This paper concerns the blow-up criterion for two-dimensional (2D) viscous, compressible, and heat conducting magnetohydrodynamic(MHD) flows. When the magnetic field H satisfies the perfect conducting boundary condition H⋅n=curlH=0, we prove that for the initial boundary value problem of the two-dimensional full compressible MHD flows with initial density allowed to vanish, the strong solution exists globally provided ‖H‖L∞(0,T;Lb)+‖divu‖L1(0,T;L∞)<∞ for any b>2.
Citation: Li Lu. One new blow-up criterion for the two-dimensional full compressible magnetohydrodynamic equations[J]. AIMS Mathematics, 2023, 8(7): 15876-15891. doi: 10.3934/math.2023810
[1] | Zhaoyang Shang . Osgood type blow-up criterion for the 3D Boussinesq equations with partial viscosity. AIMS Mathematics, 2018, 3(1): 1-11. doi: 10.3934/Math.2018.1.1 |
[2] | Ying Wang, Yunxi Guo . Blow-up solution and analyticity to a generalized Camassa-Holm equation. AIMS Mathematics, 2023, 8(5): 10728-10744. doi: 10.3934/math.2023544 |
[3] | Huafei Di, Yadong Shang . Blow-up phenomena for a class of metaparabolic equations with time dependent coeffcient. AIMS Mathematics, 2017, 2(4): 647-657. doi: 10.3934/Math.2017.4.647 |
[4] | Jae-Myoung Kim . Blow-up criteria for the full compressible Navier-Stokes equations involving temperature in Vishik Spaces. AIMS Mathematics, 2022, 7(8): 15693-15703. doi: 10.3934/math.2022859 |
[5] | Yina Lin, Qian Zhang, Meng Zhou . Global existence of classical solutions for the 2D chemotaxis-fluid system with logistic source. AIMS Mathematics, 2022, 7(4): 7212-7233. doi: 10.3934/math.2022403 |
[6] | Chenchen Lu, Lin Chen, Shaoyong Lai . Local well-posedness and blow-up criterion to a nonlinear shallow water wave equation. AIMS Mathematics, 2024, 9(1): 1199-1210. doi: 10.3934/math.2024059 |
[7] | Yaxin Zhao, Xiulan Wu . Asymptotic behavior and blow-up of solutions for a nonlocal parabolic equation with a special diffusion process. AIMS Mathematics, 2024, 9(8): 22883-22909. doi: 10.3934/math.20241113 |
[8] | Yaojun Ye, Lanlan Li . Global existence and blow-up of solutions for logarithmic Klein-Gordon equation. AIMS Mathematics, 2021, 6(7): 6898-6914. doi: 10.3934/math.2021404 |
[9] | Sen Ming, Jiayi Du, Yaxian Ma . The Cauchy problem for coupled system of the generalized Camassa-Holm equations. AIMS Mathematics, 2022, 7(8): 14738-14755. doi: 10.3934/math.2022810 |
[10] | Tariq Mahmood, Zhaoyang Shang . Blow-up criterion for incompressible nematic type liquid crystal equations in three-dimensional space. AIMS Mathematics, 2020, 5(2): 746-765. doi: 10.3934/math.2020051 |
This paper concerns the blow-up criterion for two-dimensional (2D) viscous, compressible, and heat conducting magnetohydrodynamic(MHD) flows. When the magnetic field H satisfies the perfect conducting boundary condition H⋅n=curlH=0, we prove that for the initial boundary value problem of the two-dimensional full compressible MHD flows with initial density allowed to vanish, the strong solution exists globally provided ‖H‖L∞(0,T;Lb)+‖divu‖L1(0,T;L∞)<∞ for any b>2.
In this paper, we consider the two-dimensional viscous, compressible and heat conducting magnetohydrodynamic equations in the Eulerian coordinates (see [1])
{ρt+div(ρu)=0,(ρu)t+div(ρu⊗u)+∇P=μ△u+(μ+λ)∇(divu)+H⋅∇H−12∇|H|2,cv((ρθ)t+div(ρuθ))+Pdivu=κΔθ+λ(divu)2+ν|curlH|2+2μ|D(u)|2,Ht+u⋅∇H−H⋅∇u+Hdivu=νΔH,divH=0. | (1.1) |
Here x=(x1,x2)∈Ω is the spatial coordinate, Ω is a bounded smooth domain in R2, t≥0 is the time, and the unknown functions ρ=ρ(x,t), θ=θ(x,t), u=(u1,u2)(x,t) and H=(H1,H2)(x,t) denote, respectively, the fluid density, absolute temperature, velocity and magnetic field. In addition, the pressure P is given by
P(ρ)=Rθρ,(R>0), |
where R is a generic gas constant. The deformation tensor D(u) is defined by
D(u)=12(∇u+(∇u)tr). |
The shear viscosity μ and the bulk one λ satisfy the hypotheses as follows
μ>0,μ+λ≥0. |
Positive constants cv, κ and ν represent, respectively, the heat capacity, heat conductivity and magnetic diffusivity coefficient.
The initial condition and boundary conditions for Eq (1.1) are given as follows
(ρ,θ,u,H)(x,t=0)=(ρ0,θ0,u0,H0), | (1.2) |
∂θ∂n=0,u=0,H⋅n=0,curlH=0,on∂Ω, | (1.3) |
where n denotes the unit outward normal vector of ∂Ω.
Remark 1.1. The boundary condition imposed on H (1.3) is physical and means that the container is perfectly conducting, see [1,2,3,4].
In the absence of electromagnetic effect, namely, in the case of H≡0, the MHD system reduces to the Navier-Stokes equations. Due to the strong coupling and interplay interaction between the fluid motion and the magnetic field, it is rather complicated to investigate the well-posedness and dynamical behaviors of MHD system. There are a huge amount of literature on the existence and large time behavior of solutions to the Navier-Stokes system and MHD one due to the physical importance, complexity, rich phenomena and mathematical challenges, see [1,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26] and the reference therein. However, many physically important and mathematically fundamental problems are still open due to the lack of smoothing mechanism and the strong nonlinearity. When the initial density contain vacuum states, the local large strong solutions to Cauchy problem of 3D full MHD equations and 2D isentropic MHD system have been obtained, respectively, by Fan-Yu [5] and Lü-Huang [6]. For the global well-posedness of strong solutions, Li-Xu-Zhang [7] and Lü-Shi-Xu [8] established the global existence and uniqueness of strong solutions to the 3D and 2D MHD equations, respectively, provided the smooth initial data are of small total energy. In particular, the initial density can have compact support in [7,8]. Furthermore, Hu-Wang [9,10] and Fan-Yu [11] proved the global existence of renormalized solutions to the compressible MHD equations for general large initial data. However, it is an outstanding challenging open problem to establish the global well-posedness for general large strong solutions with vacuum.
Therefore, it is important to study the mechanism of blow-up and structure of possible singularities of strong (or smooth) solutions to the compressible MHD system (1.1). The pioneering work can be traced to Serrin's criterion [12] on the Leray-Hopf weak solutions to the 3D incompressible Navier-Stokes equations, that is
limt→T∗‖u‖Ls(0,t;Lr)=∞,for3r+2s=1,3<r≤∞, | (1.4) |
where T∗ is the finite blow up time. Later, He-Xin [13] established the same Serrin's criterion (1.4) for strong solutions to the incompressible MHD equations.
First of all, we recall several known blow-up criteria for the compressible Navier-Stokes equations. In the isentropic case, Huang-Li-Xin [14] established the Serrin type criterion as follows
limt→T∗(‖u‖Ls(0,t;Lr)+‖divu‖L1(0,t;L∞))=∞,for3r+2s=1,3<r≤∞. | (1.5) |
For the full compressible Navier-Stokes equations, Fan-Jiang-Ou [15] obtained that
limt→T∗(‖θ‖L∞(0,t;L∞)+‖∇u‖L1(0,t;L∞))=∞, | (1.6) |
under the condition
7μ>λ. | (1.7) |
Later, the restriction (1.7) was removed in Huang-Li-Xin [16]. Recently, Wang [17] established a blow-up criterion for the initial boundary value problem (IBVP) on a smooth bounded domain in R2, namely,
limt→T∗‖divu‖L1(0,t;L∞)=∞. | (1.8) |
Then, let's return to the compressible MHD system (1.1). Under the three-dimensional isentropic condition, Xu-Zhang [18] founded the same criterion (1.5) as [14]. For the three-dimensional full compressible MHD system, the criterion (1.6) is also established by Lu-Du-Yao [19] under the condition
μ>4λ. | (1.9) |
Soon, the restriction (1.9) was removed by Chen-Liu [20]. Later, for the Cauchy problem and the IBVP of three-dimensional full compressible MHD system, Huang-Li [21] proved that
limt→T∗(‖u‖Ls(0,t;Lr)+‖ρ‖L∞(0,t;L∞))=∞,for3r+2s≤1,3<r≤∞. | (1.10) |
Recently, Fan-Li-Nakamura [22] extended the results of [17] to the MHD system and established a blow-up criterion which depend only on H and divu as follows
limt→T∗(‖H‖L∞(0,t;L∞)+‖divu‖L1(0,t;L∞))=∞. | (1.11) |
In fact, if H≡0 in (1.11), the criterion (1.11) becomes (1.8).
The purpose of this paper is to loosen and weaken the regularity of H required in the blow-up criterion (1.11) for strong solutions of the IBVP (1.1)–(1.3).
In this paper, we denote
∫⋅dx≜ |
Furthermore, for s\ge 0 and 1\le r\le \infty , we define the standard Lebesgue and Sobolev spaces as follows
\begin{equation} \notag\begin{cases} L^r = L^r( \Omega), \quad W^{s, r} = W^{s, r}( \Omega), \quad H^s = W^{s, 2}, \\ W^{s, r}_0 = \{f\in W^{s, r}|f = 0\; \mbox{on}\; {\partial} \Omega\}, \quad H_0^s = W_0^{s, 2}. \end{cases} \end{equation} |
To present our results, we first recall the local existence theorem of the strong solution. Fan-Yu [5] attained the local existence and uniqueness of strong solution with full compressible MHD system in \mathbb{R}^3 . In fact, when \Omega is a bounded domain in \mathbb{R}^2 , the method applied in [5,23] can also be used to the case here. The corresponding result can be expressed as follows.
Theorem 1.1. (Local existence theorem) For q > 2 , assume that the initial data (\rho_0, \theta_0, u_0, H_0) satisfies
\begin{equation} \begin{cases} 0\le\rho_0\in W^{1, q}, \, \, \; \; 0\le \theta_0\in H^2, \; \; u_0 \in H_0^1\cap H^2, \; \; H_0 \in H^2, \, \, \; \; \; {{\rm{div }}} H_0 = 0, \\ \frac{{\partial} \theta_0}{{\partial} n}|_{{\partial} \Omega} = 0, \; \; \; u_0|_{{\partial} \Omega} = 0, \; \; \; H_0\cdot n|_{{\partial} \Omega} = \mathit{\mbox{curl}} H_0|_{{\partial} \Omega} = 0, \end{cases} \end{equation} | (1.12) |
and the compatibility conditions as follows
\begin{equation} - \mu{\triangle} u_0 - (\mu + {\lambda})\nabla {{\rm{div }}} u_0 + R\nabla ( \rho_0 \theta_0)-H_0\cdot \nabla H_0+\frac{1}{2} \nabla |H_0|^2 = \rho_0^{1/2}g_1, \end{equation} | (1.13) |
\begin{equation} - \kappa{\triangle} \theta_0 - 2\mu|\mathfrak{D}(u_0)|^2-\lambda( {{\rm{div }}} u_0)^2-\nu( \mathit{\mbox{curl}} H_0)^2 = \rho_0^{1/2}g_2, \end{equation} | (1.14) |
for some g_1, \; g_2\in L^2 . Then there exists a time T_0 > 0 such that the IBVP (1.1)–(1.3) has a unique strong solution (\rho, \theta, u, H) on \Omega\times (0, T_0] satisfying that
\begin{equation} \begin{cases} 0\le \rho\in C([0, T_0]; W^{1, q} ), \; \; \; \rho_t\in C([0, T_0]; L^q ), \\ (u, \theta, H)\in C([0, T_0]; H^2)\cap L^2(0, T_0; W^{2, q}), \; \; \; \theta\ge 0, \\ (u_t, \theta_t, H_t)\in L^2(0, T_0; H^1), \; \; \; (\sqrt{ \rho} u_t, \sqrt{ \rho} \theta_t, H_t)\in L^\infty(0, T_0; L^2). \end{cases} \end{equation} | (1.15) |
Then, our main result is stated as follows.
Theorem 1.2. Under the assumption of Theorem 1.1, suppose (\rho, \theta, u, H) is the strong solution of the IBVP (1.1)–(1.3) obtained in Theorem 1.1. If T^* < \infty is the maximum existence time of the strong solution, then
\begin{equation} \lim\limits_{t\rightarrow T^*} \left(\|H\|_{L^\infty(0, t; L^b)}+\| {{\rm{div }}} u\|_{L^1(0, t; L^\infty)} \right) = \infty, \end{equation} | (1.16) |
for any b > 2 .
Remark 1.2. Compared to the blow-up criterion (1.11) attained in [22], Theorem 1.2 demonstrates some new message about the blow-up mechanism of the MHD system (1.1)–(1.3). Particularly, beside the same regularity on \| {{\rm{div }}} u\|_{L^1(0, t; L^\infty)} as (1.11) in [22], our result (1.16) improves the regularity on \|H\|_{L^\infty(0, t; L^\infty)} by relaxing it to \|H\|_{L^\infty(0, t; L^b)} for any b > 2 .
The rest of the paper is arranged as follows. We state several basic facts and key inequalities which are helpful for later analysis in Section 2. Sections 3 is devoted to a priori estimate which is required to prove Theorem 1.2, while we give its proof in Section 4.
In this section, we will recall several important inequalities and well-known facts. First of all, Gagliardo-Nirenberg inequality (see [27]) is described as follows.
Lemma 2.1. (Gagliardo-Nirenberg) For q\in(1, \infty), r\in (2, \infty) and s\in [2, \infty), there exists some generic constant C > 0 which may depend only on q, r and s such that for f\in C_0^\infty(\Omega) , we have
\begin{equation} \|f\|_{L^s(\Omega)}^s\le C \|f\|_{L^2(\Omega)}^{2}\| \nabla f\|_{L^2(\Omega)}^{s-2} , \end{equation} | (2.1) |
\begin{equation} \|g\|_{L^\infty(\Omega)} \le C \|g\|_{L^q(\Omega)}^{q(r-2)/(2r+q(r-2))}\| \nabla g\|_{L^r(\Omega)}^{2r/(2r+q(r-2))} . \end{equation} | (2.2) |
Then, we give several regularity results for the following Lamé system with Dirichlet boundary condition (see [24])
\begin{equation} \begin{aligned}\begin{cases} \mathcal{L}U\triangleq \mu\Delta U+(\mu+\lambda) \nabla {{\rm{div }}} U = F, \, \, &x\in\Omega, \\ U = 0, \, \, &x\in \partial\Omega.\end{cases} \end{aligned} \end{equation} | (2.3) |
We assume that U\in H^1_0 is a weak solution of the Lamé system, due to the uniqueness of weak solution, it could be denoted by U = \mathcal{L}^{-1}F .
Lemma 2.2. Let r\in (1, \infty), then there exists some generic constant C > 0 depending only on \mu, \lambda, r and \Omega such that
● If F\in L^r , then
\begin{equation} \|U\|_{W^{2, r}(\Omega)} \le C \|F\|_{L^r(\Omega)}. \end{equation} | (2.4) |
● If F\in W^{-1, r} (i.e., F = {{\rm{div }}} f with f = (f_{ij})_{2\times2}, f_{ij}\in L^r ), then
\begin{equation} \|U\|_{W^{1, r}(\Omega)} \le C \|f\|_{L^r(\Omega)}. \end{equation} | (2.5) |
Furthermore, for the endpoint case, if f_{ij}\in L^2\cap L^\infty , then \nabla U\in \mathit{\mbox{BMO}}(\Omega) and
\begin{equation} \| \nabla U\|_{\mathit{\mbox{BMO}}(\Omega)} \le C \|f\|_{L^\infty(\Omega)}+ C \|f\|_{L^2(\Omega)}. \end{equation} | (2.6) |
The following L^p -bound for elliptic systems, whose proof is similar to that of [28,Lemma 12], is a direct consequence of the combination of a well-known elliptic theory due to Agmon-Douglis-Nirenberg[29,30] with a standard scaling procedure.
