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Abstract: The affine subdivision of a simplex ∆ is a certain collection of (n + 1)! smaller n-simplices
whose union is ∆. Barycentric subdivision is a well know example of affine subdivision(see ). Richard
Schwartz(2003) proved that the infinite process of iterated barycentric subdivision on a tetrahedron
produces a dense set of shapes of smaller tetrahedra. We prove that the infinite iteration of several kinds
of affine subdivision on a tetrahedron produce dense sets of shapes of smaller tetrahedra, respectively.
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1. Introduction

Let n ≥ 2 and (λ1, λ2, . . . , λn+1) be a given (n + 1)-tuple with all components positive such that∑n+1
j=1 λ j = 1. Let ∆ be a given Euclidean n-simplex with n + 1 vertices ν1, ν2, · · · , νn+1. The affine

subdivision of ∆ with parameter tuple (λ1, λ2, ..., λn+1) is a certain collection of (n + 1)! smaller n-
simplices whose union is ∆. It’s a kind of (n + 1)!-interior point subdivision (see [11] for the details).
Let ν be the point

∑n+1
i=1 λiνi. For each (n − 2)-face of ∆, there exits a (n − 1)-hyperplane decided

by the face and ν. The simplex ∆ is divided into (n + 1)! smaller n-simplices ∆1, ∆2, · · · , ∆(n+1)! by
these hyperplanes. A well-known example is the barycentric subdivision when λ j = 1/(n + 1), for
j = 1, · · · , n + 1 (see [2, 9, 10]). The iteration of affine subdivision on a simplex produces a kind of
Apollonian networks(see [1]). Recently, Liu et al. [5–7] have studied the linear octagonal-quadrilateral
networks, the weighted edge corona networks and the generalized Sierpinski networks. They have
obtained rich results.

As shown in the Figure 1, let νi1 denotes the vertex of ∆i coincide with a vertex of ∆ and let νi2

denotes the vertex of ∆i in the interior of a edge of ∆ and so forth. For k = 1, 2, · · · , n, set νik < νi(k+1),
we obtain a orientation of ∆i. Taking the same affine subdivision on {∆i} and so forth, one obtains
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an infinite collection Λ of simplices. Similar to [2], a natural question is whether Λ is a dense set
of shapes. By shape we mean the equivalence classes of simplices under similarity. Namely, two
simplices is said to have the same shape if they are similar.

Figure 1. An affine subdivision of the tetrahedron ν1ν2ν3ν4.

On barycentric subdivision, the question was raised and positively answered in the two-dimensional
case in [2]. The three-dimensional case and the four-dimensional case were both solved by Schwartz
[9, 10]. On affine subdivision, Ordin [8] raised and gave a positive answer to the queston in the two-
dimensional case. Ordin observed that if a 2-simplex has edges l1, l2, l3, the triple (l2

1, l
2
2, l

2
3) is contained

in the interior of a cone in R3. Ordin proved his result by the group theory in hyperbolic geometry. For
higher dimensions, (l2

1, l
2
2, · · · , l

2
k) is bounded by a extremely complicated surfaces, where l1, l2, · · · , lk

are the edges of a simplex. The idea of Ordin seems do not work in higher dimension.
Similar to [2, 8–10], the critical point of solving the question above is making connection with

matrices. Let T be the collection of matrices of the form T = ±L/| det(L)|
1
n , where L is the linear part

of an affine map from ∆ to a member of Λ and the sign is chosen such that det(T ) is a positive number.
The affine naturality of affine subdivision forces T to be a semigroup of S Ln(R). Then to show that Λ

consists of a dense set of shapes, it suffices to show that T is a dense set of S Ln(R).
In order to show that T is dense in S Ln(R), one method is to find some infinite order elliptic

elements in T . If the semigroup generated by these elements is a dense set in S Ln(R), then T is
a dense set too. For barycentric subdivision, when n = 2, Bárány et al. [2] gave a calculation to
show that T contains some infinite-order elliptic elements. When n = 3, it seems that the infinite
order elliptic elements are quite rare. Schwartz [9] gave a method to find some infinite order elliptic
elements by computer searching and proved that infinite process of iterated barycentric subdivision on
a tetrahedron produces a dense set of shapes of tetrahedra.

