Citation: Qianghua Luo, Jieyan Wang. On the density of shapes in three-dimensional affine subdivision[J]. AIMS Mathematics, 2020, 5(5): 5381-5388. doi: 10.3934/math.2020345
[1] | José S. Andrade, H. J. Herrmann, R. F. S. Andrade, et al. Apollonian networks: Simultaneously scale-free, small world, Euclidean, space filling, and with matching graphs, Phys. Rev. Lett., 94 (2005), 018702. |
[2] | I. Bárány, A. F. Beardon, T. K. Carne, Barycentric subdivision of triangles and semigroups of Möbius maps, Mathematika, 43 (1996), 165-171. doi: 10.1112/S0025579300011669 |
[3] | J. H. Conway, A. J. Jones, Trigonometric diophantine equations (on vanishing sums of roots of unity), Acta Arith., 30 (1976), 229-240. doi: 10.4064/aa-30-3-229-240 |
[4] | W. Fulton, J. Harris, Representation Theory, A First Course, Springer-Verlag, New York, 1991. |
[5] | J. B. Liu, J. Zhao, Z. X. Zhu, On the number of spanning trees and normalized Laplacian of linear octagonal quadrilateral networks, Int. J. Quantum Chem., 119 (2019), e25971. |
[6] | J. B. Liu, J. Zhao, Z. Cai, On the generalized adjacency, Laplacian and signless Laplacian spectra of the weighted edge corona networks, Physica A, 540 (2020), 123073. |
[7] | J. B. Liu, J. Zhao, H. He, et al.Valency-based topological descriptors and structural property of the generalized sierpinski networks, J. Stat. Phys., 177 (2019), 1131-1147. doi: 10.1007/s10955-019-02412-2 |
[8] | A. A. Ordin, Generalized barycentric subdivision of triangle and semigroups of Möbius transfomations, Russ. Math. Surv., 55 (2000), 591-592. doi: 10.1070/RM2000v055n03ABEH000304 |
[9] | R. E. Schwartz, The density of shapes in three-dimensional barycentric subdivision, Discrete Comput. Geom., 30 (2003), 373-377. doi: 10.1007/s00454-003-2823-y |
[10] | R. E. Schwartz, Affine subdivision, steerable semigroups, and sphere coverings, Pure Appl. Math. Q., 3 (2007), 897-926. doi: 10.4310/PAMQ.2007.v3.n4.a2 |
[11] | E. Spanier, Algebraic Topology, Springer-Verlag, New York, 1966. |
[12] | J. P. Suarez, T. Moreno, The limit property for the interior solid angles of some refinement schemes for simplicial meshes, J. Comput. Appl. Math., 275 (2015), 135-138. doi: 10.1016/j.cam.2014.08.004 |
[13] | S. Wolfram, The Mathematica Book, 4 Eds., Cambridge University Press, Cambridge, 1999. |