Important progress has been made on the standard Laplacian case with mixed partial dissipation and diffusion. The stability problem of the 3D incompressible magnetohydrodynamic (MHD) equations without vertical dissipation but with the fractional velocity dissipation (−Δ)αu and magnetic diffusion (−Δ)βb is unfortunately not often well understood for many ranges of fractional powers. This paper discovers that there are new phenomena with the case α,β≤1. We establish that, if an initial datum (u0,b0) in the Sobolev space H3(R3) is close enough to the equilibrium state, and we replace the terms (−Δ)αu and (−Δ)βb by (−Δh)αu and (−Δh)βb, respectively, the resulting equations with α,β∈(12,1] then always lead to a steady solution, where Δh=∂2x1+∂2x2.
Citation: Ruihong Ji, Liya Jiang, Wen Luo. Stability of the 3D MHD equations without vertical dissipation near an equilibrium[J]. AIMS Mathematics, 2023, 8(5): 12143-12167. doi: 10.3934/math.2023612
[1] | Ruihong Ji, Ling Tian . Stability of the 3D incompressible MHD equations with horizontal dissipation in periodic domain. AIMS Mathematics, 2021, 6(11): 11837-11849. doi: 10.3934/math.2021687 |
[2] | Huan Long, Suhui Ye . Global well-posedness for the 2D MHD equations with only vertical velocity damping term. AIMS Mathematics, 2024, 9(12): 36371-36384. doi: 10.3934/math.20241725 |
[3] | Ru Bai, Tiantian Chen, Sen Liu . Global stability solution of the 2D incompressible anisotropic magneto-micropolar fluid equations. AIMS Mathematics, 2022, 7(12): 20627-20644. doi: 10.3934/math.20221131 |
[4] | Haifaa Alrihieli, Musaad S. Aldhabani, Ghadeer M. Surrati . Enhancing the characteristics of MHD squeezed Maxwell nanofluids via viscous dissipation impact. AIMS Mathematics, 2023, 8(8): 18948-18963. doi: 10.3934/math.2023965 |
[5] | Mohammed Alrehili . Managing heat transfer effectiveness in a Darcy medium with a vertically non-linear stretching surface through the flow of an electrically conductive non-Newtonian nanofluid. AIMS Mathematics, 2024, 9(4): 9195-9210. doi: 10.3934/math.2024448 |
[6] | Muhammad Naqeeb, Amjad Hussain, Ahmad Mohammed Alghamdi . Blow-up criteria for different fluid models in anisotropic Lorentz spaces. AIMS Mathematics, 2023, 8(2): 4700-4713. doi: 10.3934/math.2023232 |
[7] | Shujie Jing, Jixiang Guan, Zhiyong Si . A modified characteristics projection finite element method for unsteady incompressible Magnetohydrodynamics equations. AIMS Mathematics, 2020, 5(4): 3922-3951. doi: 10.3934/math.2020254 |
[8] | Guanglei Zhang, Kexue Chen, Yifei Jia . Constructing boundary layer approximations in rotating magnetohydrodynamic fluids within cylindrical domains. AIMS Mathematics, 2025, 10(2): 2724-2749. doi: 10.3934/math.2025128 |
[9] | Li Lu . One new blow-up criterion for the two-dimensional full compressible magnetohydrodynamic equations. AIMS Mathematics, 2023, 8(7): 15876-15891. doi: 10.3934/math.2023810 |
[10] | Umar Nazir, Kanit Mukdasai . Combine influence of Hall effects and viscous dissipation on the motion of ethylene glycol conveying alumina, silica and titania nanoparticles using the non-Newtonian Casson model. AIMS Mathematics, 2023, 8(2): 4682-4699. doi: 10.3934/math.2023231 |
Important progress has been made on the standard Laplacian case with mixed partial dissipation and diffusion. The stability problem of the 3D incompressible magnetohydrodynamic (MHD) equations without vertical dissipation but with the fractional velocity dissipation (−Δ)αu and magnetic diffusion (−Δ)βb is unfortunately not often well understood for many ranges of fractional powers. This paper discovers that there are new phenomena with the case α,β≤1. We establish that, if an initial datum (u0,b0) in the Sobolev space H3(R3) is close enough to the equilibrium state, and we replace the terms (−Δ)αu and (−Δ)βb by (−Δh)αu and (−Δh)βb, respectively, the resulting equations with α,β∈(12,1] then always lead to a steady solution, where Δh=∂2x1+∂2x2.
The MHD equations describe the evolution in time of velocity field u and magnetic field b of some electrically conducting fluids such as plasmas, liquid metals and salt water or electrolytes[1,2]. The set of equations that describe MHD is a combination of the Navier-Stokes equations of fluid dynamics and Maxwell's equations of electro-magnetism. The field of MHD was initiated by Hannes Alfvén[3], for which he received the Nobel Prize in physics in 1970.
The MHD equations are also of great interest in mathematics. In recent years, the stability of the MHD equations has attracted considerable interest, and one focus has been on the MHD equations with partial or fractional dissipation and diffusion. Elegant works have been made (see, e.g., [4,5,6,7,8,9,10,11,12]). For the 3D incompressible generalized MHD equations with fractional dissipation and diffusion,
{∂tu+u⋅∇u=−ν(−Δ)αu−∇P+B⋅∇B,x∈R3,t>0,∂tB+u⋅∇B=−η(−Δ)βB+B⋅∇u,x∈R3,t>0,∇⋅u=0,∇⋅B=0,x∈R3,t>0, | (1.1) |
where α,β>0 are real parameters, u=u(x,t)∈R3 represents the velocity field, B=B(x,t)∈R3 represents the magnetic field, P=P(x,t)∈R represents the pressure, ν>0 denotes the kinematic viscosity, and η>0 denotes the magnetic diffusivity. For notational convenience, we write ∂i for the partial derivatives ∂xi(i = 1, 2, 3). The fractional Laplacian operator (−Δ)α is defined via the Fourier transform,
^(−Δ)αf(ξ)=|ξ|2αˆf(ξ) |
for
ˆf(ξ)=1(2π)d/2∫Rde−ix⋅ξf(x)dx. |
The MHD equations with fractional dissipation given by (1.1) have recently attracted considerable interest, due to their mathematical importance and physical applications. The justification for the study of this fractionally dissipated system can be made from several different perspectives. First, (1.1) represents a two-parameter family of systems and contains the MHD systems with standard Laplacian dissipation as special cases. (1.1) allows us to simultaneously examine a whole family of equations and potentially reveals how the properties of its solutions are related to the sizes of α and β. Second, the fractional diffusion operators can model the so-called anomalous diffusion, a much studied topic in physics, probability and finance (see, e.g., [13,14]). Third, fractional dissipation has been widely used in turbulence modeling to control the effective range of the non-local dissipation and to make numerical resolutions more efficient (see, e.g., [15]).
A range of global well-posedness results on (1.1) have been obtained. When α=β=1, (1.1) reduces to the standard MHD equations, which is well-known possessing global L2 weak solutions; in two dimensions, it is also unique[7,16]. When combined with the already established global weak solutions[8], these bounds allow us to conclude that MHD equations possess a global classical solution if α and β satisfy
α≥12+d4,β>0,α+β≥1+d2. |
Wu[9] was able to sharpen this result by replacing the fractional Laplacian operators by general Fourier multiplier operators. In particular, (1.1) with a (−Δ)αlog(I−Δ)u and (−Δ)βlog(I−Δ)b for α and β satisfying the bounds above is also globally well posed[6]. Yamazaki obtained the global regularity for the case when α=2 and β=0 and for a logarithmically reduced fractional dissipation [17]. Logarithmic refinement of these fractional powers is contained in [18]. Ye and Xu[19] considered the global existence of the 2D generalized incompressible MHD system with velocity dissipation exponent α>14 and magnetic diffusion exponent β=1. After that, Ye established the global regularity solutions to the 2D incompressible MHD equations with almost Laplacian magnetic diffusion in the whole space [20]. Recently, Dai and Ji[5] established the local existence and uniqueness in inhomogeneous Besov spaces when
α>12,β≥0,α+β≥1. |
Since (1.1) was proposed in [8], there have been considerable activities, and the global well-posedness problem on (1.1) is now much better understood (see, e.g., [21,22,23,24,25,26]).
The nonlinear stability for the ideal MHD equations was established in several beautiful papers [27,28,29,30]. Nevertheless, the stability of (1.1) remains unknown. The focus of this paper is the stability of perturbation near a background magnetic field which is
u(0)≡(0,0,0),B(0)≡(0,1,0). |
The perturbation (u,b) with
b:=B−B(0) |
solves the MHD system
{∂tu+u⋅∇u=−ν(−Δ)αu−∇P+b⋅∇b+∂2b,x∈R3,t>0,∂tb+u⋅∇b=−η(−Δ)βb+b⋅∇u+∂2u,x∈R3,t>0,∇⋅u=0,∇⋅B=0,x∈R3,t>0,u(x,0)=u0(x),b(x,0)=b0(x). | (1.2) |
We now address the problem as to whether the steady weak solution of the MHD equations (1.1) does in fact depend continuously on the perturbation of (u(0),B(0)) given in the problem. In this paper, we consider (1.1) with only horizontal fractional dissipation and lacking vertical dissipation
{∂tu+u⋅∇u=−ν(−Δh)αu−∇P+b⋅∇b+∂2b,x∈R3,t>0,∂tb+u⋅∇b=−η(−Δh)βb+b⋅∇u+∂2u,x∈R3,t>0,∇⋅u=0,∇⋅B=0,x∈R3,t>0,u(x,0)=u0(x),b(x,0)=b0(x), | (1.3) |
with α,β∈(12,1]. The concept of horizontal dissipation comes from geophysical fluid dynamics (see [31]), and meteorologists model the turbulent diffusion with anisotropic viscosity −νhΔh−ν3∂23, where the horizontal kinetic viscosity coefficient νh and the vertical kinetic viscosity coefficient ν3 are empirical constants and satisfy 0<ν3≪νh. In this paper, we take the limit case νh=ν and ν3=0. To give a complete view of current studies on the stability problem concerning the MHD equations with partial dissipation, we mention some of the encouraging results in [4,10,16,22,32,33,34,35,36,37,38,39,40] and the references therein.
A natural consideration is how the parameters α and β are determined, and this is what we choose to do in our tentative estimation work, based primarily on energy estimate method. When we bound the ˙H3-norm of (u,b), we plan to utilize a series of anisotropic inequalities derived from a Sobolev embedding inequality and Gagliardo-Nirenberg (G-N) interpolation inequality[41,42,43]. Based on the relationship between the parameters of these inequalities, we ended up choosing α,β∈(12,1] in (1.3) to study the stability of the MHD equations with fractional horizontal dissipation.
To construct a steady solution of (1.3), we make use of a bootstrap argument by anisotropic estimates
E(t)=sup0≤τ≤t{‖u(τ)‖2H3+‖b(τ)‖2H3}+2ν∫t0‖Λαhu(τ)‖2H3dτ+2η∫t0‖Λβhb(τ)‖2H3dτ. | (1.4) |
Here Λh=(−Δh)12 denotes the Zygmund operator. Our precise result is stated in the following theorem.
Theorem 1.1. Consider (1.3) with initial data (u0,b0)∈H3(R3) satisfying ∇⋅u0=∇⋅b0=0 and α,β∈(12,1]. Then, there exists a constant δ=δ(ν,η)>0 such that, if
‖(u0,b0)‖H3≤δ, | (1.5) |
then (1.3) has a unique global classical solution satisfying
sup0≤τ≤t(‖u(τ)‖2H3+‖b(τ)‖2H3)+2ν∫t0‖Λαhu(τ)‖2H3dτ+2η∫t0‖Λβhb(τ)‖2H3dτ≤Cδ2, |
for any t>0, and C=C(ν,η) is a constant.
A natural starting point is to bound ‖u(t)‖H3+‖b(t)‖H3 via energy estimate. We are able to derive the following energy inequality:
E(t)≤E(0)+CE(t)32. | (1.6) |
Combined with the bootstrapping argument (see[44]), we can prove Theorem 1.1. However, the proof of Theorem 1.1 is not superficial. Due to the lack of the vertical dissipation and vertical magnetic diffusion, some nonlinear terms are not easy to control in terms of ‖u(t)‖H3+‖b(t)‖H3 or the dissipation parts ‖Λαhu‖H3 and ‖Λβhb‖H3. One of the most difficult terms is
−∫R3∂3uh⋅∇h∂23b⋅∂33bdx≲‖∂3uh‖1−12αL2‖∂3Λαhuh‖12αL2‖∂33b‖1−12βL2‖∂33Λβhb‖12βL2‖∇h∂23b‖1−12βL2‖∇h∂23Λα3b‖12βL2. |
Clearly, it does not appear possible to bound the subterms
‖∂3uh‖1−12αL2‖∂33b‖1−12βL2 | (1.7) |
directly in terms of ‖Λαhu‖2H3‖Λβhb‖2H3, but in terms of ‖u(t)‖2H3‖b(t)‖2H3. Therefore, we hope the sum of the corresponding exponents of the two subterms to be less than or equal to 1 for all given α and β, which is
1−12α+1−12β≤1. | (1.8) |
To establish the inequality of (1.6), we choose α,β∈(12,1]. In the case of
1−12α+1−12β=1, |
the subterms of (1.7) can be estimated directly by
‖u(t)‖H3+‖b(t)‖H3. |
The other case is
1−12α+1−12β<1. |
Our strategy is to extract part from the rest subterms
‖∂3Λαhuh‖12αL2‖∇h∂23b‖1−12βL2 |
to fill the subterms of (1.7) by G-N interpolation inequality. One reason which cannot be ignored is that ‖∂3Λαhuh‖L2 could be bounded by either ‖u‖H3 or ‖Λαhu‖H3, and ‖∇h∂23b‖L2 could be bounded by either ‖b‖H3 or ‖Λαhb‖H3. In the last section of our paper, we have successfully used this method to solve all similar difficulties in proving stability and obtain inequality (1.6).
Lemma 1.2. Assume that α,β,γ∈(12,1], f,g,h,Λαhf,Λβhg,Λγhh and ∂3h are all in L2(R3). Then,
∫R3|fgh|dx≲‖f‖1−12αL2‖Λαhf‖12αL2‖g‖1−12βL2‖Λβhg‖12βL2‖h‖12L2‖∂3h‖12L2,∫R3|fgh|dx≲‖f‖1−12αL2‖Λαhf‖12αL2‖g‖1−12βL2‖Λβhg‖12βL2‖h‖1−12γL2‖Λγ3h‖12γL2. |
Here, we write A≲B to mean that A≤CB for some constant C and Λ3=(−∂33)12.
These anisotropic inequalities are greatly powerful in the study of global regularity and stability problems on partial differential equations with only partial dissipation. Similar inequalities have previously been used in the investigation of partially dissipated MHD systems and related equations (see, e.g., [45,46])
The rest of this paper is divided into two sections. Section 2 provides the proofs of Theorem 1.1 and Lemma 1.2. Section 3 derives the energy inequality (1.6).
This section proves Theorem 1.1 and Lemma 1.2.
Roughly speaking, the bootstrap argument starts with an ansatz that E(t) is bounded, say,
E(t)≤M, |
and shows that E(t) actually admits a smaller bound, say,
E(t)≤12M, |
when the initial condition is sufficiently small. A rigorous statement of the abstract bootstrap principle can be found in T. Tao's book[44].
It follows that
E(t)≤E(0)+CE(t)32, | (2.1) |
for some pure constants C. To initiate the bootstrapping argument, we make the ansatz
E(t)≤M:=14C2. | (2.2) |
We then show that (2.1) allows us to conclude that E(t) actually admits an even smaller bound by taking the initial H3-norm E(0) sufficiently small. In fact, when (2.2) holds, (2.1) implies
E(t)≤E(0)+12E(t) |
or
E(t)≤2E(0). | (2.3) |
Therefore, if we choose δ>0 sufficiently small such that
δ2≤14M, | (2.4) |
then
E(t)≤12M. | (2.5) |
E(t) actually admits a smaller bound in (2.3) than the one in the ansatz (2.2). The bootstrapping argument then assesses that (2.2) holds for all times when E(0) obeys (2.4). This completes the proof.
The proof makes use of the version of Minkowski's inequality
‖‖f‖Lqy(Rn)‖Lpx(Rm)≤‖‖f‖Lpx(Rm)‖Lqy(Rn), |
for any 1≤q≤p≤∞, where f=f(x,y) with x∈Rm, and y∈Rn is a measurable function on Rm×Rn, and the following basic one-dimensional Sobolev embedding inequality [12], for f∈Hs(R),
‖f‖L∞(R)≤C‖f‖1−12sL2(R)‖Λsf‖12sL2(R), |
where s>12. By the above inequality and Hölder's inequality,
∫R3|fgh|dx≤‖f‖L∞x1L2x2L2x3‖g‖L2x1L∞x2L2x3‖h‖L2x1L2x2L∞x3≤C‖‖f‖1−12s1L2x1‖Λs11f‖12s1L2x1‖L2x2x3‖‖g‖1−12s2L2x2‖Λs22g‖12s2L2x2‖L2x1x3×‖‖h‖1−12s3L2x3‖Λs33h‖12s3L2x3‖L2x1x2≤C‖f‖1−12s1L2‖Λs11f‖12s1L2‖g‖1−12s2L2‖Λs22g‖12s2L2‖h‖1−12s3L2‖Λs33h‖12s3L2. |
Let s1=α,s2=β,s3=1, and we obtain
∫R3|fgh|dx≲‖f‖1−12αL2‖Λα1f‖12αL2‖g‖1−12βL2‖Λβ2g‖12βL2‖h‖12L2‖∂3h‖12L2≲‖f‖1−12αL2‖Λαhf‖12αL2‖g‖1−12βL2‖Λβhg‖12βL2‖h‖12L2‖∂3h‖12L2. |
Let s1=α,s2=β,s3=γ, and we obtain
∫R3|fgh|dx≲‖f‖1−12αL2‖Λα1f‖12αL2‖g‖1−12βL2‖Λβ2g‖12βL2‖h‖1−12γL2‖Λγ3h‖12γL2≲‖f‖1−12αL2‖Λαhf‖12αL2‖g‖1−12βL2‖Λβhg‖12βL2‖h‖1−12γL2‖Λγ3h‖12γL2. |
Here, ‖f‖L∞x1L2x2L2x3 represents the L∞-norm in the x1-variable, followed by the L2-norm in x2 and the L2-norm in x3. This finishes the proof of Lemma 1.2.
Due to the equivalence of ‖(u,b)‖H3 with ‖(u,b)‖L2+‖(u,b)‖˙H3, it suffices to bound the L2-norm and the ˙H3-norm of (u,b). By a simple energy estimate and ∇⋅u=∇⋅b=0, we find that the L2-norm of (u,b) obeys
‖u(t)‖2L2+‖b(t)‖2L2+2ν∫t0‖Λαhu(τ)‖2L2dτ+2η∫t0‖Λβhb(τ)‖2L2dτ=‖u(0)‖2L2+‖b(0)‖2L2. | (3.1) |
The rest of the proof focuses on the ˙H3-norm. Applying ∂3i to (1.3) and then dotting by (∂3iu, ∂3ib), we obtain
12ddt3∑i=1(‖∂3iu‖2L2+‖∂3ib‖2L2)+ν‖∂3iΛαhu‖2L2+η‖∂3iΛβhb‖2L2=I1+I2+I3+I4+I5, | (3.2) |
where
I1=3∑i=1∫R3∂3i∂2b⋅∂33u+∂3i∂2u⋅∂33bdx,I2=−3∑i=1∫R3∂3i(u⋅∇u)⋅∂3iudx,I3=3∑i=1∫R3[∂3i(b⋅∇b)−b⋅∇∂3ib]⋅∂3iudx,I4=−3∑i=1∫R3∂3i(u⋅∇b)⋅∂3ibdx,I5=3∑i=1∫R3[∂3i(b⋅∇u)−b⋅∇∂3iu]⋅∂3ibdx. |
Note that, by integration by parts,
I1=0, |
and
3∑i=1∫R3b⋅∇∂3ib⋅∂3iudx+∫R3b⋅∇∂3iu⋅∂3ibdx=0. |
To bound I2, we decompose it into three pieces,
I2=−3∑i=1∫R3∂3i(u⋅∇u)⋅∂3iudx=−3∑i=1(∫R3∂3iu⋅∇u⋅∂3iudx+3∫R3∂2iu⋅∇∂iu⋅∂3iudx+3∫R3∂iu⋅∇∂2iu⋅∂3iudx)=I21+3I22+3I23, | (3.3) |
where we have used the fact that ∫R3u⋅∇∂33u⋅∂33udx=0. I21 is naturally split into three parts,
I21=−3∑i=1∫R3∂3iu⋅∇u⋅∂3iudx=−2∑i=1∫R3∂3iu⋅∇u⋅∂3iudx−∫R3∂33uh⋅∇hu⋅∂33udx−∫R3∂33u3∂3u⋅∂33udx=I211+I212+I213. |
By Lemma 1.2 and G-N interpolation inequality,
|I211|=|−2∑i=1∫R3∂3iu⋅∇u⋅∂3iudx|≲2∑i=1‖∂3iu‖2−1αL2‖∂3iΛαhu‖1αL2‖∇u‖12L2‖∇∂3u‖12L2≲2∑i=1‖∂2iΛαhu‖γ(2−1α)L2‖∂2iΛ1+αhu‖(1−γ)(2−1α)L2‖∂3iΛαhu‖1αL2‖∇u‖12L2‖∇∂3u‖12L2≲‖u‖H3‖Λαhu‖2H3, | (3.4) |
where we have applied inequality
‖∂iu‖L2≤‖Λαhu‖γL2‖Λ1+αhu‖1−γL2(i=1,2). |
We now turn to I212, by Lemma 1.2,
|I212|=|−∫R3∂33uh⋅∇hu⋅∂33udx|≲‖∂33uh‖1−12αL2‖∂33Λαhuh‖12αL2‖∂33u‖1−12αL2‖∂33Λαhu‖12αL2‖∇hu‖12L2‖∇h∂3u‖12L2≲‖∂33uh‖1−12αL2‖∂33Λαhuh‖12αL2‖∂33u‖1−12αL2‖∂33Λαhu‖12αL2×‖∇hu‖12α−12L2‖Λαhu‖γ(11−2α)L2‖Λ1+αhu‖(1−γ)(11−2α)L2×‖∇h∂3u‖12α−12L2‖Λαh∂3u‖γ(11−2α)L2‖Λ1+αh∂3u‖(1−γ)(11−2α)L2≲‖u‖H3‖Λαhu‖2H3. | (3.5) |
In fact, we take ‖∇hu‖1−12αL2‖∇h∂3u‖1−12αL2 from ‖∇hu‖12L2‖∇h∂3u‖12L2 and combine it with ‖∂33Λαhuh‖12αL2‖∂33Λαhu‖12αL2 to reach our desired bound. In addition, by G-N interpolation inequality, we get
‖∇hu‖L2≤‖Λαhu‖γL2‖Λ1+αhu‖1−γL2. |
We next consider the term I213, and we have
|I213|=|−∫R3∂33u3∂3u⋅∂33udx|=|2∑j=1∫R3∂23∂juj∂3u⋅∂33udx|≲2∑j=1‖∂23∂juj‖1−12αL2‖∂23Λα3∂juj‖12αL2‖∂3u‖1−12αL2‖∂3Λαhu‖12αL2‖∂33u‖1−12αL2‖∂33Λαhu‖12αL2≲2∑j=1‖∂23Λαhuj‖γ(1−12α)L2‖∂23Λ1+αhuj‖(1−γ)(1−12α)L2‖∂33Λαhu‖γ12αL2‖∂23Λα+1hu‖(1−γ)12αL2×‖∂3u‖1−12αL2‖∂3Λαhu‖1α−1L2‖∂3Λαhu‖1−12αL2‖∂33u‖1−12αL2‖∂33Λαhu‖12αL2≲‖u‖H3‖Λαhu‖2H3, | (3.6) |
where we used
‖∂23Λα3∂juj‖L2≤‖∂33Λαhu‖γL2‖∂23Λα+1hu‖1−γL2,‖∂3Λαhu‖1α−1L2≤‖u‖1α−1H3 |
and ∇⋅u=0. To deal with I22, this term is split into three parts,
I22=−3∑i=1∫R3∂2iu⋅∇∂iu⋅∂3iudx=−2∑i=1∫R3∂2iu⋅∇∂iu⋅∂3iudx−∫R3∂23uh⋅∇h∂3u⋅∂33udx−∫R3∂23u3∂23u⋅∂33udx=I221+I222+I223. |
Similarly to (3.4),
|I221|=|−2∑i=1∫R3∂2iu⋅∇∂iu⋅∂3iudx|≲2∑i=1‖∂2iu‖1−12αL2‖∂2iΛαhu‖12αL2‖∂3iu‖1−12αL2‖∂3iΛαhu‖12αL2‖∇∂iu‖12L2‖∇∂i∂3u‖12L2≲2∑i=1‖∂iΛαhu‖γ(1−12α)L2‖∂iΛ1+αhu‖(1−γ)(1−12α)L2‖∂2iΛαhu‖12αL2×‖∂2iΛαhu‖γ(1−12α)L2‖∂2iΛ1+αhu‖(1−γ)(1−12α)L2‖∂3iΛαhu‖12αL2‖∇∂iu‖12L2‖∇∂i∂3u‖12L2≲‖u‖H3‖Λαhu‖2H3. | (3.7) |
Applying Lemma 1.2 and G-N interpolation inequality, we obtain
|I222|=|−∫R3∂23uh⋅∇h∂3u⋅∂33udx|≲‖∂23uh‖1−12αL2‖∂23Λαhuh‖12αL2‖∂33u‖1−12αL2‖∂33Λαhu‖12αL2‖∇h∂3u‖12L2‖∇h∂23u‖12L2≲‖∂23uh‖1−12αL2‖∂23Λαhuh‖12αL2‖∂33u‖1−12αL2‖∂33Λαhu‖12αL2×‖∇h∂3u‖12α−12L2‖Λαh∂3u‖γ(1−12α)L2‖Λ1+αh∂3u‖(1−γ)(1−12α)L2×‖∇h∂23u‖12α−12L2‖Λαh∂23u‖γ(1−12α)L2‖Λ1+αh∂23u‖(1−γ)(1−12α)L2≲‖u‖H3‖Λαhu‖2H3. | (3.8) |
Note that we separate out a part of ‖∇h∂3u‖12L2‖∇h∂23u‖12L2 and make it controlled by ‖Λhu‖H3. Similarly,
|I223|=|−∫R3∂23u3∂23u⋅∂33udx|=|2∑j=1∫R3∂3∂juj∂23u⋅∂33udx|≲2∑j=1‖∂23uh‖1−12αL2‖∂23Λαhuh‖12αL2‖∂33u‖1−12αL2‖∂33Λαhu‖12αL2‖∂3∂juj‖12L2‖∂23∂juj‖12L2≲2∑j=1‖∂23uh‖1−12αL2‖∂23Λαhuh‖12αL2‖∂33u‖1−12αL2‖∂33Λαhu‖12αL2×‖∂3∂juj‖12α−12L2‖∂3Λαhu‖γ(1−12α)L2‖∂3Λ1+αhu‖(1−γ)(1−12α)L2×‖∂23∂juj‖12α−12L2‖∂23Λαhu‖γ(1−12α)L2‖∂23Λ1+αhu‖(1−γ)(1−12α)L2≲‖u‖H3‖Λαhu‖2H3. | (3.9) |
We deal with I23 in the same method, as I23 is naturally split into three parts,
I23=−3∑i=1∫R3∂iu⋅∇∂2iu⋅∂3iudx=−2∑i=1∫R3∂iu⋅∇∂2iu⋅∂3iudx−∫R3∂3uh⋅∇h∂23u⋅∂33udx−∫R3∂3u3∂33u⋅∂33udx=I231+I232+I233. |
By Lemma 1.2 and G-N interpolation inequality, we have
|I231|=|−2∑i=1∫R3∂iu⋅∇∂2iu⋅∂3iudx|≲2∑i=1‖∇∂2iu‖1−12αL2‖∇∂2iΛαhu‖12αL2‖∂3iu‖1−12αL2‖∂3iΛαhu‖12αL2‖∂iu‖12L2‖∂i∂3u‖12L2≲2∑i=1‖∇∂iΛαhu‖γ(1−12α)L2‖∇∂iΛ1+αhu‖(1−γ)(1−12α)L2‖∇∂2iΛαhu‖12αL2×‖∂2iΛαhu‖γ(1−12α)L2‖∂2iΛ1+αhu‖(1−γ)(1−12α)L2‖∂3iΛαhu‖12αL2‖∂iu‖12L2‖∂i∂3u‖12L2≲‖u‖H3‖Λαhu‖2H3. | (3.10) |
We estimate I232 similarly as I213, which yields
|I232|=|−∫R3∂3uh⋅∇h∂23u⋅∂33udx|≲‖∇h∂23u‖1−12αL2‖∇h∂23Λα3u‖12αL2‖∂3uh‖1−12αL2‖∂3Λαhuh‖12αL2‖∂33u‖1−12αL2‖∂33Λαhu‖12αL2≲‖Λαh∂23u‖γ(1−12α)L2‖Λ1+αh∂23u‖(1−γ)(1−12α)L2‖∂33Λαhu‖γ12αL2‖∂23Λα+1hu‖(1−γ)12αL2×‖∂3uh‖1−12αL2‖∂3Λαhuh‖1α−1L2‖∂3Λαhuh‖1−12αL2‖∂33u‖1−12αL2‖∂33Λαhu‖12αL2≲‖u‖H3‖Λαhu‖2H3. | (3.11) |
We next consider the term I233, and utilizing the incompressible condition again, we have
|I233|=|−∫R3∂3u3∂33u⋅∂33udx|=|2∑j=1∫R3∂juj∂33u⋅∂33udx|≲2∑j=1‖∂33u‖2−1αL2‖∂33Λαhu‖1αL2‖∂juj‖12L2‖∂3∂juj‖12L2≲2∑j=1‖∂33u‖2−1αL2‖∂33Λαhu‖1αL2‖∂juj‖12α−12L2‖Λαhuj‖γ(1−12α)L2‖Λ1+αhuj‖(1−γ)(1−12α)L2×‖∂3∂juj‖12α−12L2‖∂3Λαhuj‖γ(1−12α)L2‖∂3Λ1+αhuj‖(1−γ)(1−12α)L2≲‖u‖H3‖Λαhu‖2H3. | (3.12) |
Combined with (3.3)–(3.12), we obtain
I2(τ)≲‖u‖H3‖Λαhu‖2H3. |
To bound I3, we can refer to the way which is used in I2 and then divide it into three terms,
I3=3∑i=1∫R3[∂3i(b⋅∇b)−b⋅∇∂3ib]⋅∂3iudx,=3∑i=1(∫R3∂3ib⋅∇b⋅∂3iudx+3∫R3∂2ib⋅∇∂ib⋅∂3iudx+3∫R3∂ib⋅∇∂2ib⋅∂3iudx)=I31+3I32+3I33. | (3.13) |
I31 can be further decomposed into three parts,
I31=3∑i=1∫R3∂3ib⋅∇b⋅∂3iudx=2∑i=1∫R3∂3ib⋅∇b⋅∂3iudx+∫R3∂33bh⋅∇hb⋅∂33udx+∫R3∂33b3∂3b⋅∂33udx=I311+I312+I313. |
By Lemma 1.2 and G-N interpolation inequality,
|I311|=|2∑i=1∫R3∂3ib⋅∇b⋅∂3iudx|≲2∑i=1‖∂3ib‖1−12βL2‖∂3iΛβhb‖12βL2‖∂3iu‖1−12αL2‖∂3iΛαhu‖12αL2‖∇b‖12L2‖∇∂3b‖12L2≲2∑i=1‖∂2iΛβhb‖γ(1−12β)L2‖∂2iΛ1+βhb‖(1−γ)(1−12β)L2‖∂2iΛαhu‖γ(1−12α)L2‖∂2iΛ1+αhu‖(1−γ)(1−12α)L2×‖∂3iΛβhb‖12βL2‖∂3iΛαhu‖12αL2‖∇b‖12L2‖∇∂3b‖12L2≲‖b‖H3‖Λαhu‖H3‖Λβhb‖H3, | (3.14) |
where we have applied inequality
‖∂ib‖L2≤‖Λβhb‖γL2‖Λ1+βhb‖1−γL2(i=1,2). |
By divergence-free condition ∇⋅b=0 and Lemma 1.2, we have
|I312|=|∫R3∂33bh⋅∇hb⋅∂33udx|≲‖∂33bh‖1−12βL2‖∂33Λβhbh‖12βL2‖∂33u‖1−12αL2‖∂33Λαhu‖12αL2‖∇hb‖12L2‖∇h∂3b‖12L2≲‖∂33bh‖1−12βL2‖∂33Λβhbh‖12βL2‖∂33u‖1−12αL2‖∂33Λαhu‖12αL2×‖Λβhb‖γ(1−12β)L2‖Λ1+βhb‖(1−γ)(1−12β)L2‖∇hb‖12β−12L2×‖Λβh∂3b‖γ(1−12α)L2‖Λ1+βh∂3b‖(1−γ)(1−12α)L2‖∇hb‖12α−12L2≲‖u‖1−12αH3‖b‖12αH3‖Λαhu‖12αH3‖Λβhb‖2−12αH3. | (3.15) |
Significantly, we have used G-N interpolation inequality
‖∇hb‖L2≤‖Λβhb‖γL2‖Λ1+βhb‖1−γL2. |
We simplify I313 by the same way as I213, that is,
|I313|=|∫R3∂33b3∂3b⋅∂33udx|=|−2∑j=1∫R3∂23∂jbj∂3b⋅∂33udx|≲2∑j=1‖∂3b‖1−12βL2‖∂3Λβhb‖12βL2‖∂33u‖1−12αL2‖∂33Λαhu‖12αL2‖∂23∂jbj‖1−12βL2‖∂23Λβ3∂jbj‖12βL2≲2∑j=1‖∂3b‖1−12βL2‖∂3Λβhb‖12β(12α+12β−1)L2‖∂3Λβhb‖12β(2−12α−12β)L2×‖∂33u‖1−12αL2‖∂33Λαhu‖12αL2‖∂23∂jbj‖(1−12β)(12α+12β−1)L2×‖∂23Λβhbj‖γ(1−12β)(2−12α−12β)L2‖∂23Λ1+βhbj‖(1−γ)(1−12β)(2−12α−12β)L2×‖∂33Λβhb‖γ12βL2‖∂23Λ1+βhb‖(1−γ)12βL2≲‖u‖1−12αH3‖b‖12αH3‖Λαhu‖12αH3‖Λβhb‖2−12αH3, | (3.16) |
where we have used
‖∂23Λβ3∂jbj‖L2≤‖∂33Λβhb‖γL2‖∂23Λβ+1hb‖1−γL2 |
and
‖∂3Λβhb‖12βL2‖∂23∂jbj‖(1−12β)L2≤‖b‖H3. |
To deal with I32, we also split it into three parts,
I32=3∑i=1∫R3∂2ib⋅∇∂ib⋅∂3iudx=2∑i=1∫R3∂2ib⋅∇∂ib⋅∂3iudx+∫R3∂23bh⋅∇h∂3b⋅∂33u+∫R3∂23b3∂23b⋅∂33udx=I321+I322+I323. |
By Lemma 1.2 and G-N interpolation inequality,
|I321|=|2∑i=1∫R3∂2ib⋅∇∂ib⋅∂3iudx|≲2∑i=1‖∂2ib‖1−12βL2‖∂2iΛβhb‖12βL2‖∂3iu‖1−12αL2‖∂3iΛαhu‖12αL2‖∇∂ib‖12L2‖∇∂i∂3b‖12L2≲2∑i=1‖∂iΛβhb‖γ(1−12β)L2‖∂iΛ1+βhb‖(1−γ)(1−12β)L2‖∂2iΛβhb‖12βL2×‖∂2iΛαhu‖γ(1−12α)L2‖∂2iΛ1+αhu‖(1−γ)(1−12α)L2‖∂3iΛαhu‖12αL2‖∇∂ib‖12L2‖∇∂i∂3b‖12L2≲‖b‖H3‖Λαhu‖H3‖Λβhb‖H3. | (3.17) |
Naturally,
|I322|=|∫R3∂23bh⋅∇h∂3b⋅∂33udx|≲‖∂23bh‖1−12βL2‖∂23Λβhbh‖12βL2‖∂33u‖1−12αL2‖∂33Λαhu‖12αL2‖∇h∂3b‖12L2‖∇h∂23b‖12L2≲‖∂23bh‖1−12βL2‖∂23Λβhbh‖12βL2‖∂33u‖1−12αL2‖∂33Λαhu‖12αL2×‖Λβh∂3b‖γ(1−12β)L2‖Λ1+βh∂3b‖(1−γ)(1−12β)L2‖∇h∂3b‖12β−12L2×‖Λβh∂23b‖γ(1−12α)L2‖Λ1+βh∂23b‖(1−γ)(1−12α)L2‖∇h∂23b‖12α−12L2≲‖u‖1−12αH3‖b‖12αH3‖Λαhu‖12αH3‖Λβhb‖2−12αH3 | (3.18) |
and
|I323|=|∫R3∂23b3∂23b⋅∂33udx|=|−2∑j=1∫R3∂3∂jbj∂23b⋅∂33udx|≲2∑j=1‖∂23b‖1−12βL2‖∂23Λβhb‖12βL2‖∂33u‖1−12αL2‖∂33Λαhu‖12αL2‖∂3∂jbj‖12L2‖∂23∂jbj‖12L2≲2∑j=1‖∂23b‖1−12βL2‖∂23Λβhb‖12βL2‖∂33u‖1−12αL2‖∂33Λαhu‖12αL2×‖∂3Λβhbj‖γ(1−12β)L2‖∂3Λ1+βhbj‖(1−γ)(1−12β)L2‖∂3∂jbj‖12β−12L2×‖∂23Λβhbj‖γ(1−12α)L2‖∂23Λ1+βhbj‖(1−γ)(1−12α)L2‖∂23∂jbj‖12α−12L2≲‖u‖1−12αH3‖b‖12αH3‖Λαhu‖12αH3‖Λβhb‖2−12αH3. | (3.19) |
In the same way, I33 is split into three parts,
I33=3∑i=1∫R3∂ib⋅∇∂2ib⋅∂3iudx=2∑i=1∫R3∂ib⋅∇∂2ib⋅∂3iudx+∫R3∂3bh⋅∇h∂23b⋅∂33udx+∫R3∂3b3∂33b⋅∂33udx=I331+I332+I333. |
Lemma 1.2 and G-N interpolation inequality imply
|I331|=|2∑i=1∫R3∂ib⋅∇∂2ib⋅∂3iudx|≲2∑i=1‖∇∂2ib‖1−12βL2‖∇∂2iΛβhb‖12βL2‖∂3iu‖1−12αL2‖∂3iΛαhu‖12αL2‖∂ib‖12L2‖∂i∂3b‖12L2≲2∑i=1‖∇∂iΛβhb‖γ(1−12β)L2‖∇∂iΛ1+βhb‖(1−γ)(1−12β)L2‖∂2iΛβhb‖12βL2×‖∂2iΛαhu‖γ(1−12α)L2‖∂2iΛ1+αhu‖(1−γ)(1−12α)L2‖∂3iΛαhu‖12αL2‖∂ib‖12L2‖∂i∂3b‖12L2≲‖b‖H3‖Λαhu‖H3‖Λβhb‖H3. | (3.20) |
We estimate I332 similarly as I313, which yields
|I332|=|∫R3∂3bh⋅∇h∂23b⋅∂33udx|≲‖∂3bh‖1−12βL2‖∂3Λβhbh‖12βL2‖∂33u‖1−12αL2‖∂33Λαhu‖12αL2‖∂23∇hb‖1−12βL2‖∂23∇hΛβ3b‖12βL2≲‖∂3bh‖1−12βL2‖∂3Λβhbh‖12β(12α+12β−1)L2‖∂3Λβhbh‖12β(2−12α−12β)L2×‖∂33u‖1−12αL2‖∂33Λαhu‖12αL2‖∂23∇hb‖(1−12β)(12α+12β−1)L2×‖∂23Λβhb‖γ(1−12β)(2−12α−12β)L2‖∂23Λ1+βhb‖(1−γ)(1−12β)(2−12α−12β)L2×‖∂33Λβhb‖γ12βL2‖∂23Λ1+βhb‖(1−γ)12βL2≲‖u‖1−12αH3‖b‖12αH3‖Λαhu‖12αH3‖Λβhb‖2−12αH3. | (3.21) |
Now we turn to the next term I333, by ∇⋅b=0,
|I333|=|∫R3∂3b3∂33b⋅∂33udx|=|−2∑j=1∫R3∂jbj∂33b⋅∂33udx|≲2∑j=1‖∂33b‖1−12βL2‖∂33Λβhb‖12βL2‖∂33u‖1−12αL2‖∂33Λαhu‖12αL2‖∂jbj‖12L2‖∂3∂jbj‖12L2≲2∑j=1‖∂33b‖1−12βL2‖∂33Λβhb‖12βL2‖∂33u‖1−12αL2‖∂33Λαhu‖12αL2×‖Λβhbj‖γ(1−12β)L2‖Λ1+βhbj‖(1−γ)(1−12β)L2‖∂jbj‖12β−12L2×‖∂3Λβhbj‖γ(1−12α)L2‖∂3Λ1+βhbj‖(1−γ)(1−12α)L2‖∂3∂jbj‖12α−12L2≲‖u‖1−12αH3‖b‖12αH3‖Λαhu‖12αH3‖Λβhb‖2−12αH3. | (3.22) |
Utilizing Young's inequality, combining with (3.13)–(3.22), we have
I3(τ)≲‖b‖H3‖Λαhu‖H3‖Λβhb‖H3+‖u‖1−12αH3‖b‖12αH3‖Λαhu‖12αH3‖Λβhb‖2−12αH3≲(‖u‖H3+‖b‖H3)(‖Λαhu‖2H3+‖Λβhb‖2H3). |
Now, we try to bound I4, and we split it into three parts,
I4=−3∑i=1∫R3∂3i(u⋅∇b)⋅∂3ibdx=−3∑i=1(∫R3∂3iu⋅∇b⋅∂3ibdx+3∫R3∂2iu⋅∇∂ib⋅∂3ibdx+3∫R3∂iu⋅∇∂2ib⋅∂3ibdx)=I41+3I42+3I43. | (3.23) |
Similarly as I31, I41 can be divided directly into three parts,
I41=−3∑i=1∫R3∂3iu⋅∇b⋅∂3ibdx=−2∑i=1∫R3∂3iu⋅∇b⋅∂3ibdx−∫R3∂33uh⋅∇hb⋅∂33bdx−∫R3∂33u3∂3b⋅∂33bdx=I411+I412+I413, |
and each term can be bounded by Lemma 1.2 and G-N interpolation inequality. Same as (3.14)–(3.15), we have
|I411|=|−2∑i=1∫R3∂3iu⋅∇b⋅∂3ibdx|≲2∑i=1‖∂3iu‖1−12αL2‖∂3iΛαhu‖12αL2‖∂3ib‖1−12βL2‖∂3iΛβhb‖12βL2‖∇b‖12L2‖∇∂3b‖12L2≲‖b‖H3‖Λαhu‖H3‖Λβhb‖H3 | (3.24) |
and
|I412|=|−∫R3∂33uh⋅∇hb⋅∂33bdx|≲‖∂33uh|1−12αL2‖∂33Λαhuh‖12αL2‖∂33b‖1−12βL2‖∂33Λβhb‖12βL2‖∇hb‖12L2‖∇h∂3b‖12L2≲‖u‖1−12αH3‖b‖12αH3‖Λαhu‖12αH3‖Λβhb‖2−12αH3. | (3.25) |
By ∇⋅u=0 and ‖∂3Λβhb‖1β−1L2≤‖b‖1β−1H3,
|I413|=|−∫R3∂33u3∂3b⋅∂33bdx|=|2∑j=1∫R3∂23∂juj∂3b⋅∂33bdx|≲2∑j=1‖∂23∂juj‖1−12αL2‖∂23Λα3∂juj‖12αL2‖∂3b‖1−12βL2‖∂3Λβhb‖12βL2‖∂33b‖1−12βL2‖∂33Λβhb‖12βL2≲2∑j=1‖∂23Λαhuj‖γ(1−12α)L2‖∂23Λ1+αhuj‖(1−γ)(1−12α)L2‖∂33Λαhu‖γ12αL2‖∂23Λα+1hu‖(1−γ)12αL2×‖∂3b‖1−12βL2‖∂3Λβhb‖1β−1L2‖∂3Λβhb‖1−12βL2‖∂33b‖1−12βL2‖∂33Λαhb‖12βL2≲‖b‖H3‖Λαhu‖H3‖Λβhb‖H3. | (3.26) |
Similarity, I42 can also be divided directly into three terms,
I42=−3∑i=1∫R3∂2iu⋅∇∂ib⋅∂3ibdx=−2∑i=1∫R3∂2iu⋅∇∂ib⋅∂3ibdx−∫R3∂23uh⋅∇h∂3b⋅∂33bdx−∫R3∂23u3∂23b⋅∂33bdx=I421+I422+I423. |
Then, Lemma 1.2 and (3.17)–(3.18) imply
|I421|=|−2∑i=1∫R3∂2iu⋅∇∂ib⋅∂3ibdx|≲2∑i=1‖∂2iu‖1−12αL2‖∂2iΛαhu‖12αL2‖∂3ib‖1−12βL2‖∂3iΛβhb‖12βL2‖∇∂ib‖12L2‖∇∂i∂3b‖12L2≲‖b‖H3‖Λαhu‖H3‖Λβhb‖H3 | (3.27) |
and
|I422|=|−∫R3∂23uh⋅∇h∂3b⋅∂33bdx|≲‖∂23uh‖1−12αL2‖∂23Λαhuh‖12αL2‖∂33b‖1−12βL2‖∂33Λβhb‖12βL2‖∇h∂3b‖12L2‖∇h∂23b‖12L2≲‖u‖1−12αH3‖b‖12αH3‖Λαhu‖12αH3‖Λβhb‖2−12αH3. | (3.28) |
I423 can also be bounded via ∇⋅u=0, Lemma 1.2 and G-N interpolation inequality,
|I423|=|−∫R3∂23u3∂23b⋅∂33bdx|=|2∑j=1∫R3∂3∂juj∂23b⋅∂33bdx|≲2∑j=1‖∂23b‖1−12βL2‖∂23Λβhb‖12βL2‖∂33b‖1−12βL2‖∂33Λβhb‖12βL2‖∂3∂juj‖12L2‖∂23∂juj‖12L2≲2∑j=1‖∂23b‖1−12βL2‖∂23Λβhb‖12βL2‖∂33b‖1−12βL2‖∂33Λβhb‖12βL2×‖∂3Λαhuj‖γ(1−12β)L2‖∂3Λ1+αhuj‖(1−γ)(1−12β)L2‖∂3∂juj‖12β−12L2×‖∂23Λαhuj‖γ(1−12β)L2‖∂23Λ1+αhuj‖(1−γ)(1−12β)L2‖∂23∂juj‖12β−12L2≲‖u‖1β−1H3‖b‖2−1βH3‖Λαhu‖2−1βH3‖Λβhb‖1βH3. | (3.29) |
To deal with I43, we rewrite it as
I43=−3∑i=1∫R3∂iu⋅∇∂2ib⋅∂3ibdx=−2∑i=1∫R3∂iu⋅∇∂2ib⋅∂3ibdx−∫R3∂3uh⋅∇h∂23b⋅∂33bdx−∫R3∂3u3∂33b⋅∂33bdx=I431+I432+I433. |
Again, by Lemma 1.2 and G-N interpolation inequality,
|I431|=|−2∑i=1∫R3∂iu⋅∇∂2ib⋅∂3ibdx|≲2∑i=1‖∇∂2ib‖1−12βL2‖∇∂2iΛβhb‖12βL2‖∂3ib‖1−12βL2‖∂3iΛβhb‖12βL2‖∂iu‖12L2‖∂i∂3u‖12L2≲2∑i=1‖∇∂iΛβhb‖γ(1−12β)L2‖∇∂iΛ1+βhb‖(1−γ)(1−12β)L2‖∂2iΛβhb‖12βL2×‖∂2iΛβhb‖γ(1−12β)L2‖∂2iΛ1+βhb‖(1−γ)(1−12β)L2‖∂3iΛβhb‖12βL2‖∂iu‖12L2‖∂i∂3u‖12L2≲‖u‖H3‖Λβhb‖2H3. | (3.30) |
The estimate for I432 is more complex, and utilizing Lemma 1.2 and G-N interpolation inequality, we have
|I432|=|−∫R3∂3uh⋅∇h∂23b⋅∂33bdx|≲‖∂3uh‖1−12αL2‖∂3Λαhuh‖12αL2‖∂33b‖1−12βL2‖∂33Λβhb‖12βL2‖∇h∂23b‖1−12βL2‖∇h∂23Λα3b‖12βL2≲‖∂3uh‖1−12αL2‖∂33b‖1−12βL2‖∂33Λβhb‖12βL2‖∇h∂23Λα3b‖12βL2×‖∂3Λαhuh‖θ12αL2‖∂3Λαhuh‖(1−θ)12αL2‖∇h∂23b‖θ(1−12β)L2‖∇h∂23b‖(1−θ)(1−12β)L2≲‖∂3uh‖1−12αL2‖∂33b‖1−12βL2‖∂33Λβhb‖12βL2‖∂33Λβhb‖γ12βL2‖∂23Λ1+βhb‖(1−γ)12βL2×‖∂3Λαhuh‖θ12αL2‖∂3Λαhuh‖(1−θ)12αL2×‖∇h∂23b‖θ(1−12β)L2‖Λβh∂23b‖γ(1−θ)(1−12β)L2‖Λ1+βh∂23b‖(1−γ)(1−θ)(1−12β)L2≲‖u‖(1−12α)+θ12αH3‖b‖(1−12β)+θ(1−12β)H3‖Λαhu‖(1−θ)12αH3‖Λβhb‖(1−θ)(1−12β)+1βH3, | (3.31) |
where θ=12α+12β−112α−12β+1,1−θ=2−1β12α−12β+1. It is worth noting that
‖∂3Λαhuh‖12αL2‖∇h∂23b‖1−12βL2 |
allows us to extract part of
‖∂3Λαhuh‖θ12αL2‖∇h∂23b‖θ(1−12β)L2 |
which can be bounded by ‖u‖θ12αH3 and ‖b‖θ(1−12β)H3, and this brings us the hope of controlling I432 suitably. We estimate I433 by the same way as I423, which is
|I433|=|−∫R3∂3u3∂33b⋅∂33bdxdx|=|2∑j=1∫R3∂juj∂33b⋅∂33bdx|≲2∑j=1‖∂33b‖2−1βL2‖∂33Λβhb‖1βL2‖∂juj‖12L2‖∂3∂juj‖12L2≲2∑j=1‖∂33b‖2−1βL2‖∂33Λβhb‖1βL2‖Λαhuj‖γ(1−12β)L2‖Λ1+αhuj‖(1−γ)(1−12β)L2‖∂juj‖12β−12L2×‖∂3Λαhuj‖γ(1−12β)L2‖∂3Λ1+αhuj‖(1−γ)(1−12β)L2‖∂3∂juj‖12β−12L2≲‖u‖1β−1H3‖b‖2−1βH3‖Λαhu‖2−1βH3‖Λβhb‖1βH3. | (3.32) |
Combining with (3.23)–(3.32), we obtain
I4(τ)≲‖u‖H3‖Λβhb‖2H3+‖b‖H3‖Λαhu‖H3‖Λβhb‖H3+‖u‖1−12αH3‖b‖12αH3‖Λαhu‖12αH3‖Λβhb‖2−12αH3+‖u‖1β−1H3‖b‖2−1βH3‖Λαhu‖2−1βH3‖Λβhb‖1βH3+‖u‖(1−12α)+θ12αH3‖b‖(1−12β)+θ(1−12β)H3‖Λαhu‖(1−θ)12αH3‖Λβhb‖(1−θ)(1−12β)+1βH3≲(‖u‖H3+‖b‖H3)(‖Λαhu‖2H3+‖Λβhb‖2H3). |
It remains to estimate I5, and since the estimation in I5 is similar to what is done in I2−I4, we will omit the specific calculation process for I5.
I5=3∑i=1∫R3[∂3i(b⋅∇u)−b⋅∇∂3iu]⋅∂3ibdx=3∑i=1(∫R3∂3ib⋅∇u⋅∂3ibdx+3∫R3∂2ib⋅∇∂iu⋅∂3ibdx+3∫R3∂ib⋅∇∂2iu⋅∂3ibdx)=I51+3I52+3I53. | (3.33) |
We turn to estimate I51,
I51=3∑i=1∫R3∂3ib⋅∇u⋅∂3ibdx=2∑i=1∫R3∂3ib⋅∇u⋅∂3ibdx+∫R3∂33bh⋅∇hu⋅∂33bdx+∫R3∂33b3∂3u⋅∂33bdx=I511+I512+I513. |
By Lemma 1.2 and G-N interpolation inequality,
|I511|=|2∑i=1∫R3∂3ib⋅∇u⋅∂3ibdx|≲‖u‖H3‖Λβhb‖2H3, | (3.34) |
|I512|=|∫R3∂33bh⋅∇hu⋅∂33bdx|≲‖u‖1β−1H3‖b‖2−1βH3‖Λαhu‖2−1βH3‖Λβhb‖1βH3 | (3.35) |
and
|I513|=|∫R3∂33b3∂3u⋅∂33bdx|=|−2∑j=1∫R3∂23∂jbj∂3u⋅∂33bdx|≲‖u‖(1−12α)+θ12αH3‖b‖(1−12β)+θ(1−12β)H3‖Λαhu‖(1−θ)12αH3‖Λβhb‖(1−θ)(1−12β)+1βH3, | (3.36) |
where θ=12α+12β−112α−12β+1,1−θ=2−1β12α−12β+1. Now, we focus on I52 and set
I52=3∑i=1∫R3∂2ib⋅∇∂iu⋅∂3ibdx=2∑i=1∫R3∂2ib⋅∇∂iu⋅∂3ibdx+∫R3∂23bh⋅∇h∂3u⋅∂33bdx+∫R3∂23b3∂23u⋅∂33bdx=I521+I522+I523. |
By Lemma 1.2 and G-N interpolation inequality,
|I521|=|2∑i=1∫R3∂2ib⋅∇∂iu⋅∂3ibdx|≲‖u‖H3‖Λβhb‖2H3, | (3.37) |
|I522|=|∫R3∂23bh⋅∇h∂3u⋅∂33bdx|≲‖u‖1β−1H3‖b‖2−1βH3‖Λαhu‖2−1βH3‖Λβhb‖1βH3 | (3.38) |
and
|I523|=|∫R3∂23b3∂23u⋅∂33bdx|=|−2∑j=1∫R3∂3∂jbj∂23u⋅∂33bdx|≲‖u‖1−12αH3‖b‖12αH3‖Λαhu‖12αH3‖Λβhb‖2−12αH3. | (3.39) |
We try to bound I53,
I53=3∑i=1∫R3∂ib⋅∇∂2iu⋅∂3ibdx=2∑i=1∫R3∂ib⋅∇∂2iu⋅∂3ibdx+∫R3∂3bh⋅∇h∂23u⋅∂33bdx+∫R3∂3b3∂33u⋅∂33bdx=I531+I532+I533. |
Again, by Lemma 1.2 and G-N interpolation inequality,
|I531|=|2∑i=1∫R3∂ib⋅∇∂2iu⋅∂3ibdx|≲‖b‖H3‖Λαhu‖H3‖Λβhb‖H3, | (3.40) |
|I532|=|∫R3∂3bh⋅∇h∂23u⋅∂33bdx|≲‖b‖H3‖Λαhu‖H3‖Λβhb‖H3 | (3.41) |
and
|I533|=|∫R3∂3b3∂33u⋅∂33bdx|=|−2∑j=1∫R3∂jbj∂33u⋅∂33bdx|≲‖u‖1−12αH3‖b‖12αH3‖Λαhu‖12αH3‖Λβhb‖2−12αH3. | (3.42) |
Combined with (3.33)–(3.42), we obtain
I5(τ)≲‖u‖H3‖Λβhb‖2H3+‖b‖H3‖Λαhu‖H3‖Λβhb‖H3+‖u‖1β−1H3‖b‖2−1βH3‖Λαhu‖2−1βH3‖Λβhb‖1βH3+‖u‖1−12αH3‖b‖12αH3‖Λαhu‖12αH3‖Λβhb‖2−12αH3+‖u‖(1−12α)+θ12αH3‖b‖(1−12β)+θ(1−12β)H3‖Λαhu‖(1−θ)12αH3‖Λβhb‖(1−θ)(1−12β)+1βH3≲(‖u‖H3+‖b‖H3)(‖Λαhu‖2H3+‖Λβhb‖2H3). |
Adding (3.1), (3.2) and integrating in time,
E(t)≲E(0)+∫t0I2(τ)+I3(τ)+I4(τ)+I5(τ)dτ, |
and inserting all the bounds obtained above for I2 through I5, we obtain (1.6). For example, the bounds for I2 yield
∫t0|I2(τ)|dτ≲∫t0‖u‖H3‖Λαhu‖2H3dτ≲supτ∈[0,t]‖u(τ)‖H3∫t0‖Λαhu‖2H3dτ≲E(t)32. |
The time integrals of I3−I5 are similarly bounded, which completes the proof of (1.6).
Ji is supported by the National Natural Science Foundation of China (NNSFC) under grant number 12001065 and Creative Research Groups of the Natural Science Foundation of Sichuan under grant number 2023NSFSC1984. The authors are grateful to the referee for careful reading of the paper and valuable suggestions and comments.
The authors declare no conflict of interest.
[1] | P. A. Davidson, An introduction to magnetohydrodynamics, Cambridge: Cambridge University Press, 2001. https://doi.org/10.1017/CBO9780511626333 |
[2] | D. Biskamp, Nonlinear magnetohydrodynamics, Cambridge, New York: Cambridge University Press, 1993. https://doi.org/10.1017/CBO9780511599965 |
[3] |
H. Alfvén, Existence of electromagnetic-hydrodynamic vaves, Nature, 150 (1942), 405–406. https://doi.org/10.1038/150405d0 doi: 10.1038/150405d0
![]() |
[4] |
B. Dong, Y. Jia, J. Li, J. Wu, Global regularity for the 2D magnetohydrodynamics equations with horizontal dissipation and horizontal magnetic diffusion, J. Math. Fluid Mech., 20 (2018), 1541–1565. https://doi.org/10.1007/s00021-018-0376-3 doi: 10.1007/s00021-018-0376-3
![]() |
[5] |
Y. Dai, R. Ji, J. Wu, Unique weak solutions of the magnetohydrodynamic equations with fractional dissipation, Z. Angew. Math. Mech., 100 (2020), e201900290. https://doi.org/10.1002/zamm.201900290 doi: 10.1002/zamm.201900290
![]() |
[6] |
Y. Dai, Z. Tan, J. Wu, A class of global large solutions to the magnetohydrodynamic equations with fractional dissipation, Z. Angew. Math. Phys., 70 (2019), 153. https://doi.org/10.1007/s00033-019-1193-0 doi: 10.1007/s00033-019-1193-0
![]() |
[7] |
M. Sermange, R. Temam, Some mathematical questions related to the MHD equations, Commun. Pure Appl. Math., 36 (1983), 635–664. https://doi.org/10.1002/cpa.3160360506 doi: 10.1002/cpa.3160360506
![]() |
[8] |
J. Wu, Generalized MHD equations, J. Differ. Equations, 195 (2003), 284–312. https://doi.org/10.1016/j.jde.2003.07.007 doi: 10.1016/j.jde.2003.07.007
![]() |
[9] |
J. Wu, Global regularity for a class of generalized magnetohydrodynamic equations, J. Math. Fluid Mech., 13 (2011), 295–305. https://doi.org/10.1007/s00021-009-0017-y doi: 10.1007/s00021-009-0017-y
![]() |
[10] | J. Wu, The 2D magnetohydrodynamic equations with partial or fractional dissipation, In: Lectures on the analysis of nonlinear partial differential equations: part 5, International Press of Boston, Inc., 2018,283–332. |
[11] |
K. Yamazaki, On the global well-posedness of N-dimensional generalized MHD system in anisotropic spaces, Adv. Differential Equations, 19 (2014), 201–224. https://doi.org/10.57262/ade/1391109084 doi: 10.57262/ade/1391109084
![]() |
[12] |
W. Yang, Q. Jiu, J. Wu, The 3D incompressible magnetohydrodynamic equations with fractional partial dissipation, J. Differ. Equations, 266 (2019), 630–652. https://doi.org/10.1016/j.jde.2018.07.046 doi: 10.1016/j.jde.2018.07.046
![]() |
[13] |
S. Abe, S. Thurner, Anomalous diffusion in view of Einsteins 1905 theory of Brownian motion, Physica A, 356 (2005), 403–407. https://doi.org/10.1016/j.physa.2005.03.035 doi: 10.1016/j.physa.2005.03.035
![]() |
[14] |
M. Jara, Nonequilibrium scaling limit for a tagged particle in the simple exclusion process with long jumps, Commun. Pure Appl. Math., 62 (2009), 198–214. https://doi.org/10.1002/cpa.20253 doi: 10.1002/cpa.20253
![]() |
[15] |
U. Frisch, S. Kurien, R. Pandit, W. Pauls, S. Ray, A. Wirth, et al., Hyperviscosity, Galerkin truncation, and bottlenecks in turbulence, Phys. Rev. Lett., 101 (2008), 144501. https://doi.org/10.1103/PhysRevLett.101.144501 doi: 10.1103/PhysRevLett.101.144501
![]() |
[16] |
K. Yamazaki, On the global regularity of two-dimensional generalized magnetohydrodynamics system, J. Math. Anal. Appl., 416 (2014), 99–111. https://doi.org/10.1016/j.jmaa.2014.02.027 doi: 10.1016/j.jmaa.2014.02.027
![]() |
[17] |
K. Yamazaki, Global regularity of logarithmically supercritical MHD system with zero diffusivity, Appl. Math. Lett., 29 (2014), 46–51. https://doi.org/10.1016/j.aml.2013.10.014 doi: 10.1016/j.aml.2013.10.014
![]() |
[18] |
K. Yamazaki, Global regularity of logarithmically supercritical MHD system with improved logarithmic powers, Dynam. Part. Differ. Eq., 15 (2018), 147–173. https://doi.org/10.4310/DPDE.2018.v15.n2.a4 doi: 10.4310/DPDE.2018.v15.n2.a4
![]() |
[19] |
Z. Ye, X. Xu, Global regularity of the two-dimensional incompressible generalized magnetohydrodynamics system, Nonlinear Anal., 100 (2014), 86–96. https://doi.org/10.1016/j.na.2014.01.012 doi: 10.1016/j.na.2014.01.012
![]() |
[20] |
Z. Ye, Remark on the global regularity of 2D MHD equations with almost Laplacian magnetic diffusion, J. Evol. Equ., 18 (2018), 821–844. https://doi.org/10.1007/s00028-017-0421-3 doi: 10.1007/s00028-017-0421-3
![]() |
[21] |
Q. Jiu, J. Zhao, A remark on global regularity of 2D generalized magnetohydrodynamic equations, J. Math. Anal. Appl., 412 (2014), 478–484. https://doi.org/10.1016/j.jmaa.2013.10.074 doi: 10.1016/j.jmaa.2013.10.074
![]() |
[22] |
Q. Jiu, J. Zhao, Global regularity of 2D generalized MHD equations with magnetic diffusion, Z. Angew. Math. Phys., 66 (2015), 677–687. https://doi.org/10.1007/s00033-014-0415-8 doi: 10.1007/s00033-014-0415-8
![]() |
[23] |
C. Tran, X. Yu, Z. Zhai, On global regularity of 2D generalized magnetohydrodynamic equations, J. Differ. Equations, 254 (2013), 4194–4216. https://doi.org/10.1016/j.jde.2013.02.016 doi: 10.1016/j.jde.2013.02.016
![]() |
[24] |
J. Wu, Regularity criteria for the generalized MHD equations, Commun. Part. Diff. Eq., 33 (2008), 285–306. https://doi.org/10.1080/03605300701382530 doi: 10.1080/03605300701382530
![]() |
[25] |
K. Yamazaki, Remarks on the global regularity of the two-dimensional magnetohydrodynamics system with zero dissipation, Nonlinear Anal., 94 (2014), 194–205. https://doi.org/10.1016/j.na.2013.08.020 doi: 10.1016/j.na.2013.08.020
![]() |
[26] |
B. Yuan, L. Bai, Remarks on global regularity of 2D generalized MHD equations, J. Math. Anal. Appl., 413 (2014), 633–640. https://doi.org/10.1016/j.jmaa.2013.12.024 doi: 10.1016/j.jmaa.2013.12.024
![]() |
[27] |
Y. Cai, Z. Lei, Global well-posedness of the incompressible magnetohydrodynamics, Arch. Rational Mech. Anal., 228 (2018), 969–993. https://doi.org/10.1007/s00205-017-1210-4 doi: 10.1007/s00205-017-1210-4
![]() |
[28] |
L. He, L. Xu, P. Yu, On global dynamics of three dimensional magnetohydrodynamics: nonlinear stability of Alfvén waves, Ann. PDE, 4 (2018), 5. https://doi.org/10.1007/s40818-017-0041-9 doi: 10.1007/s40818-017-0041-9
![]() |
[29] |
R. Pan, Y. Zhou, Y. Zhu, Global classical solutions of three dimensional viscous MHD system without magnetic diffusion on periodic boxes, Arch. Rational Mech. Anal., 227 (2018), 637–662. https://doi.org/10.1007/s00205-017-1170-8 doi: 10.1007/s00205-017-1170-8
![]() |
[30] |
D. Wei, Z. Zhang, Global well-posedness of the MHD equations in a homogeneous magnetic field, Anal. PDE, 10 (2017), 1361–1406. https://doi.org/10.2140/apde.2017.10.1361 doi: 10.2140/apde.2017.10.1361
![]() |
[31] | J. Pedlosky, Geophysical fluid dynamics, New York: Springer, 1987. https://doi.org/10.1007/978-1-4612-4650-3 |
[32] |
N. Boardman, H. Lin, J. Wu, Stabilization of a background magnetic field on a 2D magnetohydrodynamic flow, SIAM J. Math. Anal., 52 (2020), 5001–5035. https://doi.org/10.1137/20M1324776 doi: 10.1137/20M1324776
![]() |
[33] |
C. Cao, J. Wu, B. Yuan, The 2D incompressible magnetohydrodynamics equations with only magnetic diffusion, SIAM J. Math. Anal., 46 (2014), 588–602. https://doi.org/10.1137/130937718 doi: 10.1137/130937718
![]() |
[34] |
B. Dong, J. Li, J. Wu, Global regularity for the 2D MHD equations with partial hyperresistivity, Int. Math. Res. Notices, 14 (2019), 4261–4280. https://doi.org/10.1093/imrn/rnx240 doi: 10.1093/imrn/rnx240
![]() |
[35] |
R. Ji, H. Lin, J. Wu, L. Yan, Stability for a system of the 2D magnetohydrodynamic equations with partial dissipation, Appl. Math. Lett., 94 (2019), 244–249. https://doi.org/10.1016/j.aml.2019.03.013 doi: 10.1016/j.aml.2019.03.013
![]() |
[36] |
R. Ji, J. Wu, W. Yang, Stability and optimal decay for the 3D Navier-Stokes equations with horizontal dissipation, J. Differ. Equations, 290 (2021), 57–77. https://doi.org/10.1016/j.jde.2021.04.026 doi: 10.1016/j.jde.2021.04.026
![]() |
[37] |
Q. Jiu, D. Niu, J. Wu, X. Xu, H. Yu, The 2D magnetohydrodynamic equations with magnetic diffusion, Nonlinearity, 28 (2015), 3935–3955. https://doi.org/10.1088/0951-7715/28/11/3935 doi: 10.1088/0951-7715/28/11/3935
![]() |
[38] |
H. Lin, R. Ji, J. Wu, L. Yan, Stability of perturbations near a background magnetic field of the 2D incompressible MHD equations with mixed partial dissipation, J. Funct. Anal., 279 (2020), 108519. https://doi.org/10.1016/j.jfa.2020.108519 doi: 10.1016/j.jfa.2020.108519
![]() |
[39] |
J. Wu, Y. Zhu, Global solutions of 3D incompressible MHD system with mixed partial dissipation and magnetic diffusion near an equilibrium, Adv. Math., 377 (2021), 107466. https://doi.org/10.1016/j.aim.2020.107466 doi: 10.1016/j.aim.2020.107466
![]() |
[40] |
Y. Zhou, Y. Zhu, Global classical solutions of 2D MHD system with only magnetic diffusion on periodic domain, J. Math. Phys., 59 (2018), 081505. https://doi.org/10.1063/1.5018641 doi: 10.1063/1.5018641
![]() |
[41] |
P. Mironescu, H. Brezis, Gagliardo-Nirenberg inequalities and non-inequalities: the full story, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018), 1355–1376. https://doi.org/10.1016/j.anihpc.2017.11.007 doi: 10.1016/j.anihpc.2017.11.007
![]() |
[42] | E. Gagliardo, Ulteriori proprietà di alcune classi di funzioni in pià variabili, Ricerche Mat., 8 (1959), 24–51. |
[43] | L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 115–162. |
[44] | T. Tao, Nonlinear dispersive equations: local and global analysis, Providence, RI: American Mathematical Society, 2006. |
[45] |
C. Cao, D. Regmi, J. Wu, The 2D MHD equations with horizontal dissipation and horizontal magnetic diffusion, J. Differ. Equations, 254 (2013), 2661–2681. https://doi.org/10.1016/j.jde.2013.01.002 doi: 10.1016/j.jde.2013.01.002
![]() |
[46] |
C. Cao, J. Wu, Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion, Adv. Math., 226 (2011), 1803–1822. https://doi.org/10.1016/j.aim.2010.08.017 doi: 10.1016/j.aim.2010.08.017
![]() |