2. Main result

Following the strategy in Schwartz [9], in this paper we will prove the following result for three-
dimensional affine subdivision.
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Theorem 2.1. Let (λ1, λ2, λ3, λ4) be one of the following tuples

(1/6, 1/2, 1/6, 1/6), (1/6, 1/12, 1/2, 1/4), (1/9, 1/3, 2/9, 1/3), (1/8, 1/4, 3/8, 1/4),

(1/6, 1/6, 1/6, 1/2), (1/3, 1/12, 1/3, 1/4), (1/12, 1/3, 1/3, 1/4), (1/6, 1/4, 1/4, 1/3),

(1/20, 1/5, 1/4, 1/2), (2/3, 1/9, 1/18, 1/6).

Then the iteration of the corresponding three-dimensional affine subdivision with parameter tuple
(λ1, λ2, λ3, λ4) on any fixed tetrahedron produces a dense set of shapes of tetrahedra.

Theorem 2.1 is still valid for (1/4, 1/4, 1/4, 1/4). Note that the corresponding affine subdivision
of (1/4, 1/4, 1/4, 1/4) is barycentric subdivision, so Theorem 2.1 is an extension of Theorem 1.1 in
Schwartz [9]. To the best of our knowledge, the following problem remains open.

Suppose that (λ1, λ2, λ3, λ4) is a given tuple with all components positive such that
∑4

i=1 λi = 1. In
which case the iterated affine subdivision on a fixed tetrahedron produces a dense set of shape space of
tetrahedra?

3. The proof

Suppose that (λ1, λ2, ..., λn+1) is a given tuple with all components positive such that
∑n+1

i=1 λi = 1 and
∆ = ν1ν2...νn+1 is a given n-dimension simplex. Let S n+1 be the set of permutations of {1, 2, ..., n + 1}.
For each element Pi ∈ S n+1, it has a associated simplex ∆i := νi1νi2 . . . νi(n+1), where

νik =
Σk

j=1λPi( j)νPi( j)

Σk
j=1λPi( j)

for k = 1, · · · , n + 1. Obviously, νik is contained in the interior of a (k − 1)-dimensional face of ∆.
The simplex ∆ is equal to the union of ∆i for all related i. The process above is called to be the affine
subdivision of ∆ with parameter tuple (λ1, λ2, ..., λn+1).

In three dimension, without loss of generality, assume that ∆ is the convex hull of the vertices e1,
e2, e3 and e4, where e1 is the origin and {e2, e3, e4} is the stand basis of R3. Lexicographically, we order
the elements of S 4 as follows.

P1 = (1234), P2 = (1243), · · · · · · , P24 = (4321).

For any given element Pi ∈ S 4, let APi be the affine map such that APi(ek) = νik and LPi be the linear
part of APi . Normalizing LPi , we get

TPi = LPi/| det(LPi)|
1/3.

Since the determinant of TPi may take value −1, TPi is not necessary an element in T while T 2
Pi

is
exactly an element in T .

Now we try to search some elliptic elements in the set

{TPiTP jTPk |i = 1, 2, ..., 24, j = 1, 2, ..., 24, k = 1, 2, ..., 24}.

We present the details for the tuple (1/6, 1/2, 1/6, 1/6) in the below. The calculations for other
situations are similar. For simplicity, denote TPiTP jTPk by F(i, j, k). Below are some infinite order
elliptic elements we got by a computer.
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Lemma 3.1. S , M1 and M2 are infinite order elliptic elements of S L3(R), where

S = [F(4, 23, 17)]2, M1 = [F(4, 17, 6)]2, M2 = F(6, 14, 17).

Proof. Calculating S ,M1 and M2 (see Section 4 for the details), we get

S =


3/4 −1/6 2/3
1/41 7/6 11/6
−1/4 −5/6 −2/3

 , M1 =


−11/4 −7/2 −5/2

5/4 11/6 5/3
5/4 11/6 1/6

 ,

M2 =


−1/2 −1 −3/2
−1/2 1/3 1/6

1 4/3 2/3

 .
The eigenvalues of S are (1 + 3

√
7i)/8, (1 − 3

√
7i)/8 and 1. There exists a real number α such that

1/8 = cos πα and we claim that α is a irrational number. Suppose that a rational pair (x, y) satisfies
y = cos πx. It follows from Conway-Jones [3] that y is contained in the set {0,−1, 1,−1/2, 1/2}. Hence
α is an irrational number, which implies S is an infinite order elliptic element. Similarly, M1, M2

are two infinite order elliptic elements as they have eigenvalues (−7 +
√

15i)/8 and (−1 +
√

15i)/4,
respectively. �

Let 〈S 〉 denote the group generated by S . Since S is an infinite order elliptic element, 〈S 〉 is a
closed one-parameter compact subgroup in S L3(R). Moreover, 〈S 〉 is equal to the closure of semigroup
generated by S . Let sln(R) denotes the set of traceless n × n matrices. For 〈S 〉, the following result
holds.

