Research article Special Issues

Blow-up criteria for the full compressible Navier-Stokes equations involving temperature in Vishik Spaces

  • Received: 12 May 2022 Revised: 19 June 2022 Accepted: 20 June 2022 Published: 24 June 2022
  • MSC : 35B65, 35D30, 76D05

  • In this paper, we consider the conditional regularity for the 3D incompressible Navier-Stokes equations in Vishik spaces. These results will be regarded an improvement of the results given by Huang-Li-Xin, (SIAM J. Math. Anal., 2011) and Jiu-Wang-Ye, (J. Evol. Equ., 2021).

    Citation: Jae-Myoung Kim. Blow-up criteria for the full compressible Navier-Stokes equations involving temperature in Vishik Spaces[J]. AIMS Mathematics, 2022, 7(8): 15693-15703. doi: 10.3934/math.2022859

    Related Papers:

  • In this paper, we consider the conditional regularity for the 3D incompressible Navier-Stokes equations in Vishik spaces. These results will be regarded an improvement of the results given by Huang-Li-Xin, (SIAM J. Math. Anal., 2011) and Jiu-Wang-Ye, (J. Evol. Equ., 2021).



    加载中


    [1] Y. Cho, H. Kim, Existence results for viscous polytropic fluids with vacuum, J. Differential Equations., 228 (2006), 377–411. https://doi.org/10.1016/j.jde.2006.05.001 doi: 10.1016/j.jde.2006.05.001
    [2] L. Du, Y. Wang, Blowup criterion for 3-dimensional compressible Navier-Stokes equations involving velocity divergence, Commun. Math. Sci., 12 (2014), 1427–1435. https://doi.org/10.4310/CMS.2014.v12.n8.a3 doi: 10.4310/CMS.2014.v12.n8.a3
    [3] J. Fan, S. Jiang, Y. Ou, A blow-up criterion for compressible viscous heat-conductive flows, Ann. Inst. H. Poincaré, Anal. Non Linéaire., 27 (2010), 337–350. https://doi.org/10.1016/j.anihpc.2009.09.012 doi: 10.1016/j.anihpc.2009.09.012
    [4] S. Gala, M. A. Ragusa, Y. Sawano, H. Tanaka, Uniqueness criterion of weak solutions for the dissipative quasi-geostrophic equations in Orlicz-Morrey spaces, Appl. Anal., 93 (2014), 356–368. https://doi.org/10.1080/00036811.2013.772582 doi: 10.1080/00036811.2013.772582
    [5] X. Huang, J. Li, On breakdown of solutions to the full compressible Navier-Stokes equations, Meth. Appl. Anal., 16 (2009), 479–490. https://doi.org/10.4310/MAA.2009.v16.n4.a4 doi: 10.4310/MAA.2009.v16.n4.a4
    [6] X. Huang, J. Li, Z. Xin, Serrin-type criterion for the three-dimensional viscous compressible flows, SIAM J. Math. Anal., 43 (2011), 1872–1886. https://doi.org/10.1137/100814639 doi: 10.1137/100814639
    [7] X. Huang, J. Li, Serrin-type blowup criterion for viscous, compressible, and heat conducting Navier-Stokes and magnetohydrodynamic flows, Comm. Math. Phys., 324 (2013), 147–171. https://doi.org/10.1007/s00220-013-1791-1 doi: 10.1007/s00220-013-1791-1
    [8] X. Huang, J. Li, Y. Wang, Serrin-type blowup criterion for full compressible Navier-Stokes system, Arch. Ration. Mech. Anal., 207 (2013), 303–316. https://doi.org/10.1007/s00205-012-0577-5 doi: 10.1007/s00205-012-0577-5
    [9] Q. Jiu, Y. Wang, Y. Ye, Refined blow-up criteria for the full compressible Navier-Stokes equations involving temperature, J. Evol. Equ., 21 (2021), 1895–1916.
    [10] R. Kanamaru, Optimality of logarithmic interpolation inequalities and extension criteria to the Navier-Stokes and Euler equations in Vishik spaces. J. Evol. Equ., (2020), 1–17.
    [11] J. M. Kim, Regularity for 3D inhomogeneous Naiver-Stokes equations in Vishik spaces, J. Funct. Spaces, 2022, Article ID 7061004, 4 pp. https://doi.org/10.1155/2022/7061004
    [12] Y. Li, J. Xu, S. Zhu, Blow-up criterion for the 3D compressible non-isentropic Navier-Stokes equations without thermal conductivity, J. Math. Anal. Appl., 431 (2015), 822–840.
    [13] Q. Li, M.L. Zou, A regularity criterion via horizontal components of velocity and molecular orientations for the 3D nematic liquid crystal flows, AIMS Math., 7 (2022), 9278–9287. https://doi.org/10.3934/math.2022514 doi: 10.3934/math.2022514
    [14] Y. Sun, C. Wang, Z. Zhang, A Beale-Kato-Majda blow-up criterion for the 3D compressible Navier-Stokes equations, J. Math. Pures Appl., 95 (2011), 36–47. https://doi.org/10.1016/j.matpur.2010.08.001 doi: 10.1016/j.matpur.2010.08.001
    [15] Y. Sun, C. Wang, Z. Zhang, A Beale-Kato-Majda criterion for three dimensional compressible viscous heat-conductive flows, Arch. Ration. Mech. Anal., 201 (2011), 727–742.
    [16] Y. Sun, Z. Zhang, Blow-up criteria of strong solutions and conditional regularity of weak solutions for the compressible Navier-Stokes equations, Handbook of mathematical analysis in mechanics of viscous fluids, 2263–2324, Springer, Cham, 2018.
    [17] M. Vishik, Incompressible flows of an ideal fluid with unbounded vorticity, Comm. Math. Phys., 213 (2000), 697–731. https://doi.org/10.1007/s002200000255 doi: 10.1007/s002200000255
    [18] H. Wen, C. Zhu, Blow-up criterions of strong solutions to 3D compressible Navier-Stokes equations with vacuum, Adv. Math., 248 (2013), 534–572.
    [19] H. Wen, C. Zhu, Global solutions to the three-dimensional full compressible Navier-Stokes equations with vacuum at infinity in some classes of large data, SIAM J. Math. Anal., 49 (2017), 162–221. https://doi.org/10.1137/16M1055414 doi: 10.1137/16M1055414
    [20] F. Wu, Navier-Stokes regularity criteria in Vishik spaces, Appl. Math. Optim., 84 (2021), suppl. 1, S39–S53. https://doi.org/10.1007/s00245-021-09757-9 doi: 10.1007/s00245-021-09757-9
    [21] Z. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density, Comm. Pure Appl. Math., 51 (1998), 229–240. https://doi.org/10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C
    [22] Z. Xin, W. Yan, On blow up of classical solutions to the compressible Navier-Stokes equations. Comm. Math. Phys., 321 (2013), 529–541. https://doi.org/10.1007/s00220-012-1610-0
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1510) PDF downloads(63) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog