Research article

One new blow-up criterion for the two-dimensional full compressible magnetohydrodynamic equations

  • Received: 06 March 2023 Revised: 09 April 2023 Accepted: 12 April 2023 Published: 04 May 2023
  • MSC : 76W05, 35B44

  • This paper concerns the blow-up criterion for two-dimensional (2D) viscous, compressible, and heat conducting magnetohydrodynamic(MHD) flows. When the magnetic field $ H $ satisfies the perfect conducting boundary condition $ H\cdot n = \mbox{curl} H = 0 $, we prove that for the initial boundary value problem of the two-dimensional full compressible MHD flows with initial density allowed to vanish, the strong solution exists globally provided $ \|H\|_{L^\infty(0, T; \; L^b)}+\| {{\rm{div }}} u\|_{L^1(0, T; \; L^\infty)} < \infty $ for any $ b > 2 $.

    Citation: Li Lu. One new blow-up criterion for the two-dimensional full compressible magnetohydrodynamic equations[J]. AIMS Mathematics, 2023, 8(7): 15876-15891. doi: 10.3934/math.2023810

    Related Papers:

  • This paper concerns the blow-up criterion for two-dimensional (2D) viscous, compressible, and heat conducting magnetohydrodynamic(MHD) flows. When the magnetic field $ H $ satisfies the perfect conducting boundary condition $ H\cdot n = \mbox{curl} H = 0 $, we prove that for the initial boundary value problem of the two-dimensional full compressible MHD flows with initial density allowed to vanish, the strong solution exists globally provided $ \|H\|_{L^\infty(0, T; \; L^b)}+\| {{\rm{div }}} u\|_{L^1(0, T; \; L^\infty)} < \infty $ for any $ b > 2 $.



    加载中


    [1] P. A. Davidson, An introduction to magnetohydrodynamics, Cambridge: Cambridge University Press, 2001.
    [2] B. Ducomet, E. Feireisl, The equations of magnetohydrodynamics: on the interaction between matter and radiation in the evolution of gaseous stars, Commun. Math. Phys., 266 (2006), 595–629. https://doi.org/10.1007/s00220-006-0052-y doi: 10.1007/s00220-006-0052-y
    [3] C. S. Dou, S. Jiang, Q. C. Ju, Global existence and the low Mach number limit for the compressible magnetohydrodynamic equations in a bounded domain with perfectly conducting boundary, Z. Angew. Math. Phys., 64 (2013), 1661–1678. https://doi.org/10.1007/s00033-013-0311-7 doi: 10.1007/s00033-013-0311-7
    [4] J. F. Gerbeau, C. Le Bris, T. Leliévre, Mathematical methods for the magnetohydrodynamics of Liquid metals, numerical mathematics and scientific computation, Oxford: Oxford University Press, 2006.
    [5] J. S. Fan, W. H. Yu, Strong solution to the compressible magnetohydrodynamic equations with vacuum, Nonlinear Anal. Real World Appl., 10 (2009), 392–409. https://doi.org/10.1016/j.nonrwa.2007.10.001 doi: 10.1016/j.nonrwa.2007.10.001
    [6] B. Q. Lü, B. Huang, On strong solutions to the Cauchy problem of the two-dimensional compressible magnetohydrodynamic equations with vacuum, Nonlinearity, 28 (2015), 509–530. https://doi.org/10.1088/0951-7715/28/2/509 doi: 10.1088/0951-7715/28/2/509
    [7] H. L. Li, X. Y. Xu, J. W. Zhang, Global classical solutions to 3D compressible magnetohydrodynamic equations with large oscillations and vacuum, SIAM J. Math. Anal., 45 (2013), 1356–1387. https://doi.org/10.1137/120893355 doi: 10.1137/120893355
    [8] B. Q. Lü, X. D. Shi, X. Y. Xu, Global well-posedness and large time asymptotic behavior of strong solutions to the compressible magnetohydrodynamic equations with vacuum, Indiana Univ. Math. J., 65 (2016), 725–975.
    [9] X. P. Hu, D. H. Wang, Global solutions to the three-dimensional full compressible magnetohydrodynamic flows, Commun. Math. Phys., 283 (2008), 255–284. https://doi.org/10.1007/s00220-008-0497-2 doi: 10.1007/s00220-008-0497-2
    [10] X. P. Hu, D. H. Wang, Global existence and large-time behavior of solutions to the threedimensional equations of compressible magnetohydrodynamic flows, Arch. Ration. Mech. Anal., 197 (2010), 203–238. https://doi.org/10.1007/s00205-010-0295-9 doi: 10.1007/s00205-010-0295-9
    [11] J. S. Fan, W. H. Yu, Global variational solutions to the compressible magnetohydrodynamic equations, Nonlinear Anal., 69 (2008), 3637–3660. https://doi.org/10.1016/j.na.2007.10.005 doi: 10.1016/j.na.2007.10.005
    [12] J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 9 (1962), 187–195.
    [13] C. He, Z. P. Xin, On the regularity of solutions to the magnetohydrodynamic equations, J. Differ. Equ., 213 (2005), 235–254. https://doi.org/10.1016/j.jde.2004.07.002 doi: 10.1016/j.jde.2004.07.002
    [14] X. D. Huang, J. Li, Z. P. Xin, Serrin type criterion for the three-dimensional compressible flows, SIAM J. Math. Anal., 43 (2011), 1872–1886. https://doi.org/10.1137/100814639 doi: 10.1137/100814639
    [15] J. S. Fan, S. Jiang, Y. B. Ou, A blow-up criterion for compressible viscous heat-conductive flows, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 337–350. https://doi.org/10.1016/j.anihpc.2009.09.012 doi: 10.1016/j.anihpc.2009.09.012
    [16] X. D. Huang, J. Li, Z. P. Xin, Blowup criterion for viscous barotropic flows with vacuum states, Comm. Math. Phys., 301 (2011), 23–35. https://doi.org/10.1007/s00220-010-1148-y doi: 10.1007/s00220-010-1148-y
    [17] Y. Wang, One new blowup criterion for the 2D full compressible Navier-Stokes system, Nonlinear Anal. Real World Appl., 16 (2014), 214–226. https://doi.org/10.1016/j.nonrwa.2013.09.020 doi: 10.1016/j.nonrwa.2013.09.020
    [18] X. Y. Xu, J. W. Zhang, A blow-up criterion for 3D compressible magnetohydrodynamic equations with vaccum, Math. Models Method. Appl. Sci., 22 (2012), 1150010. https://doi.org/10.1142/S0218202511500102 doi: 10.1142/S0218202511500102
    [19] M. Lu, Y. Du, Z. A. Yao, Blow-up criterion for compressible MHD equations, J. Math. Anal. Appl., 379 (2011), 425–438. https://doi.org/10.1016/j.jmaa.2011.01.043 doi: 10.1016/j.jmaa.2011.01.043
    [20] M. T. Chen, S. Q. Liu, Blow-up criterion for 3D viscous-resistive compressible magnetohydrodynamic equations, Math. Method. Appl. Sci., 36 (2013), 1145–1156. https://doi.org/10.1002/mma.2674 doi: 10.1002/mma.2674
    [21] X. D. Huang, J. Li, Serrin-type blowup criterion for viscous, compressible, and heat conducting Navier-Stokes and magnetohydrodynamic flows, Comm. Math. Phys., 324 (2013), 147–171. https://doi.org/10.1007/s00220-013-1791-1 doi: 10.1007/s00220-013-1791-1
    [22] J. S. Fan, F. C. Li, G. Nakamura, A blow-up criterion to the 2D full compressible magnetohydrodynamic equations, Math. Meth. Appl. Sci., 38 (2015), 2073–2080.
    [23] Y. Cho, H. Kim, Existence results for viscous polytropic fluids with vacuum, J. Differ. Equ., 228 (2006), 377–411. https://doi.org/10.1016/j.jde.2006.05.001 doi: 10.1016/j.jde.2006.05.001
    [24] Y. Z. Sun, C. Wang, Z. F. Zhang, A Beale-Kato-Majda Blow-up criterion for the 3-D compressible Navier-Stokes equations, J. Math. Pures Appl., 95 (2011), 36–47. https://doi.org/10.1016/j.matpur.2010.08.001 doi: 10.1016/j.matpur.2010.08.001
    [25] E. Feireisl, Dynamics of viscous compressible fluids, Oxford: Oxford Science Publication, 2004.
    [26] H. Y. Wen, C. J. Zhu, Blow-up criterions of strong solutions to 3D compressible Navier-Stokes equations with vacuum, Adv. Math., 248 (2013), 534–572. https://doi.org/10.1016/j.aim.2013.07.018 doi: 10.1016/j.aim.2013.07.018
    [27] L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 115–162.
    [28] Y. Cho, H. J. Choe, H. Kim, Unique solvability of the initial boundary value problems for compressible viscous fluids, J. Math. Pures Appl., 83 (2004), 243–275. https://doi.org/10.1016/j.matpur.2003.11.004 doi: 10.1016/j.matpur.2003.11.004
    [29] S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm. Pure Appl. Math., 12 (1959), 623–727.
    [30] S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II, Comm. Pure Appl. Math., 17 (1964), 35–92. https://doi.org/10.1002/cpa.3160170104 doi: 10.1002/cpa.3160170104
    [31] H. Brezis, T. Gallouet, Nonlinear Schrödinger evolution equations, Nonlinear Anal. TMA, 4 (1980), 677–681.
    [32] H. Brezis, S. Wainger, A note on limiting cases of Sobolev embedding and convolution inequalities, Commun. Part. Diff. Eq., 5 (1980), 773–789.
    [33] X. D. Huang, J. Li, Y. Wang, Serrin-type blowup criterion for full compressible Navier-Stokes system, Arch. Ration. Mech. Anal., 207 (2013), 303–316. https://doi.org/10.1007/s00205-012-0577-5 doi: 10.1007/s00205-012-0577-5
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1079) PDF downloads(45) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog