Citation: Aftab Hussain. Fractional convex type contraction with solution of fractional differential equation[J]. AIMS Mathematics, 2020, 5(5): 5364-5380. doi: 10.3934/math.2020344
[1] | M. Abbas, T. Nazir, Common fixed point of a power graphic contraction pair in partial metric spaces endowed with a graph, Fixed Point Theory Appl., 2013 (2013), 1-8. doi: 10.1186/1687-1812-2013-1 |
[2] | D. Baleanu, R. P. Agarwal, H. Mohammadi, et al. Some existence results for a nonlinear fractional differential equation on partially ordered Banach spaces, Bound. Value Probl., 2013 (2013), 1-8. doi: 10.1186/1687-2770-2013-1 |
[3] | F. Bojor, Fixed point theorems for Reich type contraction on metric spaces with a graph, Nonlinear Anal., 75 (2012), 3895-3901. doi: 10.1016/j.na.2012.02.009 |
[4] | L. He, X. Dong, Z. Bai, et al. Solvability of some two-point fractional boundary value problems under barrier strip conditions, J. Funct. Space., 2017 (2017), 1-6. |
[5] | N. Hussain, M. A. Kutbi, P. Salimi, Fixed point theory in α-complete metric spaces with applications, Abstr. Appl. Anal., 2014 (2014), 1-11. |
[6] | N. Hussain, A. Latif, I. Iqbal, Fixed point results for generalized F-contractions in modular metric and fuzzy metric spaces, Fixed Point Theory Appl., 2015 (2015), 1-20. doi: 10.1186/1687-1812-2015-1 |
[7] | N. Hussain, P. Salimi, Suzuki-Wardowski type fixed point theorems for α-GF-contractions, Taiwanese J. Math., 18 (2014), 1879-1895. doi: 10.11650/tjm.18.2014.4462 |
[8] | N. Hussain, S. Al-Mezel, P. Salimi, Fixed points for α-ψ-graphic contractions with application to integral equations, Abstr. Appl. Anal., 2013 (2013), 1-11. |
[9] | J. Jachymski, The contraction principle for mappings on a metric space with a graph, P. Am. Math. Soc., 136 (2008), 1359-1373. |
[10] | M. Jleli, B. Samet, On a new generalization of metric spaces, J. Fixed Point Theory Appl., 20 (2018), 128. |
[11] | W. A. Kirk, S. Reich, P. veeramani, Proximinal retracts and best proximity pair theorems, Numer. Func. Anal. Opt., 24 (2003), 851-862. doi: 10.1081/NFA-120026380 |
[12] | E. Karapinar, R. Agarwal, H. Aydi, Interpolative Reich-Rus-Ćirić type contractions on partial metric spaces, Mathematics, 6 (2018), 1-7. |
[13] | E. Karapinar, B. Samet, Generalized (α - ψ) contractive type mappings and related fixed point theorems with applications, Abstr. Appl. Anal., 2012 (2012), 1-17. |
[14] | M. A. Kutbi, M. Arshad, A. Hussain, On Modified α-η-Contractive mappings, Abstr. Appl. Anal., 2014 (2014), 1-7. |
[15] | K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Eqautions, John Wiley & Sons, 1993. |
[16] | S. Reich, Some problems and results in fixed point theory, Contemp. Math., 21 (1983), 179-185. doi: 10.1090/conm/021/729515 |
[17] | P. Salimi, A. Latif, N. Hussain, Modified α - ψ-Contractive mappings with applications, Fixed Point Theory Appl., 2013 (2013), 1-19. doi: 10.1186/1687-1812-2013-1 |
[18] | B. Samet, C. Vetro, P. Vetro, Fixed point theorems for α - ψ-contractive type mappings, Nonlinear Anal., 75 (2012), 2154-2165. doi: 10.1016/j.na.2011.10.014 |