Lemma 3.2. 〈S 〉 is generated by the matrix

s =


0 1/4 7/8

3/16 3/4 27/16
−3/8 −3/4 −3/4

 ∈ sl3(R)

in the sense that 〈S 〉 = {exp(ts) | t ∈ R}.

Proof. Using the eigenvectors of S , we get

U =


−1/2

√
7/2 5

−7/4 3
√

7/4 −7/2
2 0 1

 .
This matrix conjugates S to a block diagonal matrix,

U−1S U =

[
B 0
0 1

]
,where B =

 1/8 −3
√

7/8
3
√

7/8 1/8

 ∈ S L2(R).

According to lemma 3.1, B is an infinite order elliptic element. Let 〈B〉 be the closure of the semigroup
generated by B. Then 〈B〉 is a closed one-parameter compact subgroup in S L2(R). It’s well-known

AIMS Mathematics Volume 5, Issue 5, 5381–5388.



5385

that S L2(R) plays the role as an isometrical group on the the hyperbolic plane H by linear fractional
transformations. Hence 〈B〉 is the rotation group about a fixed point x ∈ H. We claim that 〈B〉 is
generated by the matrix

b = B −
1
2

trace(B)I =

[
0 −3

√
7/8

3
√

7/8 0

]
∈ sl2(R)

in the sense that 〈B〉 = {exp(tb) | t ∈ R}.
It easy to see that bB = Bb. For t ∈ R, let βt = exp(tb) and let B1 be a element in 〈B〉. Then

βtB1 = B1βt, which implies βt ∈ 〈B〉. Therefore,

〈B〉 = {exp(tb) | t ∈ R}.

From the construction above, 〈S 〉 is generated by the matrix

s = U
[
b 0
0 0

]
U−1 ∈ sl3(R)

in the sense that 〈S 〉 = {exp(ts) | t ∈ R}. �

Let Gi j denote M j
i 〈S 〉M

− j
i for i = 1, 2, j = 1, 2, 3, 4. Then for all related i, j,

Gi j = {exp(tgi j)|t ∈ R},where gi j = M j
i sM

− j
i .

Let G ⊂ S L3(R) be the closed subgroup generated by {Gi j|i = 1, 2, j = 1, 2, 3, 4} and let G denote
the vector space with a basis {gi j|i = 1, 2, j = 1, 2, 3, 4}. We claim that G = S L3(R). For Lie algebra
vectors a and b, the following formula can be found in [4](P. 138) that

exp(a + b) = lim
k→∞

(
exp

(
a

k

)
· exp

(
b

k

))k

.

Hence exp(G) ⊂ G. To show that G = S L3(R), it’s suffices to show that dim(G) = 8. Let P : sl3(R)→
R8 be the isomorphism which string out of the coordinates of every element g ∈ sl3(R) except for the
lower right coordinate g(3, 3). Let M be the 8 × 8 matrices whose rows composed by {P(gi j)} for all
related i, j. Then

det(M) =
−4123855439369775

8796093022208
, 0,

which means that {P(gi j)} is a basis of R8. It follows that S L3(R) = exp(G) ⊂ G ⊂ S L3(R).

3.1. Proof of Theorem 2.1

Proof. Let T̃ denote the closure ofT in S L3(R). It follows from Lemma 3.1 that 〈S 〉 ⊆ T̃ and M± j
i ∈ T̃

for all related i, j. Namely, Gi j is contained in T̃ too. It implies that G ⊆ T̃ . According to Lemma 3.2,
we have T̃ = S L3(R). Therefore T is a dense set of S L3(R). We thus finish the proof of Theorem 2.1
when (λ1, λ2, λ3, λ4) is equal to (1/6, 1/2, 1/6, 1/6). We can use the same method to check other cases
in Theorem 2.1. The elliptic elements with infinite order are attached in Table 1. �
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Table 1. The elliptic elements with infinite order.

parameter tuple S M1 M2

(1/6, 1/2, 1/6, 1/6) [F(4, 23, 17)]2 [F(4, 17, 6)]2 F(6, 14, 17)
(1/6, 1/12, 1/2, 1/4) F(7, 21, 11) [F(2, 8, 21)]2 F(2, 11, 13)
(1/9, 1/3, 2/9, 1/3) F(3, 3, 13) F(20, 14, 3) F(20, 13, 4)
(1/8, 1/4, 3/8, 1/4) [F(1, 20, 14)]2 [F(14, 6, 20)]2 [F(23, 11, 13)]2

(1/3, 1/12, 1/3, 1/4) [F(3, 22, 11)]2 [F(11, 3, 22)]2 [F(22, 11, 3)]2

(1/12, 1/3, 1/3, 1/4) [F(5, 9, 20)]2 [F(20, 5, 9)]2 [F(9, 20, 5)]2

(1/6, 1/4, 1/4, 1/3) [F(19, 19, 20)]2 [F(20, 19, 19)]2 [F(19, 20, 19)]2

(1/6, 1/6, 1/6, 1/2) [F(4, 10, 8)]2 [F(8, 4, 10)]2 [F(10, 8, 4)]2

(1/20, 1/5, 1/4, 1/2) [F(4, 13, 14)]2 [F(14, 4, 13)]2 [F(13, 14, 4)]2

(2/3, 1/9, 1/18, 1/6) [F(24, 16, 10)]2 [F(10, 24, 16)]2 [F(16, 10, 24)]2

4. The Mathematica file

The following program is based on the program of Schwartz [9]. Readers can check the calculations
above by Mathematica and they can find more details in Wolfram [13].

e[1] = {0, 0, 0}; e[2] = {1, 0, 0};
e[3] = {0, 1, 0}; e[4] = {0, 0, 1};
a[1] = 1/6; a[2] = 1/2; a[3] = 1/6; a[4] = 1/6;
S 4 = Permutations[1, 2, 3, 4];
T [n ] := (sigma = S 4[[n]];

c0 = (e[sigma[[1]]])/1;
c1 = (a[sigma[[1]]] ∗ e[sigma[[1]]]+
a[sigma[[2]]] ∗ e[sigma[[2]]])/(1 − a[sigma[[3]]] − a[sigma[[4]]]);
c2 = (a[sigma[[1]]] ∗ e[sigma[[1]]] + a[sigma[[2]]] ∗ e[sigma[[2]]]+
a[sigma[[3]]] ∗ e[sigma[[3]]])/(1 − a[sigma[[4]]]);
c3 = a[sigma[[1]]] ∗ e[sigma[[1]]] + a[sigma[[2]]] ∗ e[sigma[[2]]]+
a[sigma[[3]]] ∗ e[sigma[[3]]] + a[sigma[[4]]] ∗ e[sigma[[4]]];
L = Transpose[c1 − c0, c2 − c0, c3 − c0];
L/Power[Abs[Det[L]], 1/3])

F[i , j , k ] := RootReduce[T [i].T [ j].T [k]];
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S = F[4, 23, 17].F[4, 23, 17];
M1 = F[4, 17, 6].F[4, 17, 6];
M2 = F[6, 14, 17];

U = {{−1/2,
√

7/2, 5}, {−7/4, 3
√

7/4,−7/2}, {2, 0, 1}};
s = {{0, 1/4, 7/8}, {3/16, 3/4, 27/16}, {−(3/8),−(3/4),−(3/4)}};
Ad[x , y ] := x.y.Inverse[x]
g11 = Ad[M1, s]; g12 = Ad[M1.M1, s];
g13 = Ad[M1.M1.M1, s]; g14 = Ad[M1.M1.M1.M1, s];
g21 = Ad[M2, s]; g22 = Ad[M2.M2, s];
g23 = Ad[M2.M2.M2, s]; g24 = Ad[M2.M2.M2.M2, s];
P[x ] := Take[Flatten[x], 8]
M = {P[g11], P[g12], P[g13], P[g14], P[g21], P[g22], P[g23], P[g24]};
Det[M]
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