In this paper, we consider the conditional regularity for the 3D incompressible Navier-Stokes equations in Vishik spaces. These results will be regarded an improvement of the results given by Huang-Li-Xin, (SIAM J. Math. Anal., 2011) and Jiu-Wang-Ye, (J. Evol. Equ., 2021).
Citation: Jae-Myoung Kim. Blow-up criteria for the full compressible Navier-Stokes equations involving temperature in Vishik Spaces[J]. AIMS Mathematics, 2022, 7(8): 15693-15703. doi: 10.3934/math.2022859
In this paper, we consider the conditional regularity for the 3D incompressible Navier-Stokes equations in Vishik spaces. These results will be regarded an improvement of the results given by Huang-Li-Xin, (SIAM J. Math. Anal., 2011) and Jiu-Wang-Ye, (J. Evol. Equ., 2021).
[1] | Y. Cho, H. Kim, Existence results for viscous polytropic fluids with vacuum, J. Differential Equations., 228 (2006), 377–411. https://doi.org/10.1016/j.jde.2006.05.001 doi: 10.1016/j.jde.2006.05.001 |
[2] | L. Du, Y. Wang, Blowup criterion for 3-dimensional compressible Navier-Stokes equations involving velocity divergence, Commun. Math. Sci., 12 (2014), 1427–1435. https://doi.org/10.4310/CMS.2014.v12.n8.a3 doi: 10.4310/CMS.2014.v12.n8.a3 |
[3] | J. Fan, S. Jiang, Y. Ou, A blow-up criterion for compressible viscous heat-conductive flows, Ann. Inst. H. Poincaré, Anal. Non Linéaire., 27 (2010), 337–350. https://doi.org/10.1016/j.anihpc.2009.09.012 doi: 10.1016/j.anihpc.2009.09.012 |
[4] | S. Gala, M. A. Ragusa, Y. Sawano, H. Tanaka, Uniqueness criterion of weak solutions for the dissipative quasi-geostrophic equations in Orlicz-Morrey spaces, Appl. Anal., 93 (2014), 356–368. https://doi.org/10.1080/00036811.2013.772582 doi: 10.1080/00036811.2013.772582 |
[5] | X. Huang, J. Li, On breakdown of solutions to the full compressible Navier-Stokes equations, Meth. Appl. Anal., 16 (2009), 479–490. https://doi.org/10.4310/MAA.2009.v16.n4.a4 doi: 10.4310/MAA.2009.v16.n4.a4 |
[6] | X. Huang, J. Li, Z. Xin, Serrin-type criterion for the three-dimensional viscous compressible flows, SIAM J. Math. Anal., 43 (2011), 1872–1886. https://doi.org/10.1137/100814639 doi: 10.1137/100814639 |
[7] | X. Huang, J. Li, Serrin-type blowup criterion for viscous, compressible, and heat conducting Navier-Stokes and magnetohydrodynamic flows, Comm. Math. Phys., 324 (2013), 147–171. https://doi.org/10.1007/s00220-013-1791-1 doi: 10.1007/s00220-013-1791-1 |
[8] | X. Huang, J. Li, Y. Wang, Serrin-type blowup criterion for full compressible Navier-Stokes system, Arch. Ration. Mech. Anal., 207 (2013), 303–316. https://doi.org/10.1007/s00205-012-0577-5 doi: 10.1007/s00205-012-0577-5 |
[9] | Q. Jiu, Y. Wang, Y. Ye, Refined blow-up criteria for the full compressible Navier-Stokes equations involving temperature, J. Evol. Equ., 21 (2021), 1895–1916. |
[10] | R. Kanamaru, Optimality of logarithmic interpolation inequalities and extension criteria to the Navier-Stokes and Euler equations in Vishik spaces. J. Evol. Equ., (2020), 1–17. |
[11] | J. M. Kim, Regularity for 3D inhomogeneous Naiver-Stokes equations in Vishik spaces, J. Funct. Spaces, 2022, Article ID 7061004, 4 pp. https://doi.org/10.1155/2022/7061004 |
[12] | Y. Li, J. Xu, S. Zhu, Blow-up criterion for the 3D compressible non-isentropic Navier-Stokes equations without thermal conductivity, J. Math. Anal. Appl., 431 (2015), 822–840. |
[13] | Q. Li, M.L. Zou, A regularity criterion via horizontal components of velocity and molecular orientations for the 3D nematic liquid crystal flows, AIMS Math., 7 (2022), 9278–9287. https://doi.org/10.3934/math.2022514 doi: 10.3934/math.2022514 |
[14] | Y. Sun, C. Wang, Z. Zhang, A Beale-Kato-Majda blow-up criterion for the 3D compressible Navier-Stokes equations, J. Math. Pures Appl., 95 (2011), 36–47. https://doi.org/10.1016/j.matpur.2010.08.001 doi: 10.1016/j.matpur.2010.08.001 |
[15] | Y. Sun, C. Wang, Z. Zhang, A Beale-Kato-Majda criterion for three dimensional compressible viscous heat-conductive flows, Arch. Ration. Mech. Anal., 201 (2011), 727–742. |
[16] | Y. Sun, Z. Zhang, Blow-up criteria of strong solutions and conditional regularity of weak solutions for the compressible Navier-Stokes equations, Handbook of mathematical analysis in mechanics of viscous fluids, 2263–2324, Springer, Cham, 2018. |
[17] | M. Vishik, Incompressible flows of an ideal fluid with unbounded vorticity, Comm. Math. Phys., 213 (2000), 697–731. https://doi.org/10.1007/s002200000255 doi: 10.1007/s002200000255 |
[18] | H. Wen, C. Zhu, Blow-up criterions of strong solutions to 3D compressible Navier-Stokes equations with vacuum, Adv. Math., 248 (2013), 534–572. |
[19] | H. Wen, C. Zhu, Global solutions to the three-dimensional full compressible Navier-Stokes equations with vacuum at infinity in some classes of large data, SIAM J. Math. Anal., 49 (2017), 162–221. https://doi.org/10.1137/16M1055414 doi: 10.1137/16M1055414 |
[20] | F. Wu, Navier-Stokes regularity criteria in Vishik spaces, Appl. Math. Optim., 84 (2021), suppl. 1, S39–S53. https://doi.org/10.1007/s00245-021-09757-9 doi: 10.1007/s00245-021-09757-9 |
[21] | Z. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density, Comm. Pure Appl. Math., 51 (1998), 229–240. https://doi.org/10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C |
[22] | Z. Xin, W. Yan, On blow up of classical solutions to the compressible Navier-Stokes equations. Comm. Math. Phys., 321 (2013), 529–541. https://doi.org/10.1007/s00220-012-1610-0 |