. Khan, B. Khan, M. Tahir, A certain subclass of meromorphically q-starlike functions associated with the Janowski functions, J. Inequal. Appl., 2019 (2019), 88.
    [7] J. H. Choi, Y. C. Kim, S. Owa, Generalizations of Hadamard products of functions with negative coefficients, J. Math. Anal. Appl., 199 (1996), 495–501. https://doi.org/10.1006/jmaa.1996.0157 doi: 10.1006/jmaa.1996.0157
    [8] H. Tang, G. -T. Deng, S. -H. Li, Quasi-Hadamard product of meromorphic univalent functions at infinity, J. Math., 34 (2014), 51–57.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(920) PDF downloads(30) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog