In this paper, we define second-order $ \lambda $-Hadamard product of a class of meromorphic Janowski function and study the closure properties of the above product.
Citation: Tao He, Shu-Hai Li, Li-Na Ma, Huo Tang. Closure properties for second-order $ \lambda $-Hadamard product of a class of meromorphic Janowski function[J]. AIMS Mathematics, 2023, 8(5): 12133-12142. doi: 10.3934/math.2023611
In this paper, we define second-order $ \lambda $-Hadamard product of a class of meromorphic Janowski function and study the closure properties of the above product.
[1] | R. M. El-Ashwah, M. K. Aouf, Hadamard product of certain meromorphic starlike and convex function, Comput. Math. Appl., 57 (2009), 1102–1106. https://doi.org/10.1016/j.camwa.2008.07.044 doi: 10.1016/j.camwa.2008.07.044 |
[2] | H. Tang, S.-H. Li, L. -N. Ma, H. -Y. Zhang, Quasi-Hadamard product of meromorphic starlike functions and convex functions of reciprocal order, J. Math. Pract. Theory, 46 (2016), 261–266. |
[3] | T. He, S. -H. Li, L. -N. Ma, H. Tang, Closure properties of generalized $\lambda$-Hadamard procduct for a class of meromorphic Janowski functions, AIMS Mathematics, 6 (2021), 1715–1726. https://doi.org/10.3934/math.2021102 doi: 10.3934/math.2021102 |
[4] | P. L. Duren, Univalent functions, In: Grundlehren der Mathematischen Wissenschaften, New York: Springer, 1983. |
[5] | W. Janowski, Some extremal problems for certain families of analytic functions, Ann. Pol. Math., 28 (1973), 297–326. https://doi.org/10.4064/AP-28-3-297-326 doi: 10.4064/AP-28-3-297-326 |
[6] | S. Mahmood, Q. Z. Ahmad, H. M. Srivastava, N. Khan, B. Khan, M. Tahir, A certain subclass of meromorphically q-starlike functions associated with the Janowski functions, J. Inequal. Appl., 2019 (2019), 88. |
[7] | J. H. Choi, Y. C. Kim, S. Owa, Generalizations of Hadamard products of functions with negative coefficients, J. Math. Anal. Appl., 199 (1996), 495–501. https://doi.org/10.1006/jmaa.1996.0157 doi: 10.1006/jmaa.1996.0157 |
[8] | H. Tang, G. -T. Deng, S. -H. Li, Quasi-Hadamard product of meromorphic univalent functions at infinity, J. Math., 34 (2014), 51–57. |