Lemma 2.3. For k\ge 0 and p > 1 , there exists a constant C > 0 depending only on k and p such that
\begin{equation} \| \nabla^{k+2}v\|_{L^p( \Omega)}\le C\| \Delta v\|_{W^{k, p}( \Omega)}, \end{equation} | (2.7) |
for every v\in W^{k+2, p}(\Omega) satisfying either
\begin{eqnarray*} v\cdot n = 0, \, \, {{\rm{rot}}} v = 0, \, \, \mathit{\mbox{on}} ~~ \partial \Omega, \end{eqnarray*} |
or
\begin{eqnarray*} v = 0, \, \, \mathit{\mbox{on}}~~ \partial \Omega. \end{eqnarray*} |
Finally, we give two critical Sobolev inequalities of logarithmic type, which are originally due to Brezis-Gallouet [31] and Brezis-Wainger [32].
Lemma 2.4. Let \Omega\subset{\mathbb{R}^2} be a bounded Lipschitz domain and f\in W^{1, q} with q > 2 , then it holds that
\begin{equation} \|f\|_{L^\infty( \Omega)} \le C \|f\|_{\mathit{\mbox{BMO}}( \Omega)}\ln\left(e+\|f\|_{W^{1, q}( \Omega)}\right)+C, \end{equation} | (2.8) |
with a constant C depending only on q .
Lemma 2.5. Let \Omega\subset{\mathbb{R}^2} be a smooth domain and f\in L^2(s, t; H^1_0\cap W^{1, q}) with q > 2 , then it holds that
\begin{equation} \|f\|_{L^2(s, t; L^\infty)}^2\le C \|f\|_{L^2(s, t; H^1)}^2 \ln\left(e+\|f\|_{L^2(s, t; W^{1, q})}\right)+C, \end{equation} | (2.9) |
with a constant C depending only on q .
Let (\rho, \theta, u, H) be the strong solution of the IBVP (1.1)–(1.3) obtained in Theorem 1.1. Assume that (1.16) is false, namely, there exists a constant M > 0 such that
\begin{equation} \lim\limits_{t\rightarrow T^*} \left(\| H\|_{L^\infty(0, t; L^b)}+\| {{\rm{div }}} u\|_{L^1(0, t; L^\infty)} \right)\le M < \infty, \; \; \; \; \mbox{for any}\; b > 2. \end{equation} | (3.1) |
First of all, the upper bound of the density can be deduced from (1.1) _1 and (3.1), see [14,Lemma 3.4].
Lemma 3.1. Under the assumptions of Theorem 1.2 and (3.1), it holds that for any t\in [0, T^*),
\begin{equation} \begin{aligned} \sup\limits_{0\le s\le t}\| \rho\|_{L^1\cap L^\infty}\le C, \end{aligned} \end{equation} | (3.2) |
where (and in what follows) C represents a generic positive constant depending only on \mu, \lambda, c_v, \kappa , \nu , q, b, M , T^* and the initial data.
Then, we give the following estimates, which are similar to the energy estimates.
Lemma 3.2. Under the assumptions of Theorem 1.2 and (3.1), it holds that for any t\in [0, T^*),
\begin{equation} \begin{aligned} \sup\limits_{0\le s\le t} \left(\| \rho \theta\|_{L^1}+\|\rho^{1/2}u\|^2_{L^{2}}+\| H\|_{L^2}^2\right) +\int_{0}^{t}\left(\| \nabla u\|_{L^2}^2+\| \nabla H\|_{L^2}^2 \right)ds \le C. \end{aligned} \end{equation} | (3.3) |
Proof. First, using the standard maximum principle to (1.1) _3 together with \theta_0\ge0 (see [15,25]) gives
\begin{equation} \begin{aligned} \inf\limits_{ \Omega\times[0, t]} \theta(x, t)\ge 0. \end{aligned} \end{equation} | (3.4) |
Then, utilizing the standard energy estimates to (1.1) shows
\begin{equation} \begin{aligned} \sup\limits_{0\le s\le t} \left(\| \rho \theta\|_{L^1}+\|\rho^{1/2}u\|^2_{L^{2}}+\| H\|_{L^2}^2\right)\le C. \end{aligned} \end{equation} | (3.5) |
Next, adding (1.1)_{2} multiplied by u to (1.1)_{4} multiplied by H , and integrating the summation by parts, we have
\begin{equation} \begin{aligned} &\frac{1}{2}\frac{d}{dt}\left(\|\rho^{1/2}u\|^2_{L^{2}} +\| H\|_{L^2}^2\right)\\ &\quad+\mu\| \nabla u\|_{L^2}^2+ \nu \| \nabla H\|_{L^2}^2+(\mu+\lambda)\| {{\rm{div }}} u\|_{L^2}^2\le C\| \rho \theta\|_{L^1}\| {{\rm{div }}} u\|_{L^\infty}, \end{aligned} \end{equation} | (3.6) |
where one has used the following well-known fact
\begin{equation} \begin{aligned} \| \nabla H\|_{L^2} \le C\| \mbox{curl} H\|_{L^2}, \end{aligned} \end{equation} | (3.7) |
due to {{\rm{div }}} H = 0 and H\cdot n|_{{\partial} \Omega} = 0 .
Hence, the combination of (3.6) with (3.1), (3.4) and (3.5) yields (3.3). This completes the proof of Lemma 3.2.
The following lemma shows the estimates on the spatial gradients of both the velocity and the magnetic, which are crucial for obtaining the higher order estimates of the solution.
Lemma 3.3. Under the assumptions of Theorem 1.2 and (3.1), it holds that for any t\in [0, T^*),
\begin{equation} \begin{aligned} &\sup\limits_{0\le s\le t} \left( \| \rho^{1/2} \theta\|_{L^2}^2+ \| \nabla u\|_{L^2}^2+ \| \mathit{\mbox{curl}} H\|_{L^2}^2\right)\\ &\quad+\int_{0}^{t} \left( \| \rho^{1/2}\dot u\|_{L^2}^2+\| \nabla \theta\|_{L^2}^2 + \|H_t\|_{L^2}^2+ \| \Delta H\|_{L^2}^2 \right)ds \le C, \end{aligned} \end{equation} | (3.8) |
where \dot f\triangleq u\cdot \nabla f+f_t represents the material derivative of f .
Proof. Above all, multiplying the equation (1.1)_{3} by \theta and integrating by parts yield
\begin{equation} \begin{aligned} \frac{c_v}{2} \frac{d}{dt} \|\rho^{1/2} \theta\|^2_{L^{2}} +\kappa\| \nabla \theta\|_{L^2}^2 &\le\nu\int \theta|\mbox{curl} H|^2dx +C\int \theta| \nabla u|^2dx+C\| \rho^{1/2} \theta\|_{L^2}^2\| {{\rm{div }}} u\|_{L^\infty}. \end{aligned} \end{equation} | (3.9) |
Firstly, integration by parts together with (3.1) and Gagliardo-Nirenberg inequality implies that
\begin{equation} \begin{aligned} \nu\int \theta| \mbox{curl} H|^2dx\le &C \| \nabla \theta\|_{L^2}\|H\|_{L^b}\| \nabla H\|_{L^{\tilde b}}+C\| \theta\|_{L^{\tilde b}}\|H\|_{L^b} \| \nabla^2H\|_{L^2}\\ \le & C\| \nabla \theta\|_{L^2}\| \nabla H\|_{L^{\tilde b}} +C\| \nabla^2H\|_{L^2}(\| \nabla \theta\|_{L^2}+1) \\ \le & \varepsilon\| \nabla \theta\|_{L^2}^2+C\| \nabla^2 H\|_{L^2}^2 +C(\| \nabla H\|_{L^2}^2+1), \end{aligned} \end{equation} | (3.10) |
where \tilde b\triangleq \frac{2b}{b-2} > 2 satisfies 1/b+1/\tilde b = 1/2 , and in the second inequality where one has applied the estimate as follows
\begin{equation} \begin{aligned} \| \theta\|_{L^r}\le C(\| \nabla \theta\|_{L^2}+1), \; \; \; \; \mbox{for any}\; r\ge 1. \end{aligned} \end{equation} | (3.11) |
Indeed, denote the average of \theta by \bar \theta = \frac{1}{| \Omega|}\int \theta dx , it follows from (3.2) and (3.3) that
\begin{equation} \begin{aligned} \bar \theta\int \rho dx\le \int \rho \theta dx+\int \rho | \theta-\bar \theta|dx\le C+C\| \nabla \theta\|_{L^2}, \end{aligned} \end{equation} | (3.12) |
which together with Poincaré inequality yields
\begin{equation} \begin{aligned} \| \theta\|_{L^2}\le & C(1+\| \nabla \theta\|_{L^2}). \end{aligned} \end{equation} | (3.13) |
And consequently, (3.11) holds.
Secondly, according to [17,21,33], Multiplying equations (1.1)_{2} by u \theta and integrating by parts yield
\begin{equation} \begin{aligned} &\mu\int \theta| \nabla u|^2dx+(\mu+\lambda)\int \theta| {{\rm{div }}} u|^2dx\\ & = -\int \rho\dot u\cdot \theta u dx-\mu\int u\cdot \nabla \theta \cdot \nabla udx-(\mu+\lambda)\int {{\rm{div }}} u u\cdot \nabla \theta dx \\ &\quad-\int \nabla P\cdot \theta u dx+\int H\cdot \nabla H\cdot \theta u dx-\frac{1}{2}\int \nabla |H|^2 \cdot \theta udx\\ & \triangleq \sum\limits_{i = 1}^6 I_i. \end{aligned} \end{equation} | (3.14) |
Using the same arguments in [17,33], we have
\begin{equation} \begin{aligned} \sum\limits_{i = 1}^4 I_i \le & \eta\| \rho^{1/2} \dot u\|_{L^2}^2+ \varepsilon \| \nabla \theta\|_{L^2}^2 +C\| \rho^{1/2} \theta\|_{L^2}^2\| {{\rm{div }}} u\|_{L^\infty}\\ &+C\left(\| \rho^{1/2} \theta\|_{L^2}^2+\| \nabla u\|_{L^2}^2\right)\|u\|_{L^\infty}^2. \end{aligned} \end{equation} | (3.15) |
Besides, according to (3.1) and (3.11) yields
\begin{equation} \begin{aligned} \sum\limits_{i = 5}^6 I_i\le & C\| \theta\|_{L^{\tilde b}}\|H\|_{L^b}\| \nabla H\|_{L^2}\|u\|_{L^\infty} \le & \varepsilon \| \nabla \theta\|_{L^2}^2+ C \| \nabla H\|_{L^2}^2\|u\|_{L^\infty}^2+C. \end{aligned} \end{equation} | (3.16) |
Substituting (3.10), (3.15) and (3.16) into (3.9), and choosing \varepsilon suitably small, we have
\begin{equation} \begin{aligned} & c_v \frac{d}{dt} \|\rho^{1/2} \theta\|^2_{L^{2}} + \kappa \| \nabla \theta\|_{L^2}^2\\ &\le 2\eta\| \rho^{1/2} \dot u\|_{L^2}^2+C_1\|\Delta H\|_{L^2}^2\\ &\quad+C\left(\| \rho^{1/2} \theta\|_{L^2}^2+\| \nabla u\|_{L^2}^2+\| \nabla H\|_{L^2}^2+1\right)\left(\| {{\rm{div }}} u\|_{L^\infty} + \|u\|_{L^\infty}^2+1\right), \end{aligned} \end{equation} | (3.17) |
where one has applied the key fact as follows
\begin{equation} \begin{aligned} \| \nabla^2H\|_{L^2}\le C \|\Delta H\|_{L^2}. \end{aligned} \end{equation} | (3.18) |
Furthermore, it follows from (3.1) and (1.1) _4 that
\begin{equation} \begin{aligned} & \|H_t\|_{L^2}^2+ \nu^{2}\|\Delta H\|_{L^2}^2+\nu\frac{d}{dt}\| \mbox{curl} H\|_{L^2}^2 \\ &\le C\| \nabla u\|_{L^2}\| \nabla u\|_{L^{2\tilde b}}\|H\|_{L^b}\|H\|_{L^{2\tilde b}} +C\| \nabla H\|_{L^2}^2 \|u\|_{L^\infty}^2\\ &\le C\| \nabla u\|_{L^2} \| \nabla u\|_{L^{2\tilde b}} (\| \nabla H\|_{L^2}+1)+C\| \nabla H\|_{L^2}^2\|u\|_{L^\infty}^2. \end{aligned} \end{equation} | (3.19) |
In order to estimate \| \nabla u\|_{L^{2\tilde b}} , according to [24,26], we divide u into v and w . More precisely, let
\begin{equation} \begin{aligned} u = v+w, \; \; \mbox{and}\; \; v = \mathcal{L}^{-1} \nabla P, \end{aligned} \end{equation} | (3.20) |
then we get
\begin{equation} \begin{aligned} \mathcal{L}w = \rho\dot u-H\cdot \nabla H+\frac{1}{2} \nabla |H|^2. \end{aligned} \end{equation} | (3.21) |
And hence, Lemma 2.2 implies that for any r > 1 ,
\begin{equation} \begin{aligned} \| \nabla v\|_{L^r}\le C\| \theta \rho\|_{L^r}, \end{aligned} \end{equation} | (3.22) |
and
\begin{equation} \begin{aligned} \| \nabla^2 w\|_{L^r}\le C\| \rho\dot u\|_{L^r}+C\||H|| \nabla H|\|_{L^r}. \end{aligned} \end{equation} | (3.23) |
Consequently, it follows from Gagliardo-Nirenberg inequality, (3.2), (3.11), (3.20), (3.22) and (3.23) that for any s\ge 2 ,
\begin{equation} \begin{aligned} \| \nabla u\|_{L^s}\le &C\| \nabla v\|_{L^s}+C\| \nabla w\|_{L^s} \\ \le & C\| \rho \theta\|_{L^s}+C\| \nabla w\|_{L^2}+C\| \nabla w\|_{L^2}^{2/s}\| \nabla^2 w\|_{L^2}^{1-2/s}\\ \le & C\| \rho \theta\|_{L^s}+C\| \nabla w\|_{L^2}+C\| \nabla w\|_{L^2}^{2/s}\left(\| \rho\dot u\|_{L^2}+ \||H|| \nabla H|\|_{L^2}\right)^{1-2/s}\\ \le & \eta\| \rho^{1/2}\dot u\|_{L^2}+C\| \rho \theta\|_{L^s}+C\| \nabla w\|_{L^2} + C\||H|| \nabla H|\|_{L^2} \\ \le &\eta\| \rho^{1/2}\dot u\|_{L^2}+C\| \nabla u\|_{L^2} +C\| \nabla \theta\|_{L^2}+C\| \nabla H\|_{L^2}+ C\|\Delta H\|_{L^2}+C. \end{aligned} \end{equation} | (3.24) |
Putting (3.24) into (3.19) and utilizing Young inequality lead to
\begin{equation} \begin{aligned} &\|H_t\|_{L^2}^2+ \frac{\nu^{2}}{2}\|\Delta H\|_{L^2}^2+\nu\frac{d}{dt}\| \mbox{curl} H\|_{L^2}^2 \\ &\le \varepsilon\| \nabla \theta\|_{L^2}^2+\eta\| \rho^{1/2}\dot u\|_{L^2}^2 +C \left(\| \nabla u\|_{L^2}^2+\|u\|_{L^\infty}^2+1\right) \left(\| \nabla H\|_{L^2}^2+1 \right). \end{aligned} \end{equation} | (3.25) |
Adding (3.25) multiplied by 2\nu^{-2}(C_1+1) to (3.17) and choosing \varepsilon suitably small, we have
\begin{equation} \begin{aligned} &\frac{\kappa}{2} \| \nabla \theta\|_{L^2}^2+2\nu^{-2}(C_1+1)\|H_t\|_{L^2}^2+ \|\Delta H\|_{L^2}^2 \\ &\quad+\frac{d}{dt} \left(c_v \|\rho^{1/2} \theta\|^2_{L^{2}}+2\nu^{-1}(C_1+1)\| \mbox{curl} H\|_{L^2}^2 \right) \\ &\le C\left(\| \rho^{1/2} \theta\|_{L^2}^2+\| \nabla u\|_{L^2}^2+\| \nabla H\|_{L^2}^2+1\right)\left(\| \nabla u\|_{L^2}^2+ \|u\|_{L^\infty}^2+\| {{\rm{div }}} u\|_{L^\infty} +1\right)\\ &\quad+C\eta\| \rho^{1/2}\dot u\|_{L^2}^2. \end{aligned} \end{equation} | (3.26) |
Then, multiplying (1.1) _2 by u_t and integrating by parts, we get
\begin{equation} \begin{aligned} & \frac{1}{2}\frac{d}{dt} \left(\mu\| \nabla u\|^2_{L^{2}}+(\mu+\lambda)\| {{\rm{div }}} u\|_{L^2}^2 \right) + \| \rho^{1/2}\dot u\|_{L^2}^2\\ &\le \eta\| \rho^{1/2}\dot u\|_{L^2}^2 +C\| \nabla u\|_{L^2}^2\|u\|_{L^\infty}^2\\ &\quad+\frac{d}{dt}\left(\int P {{\rm{div }}} u dx+ \frac{1}{2}\int |H|^2 {{\rm{div }}} u dx-\int H\cdot \nabla u \cdot Hdx\right)\\ &\quad-\int P_t {{\rm{div }}} u dx-\int H\cdot H_t {{\rm{div }}} udx +\int H_t\cdot \nabla u\cdot H dx+\int H\cdot \nabla u\cdot H_tdx. \end{aligned} \end{equation} | (3.27) |
Notice that
\begin{equation} \begin{aligned} &\int P_t {{\rm{div }}} u dx = \int P_t {{\rm{div }}} v dx+\int P_t {{\rm{div }}} w dx, \end{aligned} \end{equation} | (3.28) |
integration by parts together with (3.20) leads to
\begin{equation} \begin{aligned} \int P_t {{\rm{div }}} v dx & = \frac{1}{2}\frac{d}{dt}\left((\mu+\lambda)\| {{\rm{div }}} v\|_{L^2}^2+\mu\| \nabla v\|_{L^2}^2\right). \end{aligned} \end{equation} | (3.29) |
Moreover, define
E\triangleq c_v \theta+\frac{1}{2}|u|^2, |
according to (1.1) that E satisfies
\begin{equation} \begin{aligned} (\rho E)_t + {{\rm{div }}}(\rho uE+Pu) = &\Delta \left(\kappa \theta+\frac{1}{2}\mu|u|^2 \right) + \mu {{\rm{div }}}(u\cdot \nabla u)+ \lambda {{\rm{div }}}(u {{\rm{div }}} u)\\ &+H\cdot \nabla H\cdot u-\frac{1}{2}u\cdot \nabla |H|^2+\nu| \mbox{curl} H|^2. \end{aligned} \end{equation} | (3.30) |
Motivated by [17,21], it can be deduced from (3.30) that
\begin{equation} \begin{aligned} &-\int P_t {{\rm{div }}} w dx\\ & = -\frac{R}{c_v} \left(\int ( \rho E)_t {{\rm{div }}} wdx-\int \frac{1}{2}( \rho |u|^2)_t {{\rm{div }}} wdx \right)\\ & = -\frac{R}{c_v} \left\{\int \left( (c_v+R) \rho \theta u+\frac{1}{2} \rho|u|^2 u-\kappa \nabla \theta-\mu \nabla u\cdot u-\mu u\cdot \nabla u-\lambda u {{\rm{div }}} u \right)\cdot \nabla {{\rm{div }}} wdx \right.\\ &\quad\quad -\frac{1}{2}\int \rho|u|^2 u \cdot \nabla {{\rm{div }}} wdx-\int \rho \dot u\cdot u {{\rm{div }}} wdx\\ &\quad\quad -\int {{\rm{div }}} H H\cdot u {{\rm{div }}} wdx-\int H\cdot \nabla u\cdot H {{\rm{div }}} wdx-\int (H\cdot u) H\cdot \nabla {{\rm{div }}} wdx\\ &\quad\quad +\frac{1}{2}\int {{\rm{div }}} u |H|^2 {{\rm{div }}} wdx+\frac{1}{2}\int |H|^2 u \cdot \nabla {{\rm{div }}} wdx\\ &\quad\quad \left.-\nu\int \nabla {{\rm{div }}} w \times \mbox{curl} H \cdot H dx-\nu\int \mbox{curl}( \mbox{curl} H )\cdot H {{\rm{div }}} wdx \right\}\\ &\le C \eta\| \rho^{1/2}\dot u\|_{L^2}^2+C\| \nabla \theta\|_{L^2}^2 +C\|\Delta H\|_{L^2}^2\\ &\quad+C \left(\| \nabla u\|_{L^2}^2+\|u\|_{L^\infty}^2+1 \right) \left(\| \rho^{1/2} \theta\|_{L^2}^2+\| \nabla u\|_{L^2}^2+\| \nabla H\|_{L^2}^2+1 \right). \end{aligned} \end{equation} | (3.31) |
Additionally, combining (3.1) and (3.24) yields
\begin{equation} \begin{aligned} &\int H_t\cdot \nabla u\cdot H dx+\int H\cdot \nabla u\cdot H_tdx-\int H\cdot H_t {{\rm{div }}} udx \\ &\le C\|H_t\|_{L^2}^2+C\| \nabla u\|_{L^{\tilde b}}^2\|H\|_{L^b}^2\\ &\le C\eta\| \rho^{1/2}\dot u\|_{L^2}^2 +C\left( \|H_t\|_{L^2}^2+ \| \nabla \theta\|_{L^2}^2+ \| \nabla u\|_{L^2}^2 + \| \nabla H\|_{L^2}^2+ \|\Delta H\|_{L^2}^2+1\right). \end{aligned} \end{equation} | (3.32) |
Substituting (3.28), (3.29), (3.31) and (3.32) into (3.27) yields
\begin{equation} \begin{aligned} & \| \rho^{1/2}\dot u\|_{L^2}^2+ \frac{d}{dt} \left(\frac{\mu}{2}\left(\| \nabla u\|^2_{L^{2}}+\| \nabla v\|^2_{L^{2}}\right)+\frac{ \mu+\lambda }{2}\left(\| {{\rm{div }}} u\|_{L^2}^2 +\| {{\rm{div }}} v\|_{L^2}^2\right)-A(t) \right) \\ &\le C_2\left(\| \nabla \theta\|_{L^2}^2 +\|H_t\|_{L^2}^2+\|\Delta H\|_{L^2}^2\right)+C\eta\| \rho^{1/2}\dot u\|_{L^2}^2 \\ &\quad+C \left(\| \nabla u\|_{L^2}^2+\|u\|_{L^\infty}^2+1 \right) \left(\| \nabla u\|_{L^2}^2+\| \nabla H\|_{L^2}^2+\| \rho^{1/2} \theta\|_{L^2}^2+1 \right) , \end{aligned} \end{equation} | (3.33) |
where
\begin{equation} \begin{aligned} & A(t)\triangleq \frac{1}{2}\int |H|^2 {{\rm{div }}} u dx+\int P {{\rm{div }}} u dx-\int H\cdot \nabla u \cdot Hdx, \end{aligned} \end{equation} | (3.34) |
satisfies
\begin{equation} \begin{aligned} A(t)\le \frac{\mu}{4}\| \nabla u\|_{L^2}^2+C_3 \left(\| \rho^{1/2} \theta\|_{L^2}^2+ \| \mbox{curl} H\|_{L^2}^2+1 \right). \end{aligned} \end{equation} | (3.35) |
Recalling the inequality (3.26), let
\begin{equation} \begin{aligned} C_4 = \min\{2\nu^{-2}(C_1+1), \; \frac{\kappa}{2}, \; 1\}, \; \; \; C_5 = \min\{2\nu^{-1}(C_1+1), \; c_v\}, \end{aligned} \end{equation} | (3.36) |
adding (3.26) multiplied by C_6 = \max\{C_4^{-1}(C_2+1), C_5^{-1}(C_3+1)\} into (3.33) and choosing \eta suitably small, we have
\begin{equation} \begin{aligned} &\frac{d}{dt}\tilde{A}(t)+ \frac{1}{2}\| \rho^{1/2}\dot u\|_{L^2}^2+\| \nabla \theta\|_{L^2}^2+ \|H_t\|_{L^2}^2+ \|\Delta H\|_{L^2}^2 \\ &\le C\left(\| \rho^{1/2} \theta\|_{L^2}^2+\| \nabla u\|_{L^2}^2+\| \nabla H\|_{L^2}^2+1\right)\left(\| \nabla u\|_{L^2}^2 + \|u\|_{L^\infty}^2+\| {{\rm{div }}} u\|_{L^\infty} +1\right), \end{aligned} \end{equation} | (3.37) |
where
\begin{equation} \begin{aligned} \tilde{A}(t)\triangleq&C_6\left( c_v \|\rho^{1/2} \theta\|^2_{L^{2}}+2\nu^{-1}(C_1+1)\| \mbox{curl} H\|_{L^2}^2\right)\\ &+\frac{\mu}{2}(\| \nabla u\|^2_{L^{2}}+\| \nabla v\|^2_{L^{2}})+\frac{ \mu+\lambda }{2}(\| {{\rm{div }}} u\|_{L^2}^2+\| {{\rm{div }}} v\|_{L^2}^2) -A(t), \end{aligned} \end{equation} | (3.38) |
satisfies
\begin{equation} \begin{aligned} &\|\rho^{1/2} \theta\|^2_{L^{2}}+\frac{\mu}{4}\| \nabla u\|^2_{L^{2}} +\| \mbox{curl} H\|_{L^2}^2-C \\ &\le \tilde{A}(t) \le C \| \rho^{1/2} \theta\|_{L^2}^2+C\| \nabla u\|_{L^2}^2+C \| \mbox{curl} H\|_{L^2}^2+C. \end{aligned} \end{equation} | (3.39) |
Finally, integrating (3.37) over (\tau, t) , along with (3.39) yields
\begin{equation} \begin{aligned} \psi(t)\le C\int_\tau^t\left(\| \nabla u\|_{L^2}^2 + \|u\|_{L^\infty}^2+\| {{\rm{div }}} u\|_{L^\infty} +1\right)\psi(s)ds+C \psi(\tau), \end{aligned} \end{equation} | (3.40) |
where
\begin{equation} \begin{aligned} \psi(t)\triangleq &\int_0^t\left(\| \rho^{1/2}\dot u\|_{L^2}^2+\| \nabla \theta\|_{L^2}^2+ \|H_t\|_{L^2}^2+ \|\Delta H\|_{L^2}^2 \right)ds\\ &+\|\rho^{1/2} \theta\|^2_{L^{2}}+ \| \nabla u\|^2_{L^{2}}+ \| \mbox{curl} H\|_{L^2}^2+1. \end{aligned} \end{equation} | (3.41) |
Combined with (3.1), (3.3) and Gronwall inequality implies that for any 0 < \tau\le t < T^* ,
\begin{equation} \begin{aligned} \psi(t)&\le C \psi(\tau)\exp\left\{ \int_\tau^t\left(\| \nabla u\|_{L^2}^2 + \|u\|_{L^\infty}^2+\| {{\rm{div }}} u\|_{L^\infty} +1\right)ds\right\}\\ &\le C \psi(\tau) \exp\left\{\int_\tau^t\|u \|_{L^\infty}^2 ds\right\}. \end{aligned} \end{equation} | (3.42) |
Utilizing Lemma 2.5, we have
\begin{equation} \begin{aligned} \|u\|_{L^2(\tau, t;L^\infty)}^2 \le C \| u \|_{L^2(\tau, t;H^1)}^2 \ln\left(e+ \|u\|_{L^2(\tau, t; W^{1, b})} \right)+C. \end{aligned} \end{equation} | (3.43) |
Combining (3.1), (3.2), (3.11), (3.22), (3.23) and Sobolev inequality leads to
\begin{equation} \begin{aligned} \|u\|_{W^{1, b}} &\le \|v\|_{W^{1, b}}+C\|w\|_{W^{2, 2b/(b+2)}}\\ &\le C\| \rho\dot u\|_{L^{2b/(b+2)}}+C\| \rho \theta\|_{L^b}+C\|u\|_{L^2}+C\||H|| \nabla H|\|_{L^{2b/(b+2)}}\\ &\le C\| \rho^{1/2}\|_{L^b}\| \rho^{1/2}\dot u\|_{L^2}+C\| \nabla \theta\|_{L^2}+C\| \nabla u\|_{L^2}+C\|H\|_{L^b}\| \nabla H\|_{L^2}+C\\ &\le C\| \rho^{1/2}\dot u\|_{L^2}+C\| \nabla \theta\|_{L^2}+C\| \nabla u\|_{L^2}+C\| \nabla H\|_{L^2}+C, \end{aligned} \end{equation} | (3.44) |
this implies that
\begin{equation} \begin{aligned} \|u\|_{L^2(\tau, t; W^{1, b})} \le &C\psi^{1/2}(t). \end{aligned} \end{equation} | (3.45) |
Substituting (3.45) into (3.43) indicates
\begin{equation} \begin{aligned} \|u\|_{L^2(\tau, t;L^\infty)}^2 \le C+C \| u \|_{L^2(\tau, t;H^1)}^2 \ln\left(C\psi (t)\right)\le C+\ln\left(C\psi(t)\right)^{C_7\| u \|_{L^2(\tau, t;H^1)}^2}. \end{aligned} \end{equation} | (3.46) |
Using (3.3), one can choose some \tau which is close enough to t such that
\begin{equation} \begin{aligned} C_7\| u \|_{L^2(\tau, t;H^1)}^2\le \frac{1}{2}, \end{aligned} \end{equation} | (3.47) |
which together with (3.42) and (3.46) yields
\begin{equation} \begin{aligned} \psi(t)& \le C \psi^{2}(\tau) \le C. \end{aligned} \end{equation} | (3.48) |
Noticing the definition of \psi in (3.41), we immediately have (3.8). The proof of Lemma 3.3 is completed.
Now, we show some higher order estimates of the solutions which are needed to guarantee the extension of local solution to be a global one under the conditions (1.12)–(1.14) and (3.1).
Lemma 3.4. Under the assumptions of Theorem 1.2 and (3.1), it holds that for any t\in [0, T^*),
\begin{equation} \begin{aligned} &\sup\limits_{0\le s\le t} \left(\| \rho\|_{W^{1, q}} + \| \theta\|_{H^2}+\|u\|_{H^2}+\|H\|_{H^2}\right) \le C. \end{aligned} \end{equation} | (3.49) |
Proof. First, it follows from (3.8), Gagliardo-Nirenberg and Poincaré inequalities that for 2\le q < \infty ,
\begin{equation} \begin{aligned} \|u\|_{L^q}+\|H\|_{L^q}\le C. \end{aligned} \end{equation} | (3.50) |
Combining (1.1) _4 , (3.3), (3.8) and (3.18) yields
\begin{equation} \begin{aligned} \|H\|_{H^2} +\| \nabla H\|_{L^4}^2 &\le C \| \nabla u\|_{L^4}+C\|H_t\|_{L^2} +C. \end{aligned} \end{equation} | (3.51) |
Furthermore, it can be deduced from (3.8), (3.24), (3.50) and (3.51) that
\begin{equation} \begin{aligned} \| \nabla u\|_{L^4} &\le C \| \rho^{1/2} \dot u\|_{L^2}+C \| \nabla \theta\|_{L^2} +C\|H_t\|_{L^2} +C . \end{aligned} \end{equation} | (3.52) |
Then, according to (3.11) and Sobolev inequality, we get
\begin{equation} \begin{aligned} \| \theta\|_{L^\infty}^2\le \varepsilon\| \nabla^2 \theta\|_{L^2}^2+C\| \nabla \theta\|_{L^2}^2+C, \end{aligned} \end{equation} | (3.53) |
which combined with (1.1) _3 , (3.8), and choosing \varepsilon suitably small yield
\begin{equation} \begin{aligned} \| \theta\|_{H^2}^2 \le C\| \rho^{1/2}\dot \theta\|_{L^2}^2 +C\| \nabla \theta\|_{L^2}^2+C\| \nabla u\|_{L^4}^4+C\| \nabla H\|_{L^4}^4+C. \end{aligned} \end{equation} | (3.54) |
Therefore, the combination of (3.51) and (3.52) yields
\begin{equation} \begin{aligned} &\sup\limits_{0\le s\le t} \left( \| \theta\|_{L^r} + \| \nabla \theta\|_{L^2}+ \| \nabla u\|_{L^4} + \|H\|_{H^2} +\| \nabla H\|_{L^4} \right) \le C, \; \; \; \; \forall\; r\ge 1. \end{aligned} \end{equation} | (3.55) |
Together with (3.53) and (3.54) gives
\begin{equation} \begin{aligned} \sup\limits_{0\le s\le t} \left(\| \theta\|_{H^2} +\| \theta\|_{L^\infty} \right)\le C. \end{aligned} \end{equation} | (3.56) |
Now, we bound \| \nabla \rho\|_{W^{1, q}} and \|u\|_{H^2} . For r\in [2, q], it holds that
\begin{equation} \begin{aligned} \frac{d}{dt}\|\nabla\rho\|_{L^r}&\leq C\|\nabla\rho\|_{L^r}(\|\nabla u \|_{L^\infty}+1)+C\| \nabla^2u\|_{L^r} \\ &\le C\|\nabla\rho\|_{L^r}(\|\nabla v \|_{L^\infty}+\|\nabla w \|_{L^\infty}+1)+C\| \nabla^2v\|_{L^r} +C\| \nabla^2w\|_{L^r} \\ &\le C\|\nabla\rho\|_{L^r}(\|\nabla v \|_{L^\infty}+\|\nabla w \|_{L^\infty}+1)+C\| \nabla^2w\|_{L^r} +C, \end{aligned} \end{equation} | (3.57) |
where in the last inequality one has applied the following fact
\begin{equation} \begin{aligned} \| \nabla^2v\|_{L^r} \le C\| \nabla \rho \|_{L^r}+C. \end{aligned} \end{equation} | (3.58) |
Taking (3.2), (3.56), (3.58) and Lemmas 2.2–2.4, we get
\begin{equation} \begin{aligned} \| \nabla v\|_{L^\infty}\le C \ln(e+\| \nabla \rho\|_{L^r})+C. \end{aligned} \end{equation} | (3.59) |
Putting (3.59) into (3.57), it can be deduced from Gronwall inequality that
\begin{equation} \begin{aligned} \| \nabla \rho\|_{L^r}&\leq C. \end{aligned} \end{equation} | (3.60) |
Finally, let r = 2 in (3.60), according to Lemma 2.2, (3.50), (3.55) and (3.58) yields
\begin{equation} \begin{aligned} \|u\|_{H^2} &\le C. \end{aligned} \end{equation} | (3.61) |
Therefore, together with (3.55), (3.56), (3.60) and (3.61), we get (3.49). The proof of Lemma 3.4 is completed.
With the priori estimates in Lemmas 3.1–3.4, we can prove Theorem 1.2.
Proof of Theorem 1.2. Assume that (1.16) is false, namely, (3.1) holds. Notice that the general constant C in Lemmas 3.1–3.4 is independent of t , that is, all the priori estimates attained in Lemmas 3.1–3.4 are uniformly bounded for any t\le T^* . Therefore, the function
( \rho, \theta, u, H)(x, T^*)\triangleq \lim\limits_{t\rightarrow T^*}( \rho, \theta, u, H)(x, t) |
satisfies the initial conditions (1.12) at t = T^* .
Due to
( \rho\dot u, \rho\dot \theta)(x, T^*) = \lim\limits_{t\rightarrow T^*}( \rho\dot u, \rho\dot \theta)\in L^2, |
therefore
\begin{equation} \notag \begin{aligned} - \mu{\triangle} u - (\mu + {\lambda})\nabla {{\rm{div }}} u + R\nabla ( \rho \theta )-H \cdot \nabla H +\frac{1}{2} \nabla |H |^2|_{t = T^*} & = \rho^{1/2}(x, T^*)g_1(x), \\ - \kappa{\triangle} \theta - 2\mu|\mathfrak{D}(u )|^2-\lambda( {{\rm{div }}} u )^2-\nu( \mbox{curl} H)^2|_{t = T^*}& = \rho^{1/2}(x, T^*)g_2(x), \end{aligned} \end{equation} |
with
\begin{equation} \notag \begin{aligned} g_1(x)\triangleq\begin{cases} \rho^{-1/2}(x, T^*)( \rho\dot u)(x, T^*), \; \; \; \; &\mbox{for}\; x\in\{x| \rho(x, T^*) > 0\}, \\0, \; \; \; \; &\mbox{for}\; x\in\{x| \rho(x, T^*) = 0\}, \end{cases} \end{aligned} \end{equation} |
and
\begin{equation} \notag \begin{aligned} g_2(x)\triangleq\begin{cases} \rho^{-1/2}(x, T^*)(c_v \rho\dot \theta+R \theta \rho {{\rm{div }}} u)(x, T^*), \; \; \; \; &\mbox{for}\; x\in\{x| \rho(x, T^*) > 0\}, \\0, \; \; \; \; &\mbox{for}\; x\in\{x| \rho(x, T^*) = 0\}, \end{cases} \end{aligned} \end{equation} |
satisfying g_1, \; g_2\in L^2 . Thus, (\rho, \theta, u, H)(x, T^*) also satisfies (1.13) and (1.14).
Hence, Theorem 1.1 shows that we could extend the local strong solutions beyond T^* , while taking (\rho, \theta, u, H)(x, T^*) as the initial data. This contradicts the hypothesis of Theorem 1.2 that T^* is the maximum existence time of the strong solution. This completes the proof of theorem 1.2.
This paper concerns the blow-up criterion for the initial boundary value problem of the two-dimensional full compressible magnetohydrodynamic equations in the Eulerian coordinates. When the initial density allowed to vanish, and the magnetic field H satisfies the perfect conducting boundary condition H\cdot n = \mbox{curl} H = 0 , we prove the blow-up criterion \lim\limits_{t\rightarrow T^*}\big(\|H\|_{L^\infty(0, t; L^b)}+\| {{\rm{div }}} u\|_{L^1(0, t; L^\infty)}\big) = \infty for any b > 2 , which depending on both H and {{\rm{div }}} u .
The author sincerely thanks the editors and anonymous reviewers for their insightful comments and constructive suggestions, which greatly improved the quality of the paper. The research was partially supported by the National Natural Science Foundation of China (No.11971217).
The author declares no conflict of interest in this paper.
[1] | P. A. Davidson, An introduction to magnetohydrodynamics, Cambridge: Cambridge University Press, 2001. |
[2] |
B. Ducomet, E. Feireisl, The equations of magnetohydrodynamics: on the interaction between matter and radiation in the evolution of gaseous stars, Commun. Math. Phys., 266 (2006), 595–629. https://doi.org/10.1007/s00220-006-0052-y doi: 10.1007/s00220-006-0052-y
![]() |
[3] |
C. S. Dou, S. Jiang, Q. C. Ju, Global existence and the low Mach number limit for the compressible magnetohydrodynamic equations in a bounded domain with perfectly conducting boundary, Z. Angew. Math. Phys., 64 (2013), 1661–1678. https://doi.org/10.1007/s00033-013-0311-7 doi: 10.1007/s00033-013-0311-7
![]() |
[4] | J. F. Gerbeau, C. Le Bris, T. Leliévre, Mathematical methods for the magnetohydrodynamics of Liquid metals, numerical mathematics and scientific computation, Oxford: Oxford University Press, 2006. |
[5] |
J. S. Fan, W. H. Yu, Strong solution to the compressible magnetohydrodynamic equations with vacuum, Nonlinear Anal. Real World Appl., 10 (2009), 392–409. https://doi.org/10.1016/j.nonrwa.2007.10.001 doi: 10.1016/j.nonrwa.2007.10.001
![]() |
[6] |
B. Q. Lü, B. Huang, On strong solutions to the Cauchy problem of the two-dimensional compressible magnetohydrodynamic equations with vacuum, Nonlinearity, 28 (2015), 509–530. https://doi.org/10.1088/0951-7715/28/2/509 doi: 10.1088/0951-7715/28/2/509
![]() |
[7] |
H. L. Li, X. Y. Xu, J. W. Zhang, Global classical solutions to 3D compressible magnetohydrodynamic equations with large oscillations and vacuum, SIAM J. Math. Anal., 45 (2013), 1356–1387. https://doi.org/10.1137/120893355 doi: 10.1137/120893355
![]() |
[8] | B. Q. Lü, X. D. Shi, X. Y. Xu, Global well-posedness and large time asymptotic behavior of strong solutions to the compressible magnetohydrodynamic equations with vacuum, Indiana Univ. Math. J., 65 (2016), 725–975. |
[9] |
X. P. Hu, D. H. Wang, Global solutions to the three-dimensional full compressible magnetohydrodynamic flows, Commun. Math. Phys., 283 (2008), 255–284. https://doi.org/10.1007/s00220-008-0497-2 doi: 10.1007/s00220-008-0497-2
![]() |
[10] |
X. P. Hu, D. H. Wang, Global existence and large-time behavior of solutions to the threedimensional equations of compressible magnetohydrodynamic flows, Arch. Ration. Mech. Anal., 197 (2010), 203–238. https://doi.org/10.1007/s00205-010-0295-9 doi: 10.1007/s00205-010-0295-9
![]() |
[11] |
J. S. Fan, W. H. Yu, Global variational solutions to the compressible magnetohydrodynamic equations, Nonlinear Anal., 69 (2008), 3637–3660. https://doi.org/10.1016/j.na.2007.10.005 doi: 10.1016/j.na.2007.10.005
![]() |
[12] | J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 9 (1962), 187–195. |
[13] |
C. He, Z. P. Xin, On the regularity of solutions to the magnetohydrodynamic equations, J. Differ. Equ., 213 (2005), 235–254. https://doi.org/10.1016/j.jde.2004.07.002 doi: 10.1016/j.jde.2004.07.002
![]() |
[14] |
X. D. Huang, J. Li, Z. P. Xin, Serrin type criterion for the three-dimensional compressible flows, SIAM J. Math. Anal., 43 (2011), 1872–1886. https://doi.org/10.1137/100814639 doi: 10.1137/100814639
![]() |
[15] |
J. S. Fan, S. Jiang, Y. B. Ou, A blow-up criterion for compressible viscous heat-conductive flows, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 337–350. https://doi.org/10.1016/j.anihpc.2009.09.012 doi: 10.1016/j.anihpc.2009.09.012
![]() |
[16] |
X. D. Huang, J. Li, Z. P. Xin, Blowup criterion for viscous barotropic flows with vacuum states, Comm. Math. Phys., 301 (2011), 23–35. https://doi.org/10.1007/s00220-010-1148-y doi: 10.1007/s00220-010-1148-y
![]() |
[17] |
Y. Wang, One new blowup criterion for the 2D full compressible Navier-Stokes system, Nonlinear Anal. Real World Appl., 16 (2014), 214–226. https://doi.org/10.1016/j.nonrwa.2013.09.020 doi: 10.1016/j.nonrwa.2013.09.020
![]() |
[18] |
X. Y. Xu, J. W. Zhang, A blow-up criterion for 3D compressible magnetohydrodynamic equations with vaccum, Math. Models Method. Appl. Sci., 22 (2012), 1150010. https://doi.org/10.1142/S0218202511500102 doi: 10.1142/S0218202511500102
![]() |
[19] |
M. Lu, Y. Du, Z. A. Yao, Blow-up criterion for compressible MHD equations, J. Math. Anal. Appl., 379 (2011), 425–438. https://doi.org/10.1016/j.jmaa.2011.01.043 doi: 10.1016/j.jmaa.2011.01.043
![]() |
[20] |
M. T. Chen, S. Q. Liu, Blow-up criterion for 3D viscous-resistive compressible magnetohydrodynamic equations, Math. Method. Appl. Sci., 36 (2013), 1145–1156. https://doi.org/10.1002/mma.2674 doi: 10.1002/mma.2674
![]() |
[21] |
X. D. Huang, J. Li, Serrin-type blowup criterion for viscous, compressible, and heat conducting Navier-Stokes and magnetohydrodynamic flows, Comm. Math. Phys., 324 (2013), 147–171. https://doi.org/10.1007/s00220-013-1791-1 doi: 10.1007/s00220-013-1791-1
![]() |
[22] | J. S. Fan, F. C. Li, G. Nakamura, A blow-up criterion to the 2D full compressible magnetohydrodynamic equations, Math. Meth. Appl. Sci., 38 (2015), 2073–2080. |
[23] |
Y. Cho, H. Kim, Existence results for viscous polytropic fluids with vacuum, J. Differ. Equ., 228 (2006), 377–411. https://doi.org/10.1016/j.jde.2006.05.001 doi: 10.1016/j.jde.2006.05.001
![]() |
[24] |
Y. Z. Sun, C. Wang, Z. F. Zhang, A Beale-Kato-Majda Blow-up criterion for the 3-D compressible Navier-Stokes equations, J. Math. Pures Appl., 95 (2011), 36–47. https://doi.org/10.1016/j.matpur.2010.08.001 doi: 10.1016/j.matpur.2010.08.001
![]() |
[25] | E. Feireisl, Dynamics of viscous compressible fluids, Oxford: Oxford Science Publication, 2004. |
[26] |
H. Y. Wen, C. J. Zhu, Blow-up criterions of strong solutions to 3D compressible Navier-Stokes equations with vacuum, Adv. Math., 248 (2013), 534–572. https://doi.org/10.1016/j.aim.2013.07.018 doi: 10.1016/j.aim.2013.07.018
![]() |
[27] | L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 115–162. |
[28] |
Y. Cho, H. J. Choe, H. Kim, Unique solvability of the initial boundary value problems for compressible viscous fluids, J. Math. Pures Appl., 83 (2004), 243–275. https://doi.org/10.1016/j.matpur.2003.11.004 doi: 10.1016/j.matpur.2003.11.004
![]() |
[29] | S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm. Pure Appl. Math., 12 (1959), 623–727. |
[30] |
S. Agmon, A. Douglis, L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II, Comm. Pure Appl. Math., 17 (1964), 35–92. https://doi.org/10.1002/cpa.3160170104 doi: 10.1002/cpa.3160170104
![]() |
[31] | H. Brezis, T. Gallouet, Nonlinear Schrödinger evolution equations, Nonlinear Anal. TMA, 4 (1980), 677–681. |
[32] | H. Brezis, S. Wainger, A note on limiting cases of Sobolev embedding and convolution inequalities, Commun. Part. Diff. Eq., 5 (1980), 773–789. |
[33] |
X. D. Huang, J. Li, Y. Wang, Serrin-type blowup criterion for full compressible Navier-Stokes system, Arch. Ration. Mech. Anal., 207 (2013), 303–316. https://doi.org/10.1007/s00205-012-0577-5 doi: 10.1007/s00205-012-0577-5
![]() |