Research article

Fractional convex type contraction with solution of fractional differential equation

  • Received: 16 March 2020 Accepted: 04 May 2020 Published: 22 June 2020
  • MSC : 47H09, 47H10, 54H25

  • The focus of this paper is to present a new idea of fractional convex type contraction and establish some new results for such contraction under the improved approach of fractional convex type contractive condition in the context of $\mathcal{F}$ -complete $\mathcal{F}$ -metric space. The authors derive some results for Suzuki type contractions, orbitally T-complete and orbitally continuous mappings in $\mathcal{F}$ -metric spaces and obtain some consequences by using graphic contraction. The motivation of this paper is to observe the solution of fractional order differential equation with one of the boundary condition using fixed point technique in $\mathcal{F}$ -metric space.

    Citation: Aftab Hussain. Fractional convex type contraction with solution of fractional differential equation[J]. AIMS Mathematics, 2020, 5(5): 5364-5380. doi: 10.3934/math.2020344

    Related Papers:

  • The focus of this paper is to present a new idea of fractional convex type contraction and establish some new results for such contraction under the improved approach of fractional convex type contractive condition in the context of $\mathcal{F}$ -complete $\mathcal{F}$ -metric space. The authors derive some results for Suzuki type contractions, orbitally T-complete and orbitally continuous mappings in $\mathcal{F}$ -metric spaces and obtain some consequences by using graphic contraction. The motivation of this paper is to observe the solution of fractional order differential equation with one of the boundary condition using fixed point technique in $\mathcal{F}$ -metric space.


    加载中


    [1] M. Abbas, T. Nazir, Common fixed point of a power graphic contraction pair in partial metric spaces endowed with a graph, Fixed Point Theory Appl., 2013 (2013), 1-8. doi: 10.1186/1687-1812-2013-1
    [2] D. Baleanu, R. P. Agarwal, H. Mohammadi, et al. Some existence results for a nonlinear fractional differential equation on partially ordered Banach spaces, Bound. Value Probl., 2013 (2013), 1-8. doi: 10.1186/1687-2770-2013-1
    [3] F. Bojor, Fixed point theorems for Reich type contraction on metric spaces with a graph, Nonlinear Anal., 75 (2012), 3895-3901. doi: 10.1016/j.na.2012.02.009
    [4] L. He, X. Dong, Z. Bai, et al. Solvability of some two-point fractional boundary value problems under barrier strip conditions, J. Funct. Space., 2017 (2017), 1-6.
    [5] N. Hussain, M. A. Kutbi, P. Salimi, Fixed point theory in α-complete metric spaces with applications, Abstr. Appl. Anal., 2014 (2014), 1-11.
    [6] N. Hussain, A. Latif, I. Iqbal, Fixed point results for generalized F-contractions in modular metric and fuzzy metric spaces, Fixed Point Theory Appl., 2015 (2015), 1-20. doi: 10.1186/1687-1812-2015-1
    [7] N. Hussain, P. Salimi, Suzuki-Wardowski type fixed point theorems for α-GF-contractions, Taiwanese J. Math., 18 (2014), 1879-1895. doi: 10.11650/tjm.18.2014.4462
    [8] N. Hussain, S. Al-Mezel, P. Salimi, Fixed points for α-ψ-graphic contractions with application to integral equations, Abstr. Appl. Anal., 2013 (2013), 1-11.
    [9] J. Jachymski, The contraction principle for mappings on a metric space with a graph, P. Am. Math. Soc., 136 (2008), 1359-1373.
    [10] M. Jleli, B. Samet, On a new generalization of metric spaces, J. Fixed Point Theory Appl., 20 (2018), 128.
    [11] W. A. Kirk, S. Reich, P. veeramani, Proximinal retracts and best proximity pair theorems, Numer. Func. Anal. Opt., 24 (2003), 851-862. doi: 10.1081/NFA-120026380
    [12] E. Karapinar, R. Agarwal, H. Aydi, Interpolative Reich-Rus-Ćirić type contractions on partial metric spaces, Mathematics, 6 (2018), 1-7.
    [13] E. Karapinar, B. Samet, Generalized (α - ψ) contractive type mappings and related fixed point theorems with applications, Abstr. Appl. Anal., 2012 (2012), 1-17.
    [14] M. A. Kutbi, M. Arshad, A. Hussain, On Modified α-η-Contractive mappings, Abstr. Appl. Anal., 2014 (2014), 1-7.
    [15] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Eqautions, John Wiley & Sons, 1993.
    [16] S. Reich, Some problems and results in fixed point theory, Contemp. Math., 21 (1983), 179-185. doi: 10.1090/conm/021/729515
    [17] P. Salimi, A. Latif, N. Hussain, Modified α - ψ-Contractive mappings with applications, Fixed Point Theory Appl., 2013 (2013), 1-19. doi: 10.1186/1687-1812-2013-1
    [18] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for α - ψ-contractive type mappings, Nonlinear Anal., 75 (2012), 2154-2165. doi: 10.1016/j.na.2011.10.014
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3149) PDF downloads(234) Cited by(9)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog