Research article

Stacked book graphs are cycle-antimagic

  • Received: 26 April 2020 Accepted: 15 July 2020 Published: 23 July 2020
  • MSC : 05C78, 05C70

  • A family of subgraphs of a finite, simple and connected graph $G$ is called an edge covering of $G$ if every edge of graph $G$ belongs to at least one of the subgraphs. In this manuscript, we define the edge covering of a stacked book graph and its uniform subdivision by cycles of different lengths. If every subgraph of $G$ is isomorphic to one graph $H$ (say) and there is a bijection $\phi:V(G)\cup E(G) \to \{1, 2, \dots, |V(G)|+|E(G)| \}$ such that $wt_{\phi}(H)$ forms an arithmetic progression then such a graph is called $(\alpha, d)$-$H$-antimagic. In this paper, we prove super $(\alpha, d)$-cycle-antimagic labelings of stacked book graphs and $r$ subdivided stacked book graph.

    Citation: Xinqiang Ma, Muhammad Awais Umar, Saima Nazeer, Yu-Ming Chu, Youyuan Liu. Stacked book graphs are cycle-antimagic[J]. AIMS Mathematics, 2020, 5(6): 6043-6050. doi: 10.3934/math.2020387

    Related Papers:

  • A family of subgraphs of a finite, simple and connected graph $G$ is called an edge covering of $G$ if every edge of graph $G$ belongs to at least one of the subgraphs. In this manuscript, we define the edge covering of a stacked book graph and its uniform subdivision by cycles of different lengths. If every subgraph of $G$ is isomorphic to one graph $H$ (say) and there is a bijection $\phi:V(G)\cup E(G) \to \{1, 2, \dots, |V(G)|+|E(G)| \}$ such that $wt_{\phi}(H)$ forms an arithmetic progression then such a graph is called $(\alpha, d)$-$H$-antimagic. In this paper, we prove super $(\alpha, d)$-cycle-antimagic labelings of stacked book graphs and $r$ subdivided stacked book graph.


    加载中


    [1] N. Ali, M. A. Umar, A. Tabassum, et al. Super (a,d)-C3-antimagicness of a Corona Graph, Open J. Math. sci., 2 (2018), 371-278.
    [2] M. Bača and M. Miller, Super edge-antimagic graphs: A wealth of problems and some solutions, Brown Walker Press, Boca Raton, Florida, 2008. Open J. Math. Sci., 3 (2019), 129-138.
    [3] A. Gutiérrez, A. Lladó, Magic coverings, J. Combin. Math. Combin. Comput., 55 (2005), 43-56.
    [4] N. Inayah, A. Lladó and J. Moragas, Magic and antimagic H-decompositions, Discrete Math., 312 (2012), 1367-1371. doi: 10.1016/j.disc.2011.11.041
    [5] N. Inayah, A. N. M. Salman and R. Simanjuntak, On (a, d)-H-antimagic coverings of graphs, J. Combin. Math. Combin. Comput., 71 (2009), 273-281.
    [6] N. Inayah, R. Simanjuntak, A. N. M. Salman, et al. On (a, d)-H-antimagic total labelings for shackles of a connected graph H, Australas. J. Comb., 57 (2013), 127-138.
    [7] P. Jeyanthi and P. Selvagopal, More classes of H-supermagic graphs, Intern. J. Algor. Comput. Math., 3 (2010), 93-108.
    [8] A. Lladó and J. Moragas, Cycle-magic graphs, Discrete Math., 307 (2007), 2925-2933. doi: 10.1016/j.disc.2007.03.007
    [9] T. K. Maryati, E. T. Baskoro and A. N. M. Salman, Ph-(super)magic labelings of some trees, J. Combin. Math. Combin. Comput., 65 (2008), 198-204.
    [10] T. K. Maryati, A. N. M. Salman and E. T. Baskoro, Supermagic coverings of the disjoint union of graphs and amalgamations, Discrete Math., 313 (2013), 397-405. doi: 10.1016/j.disc.2012.11.005
    [11] A. A. G. Ngurah, A. N. M. Salman and L. Susilowati, H-supermagic labelings of graphs, Discrete Math., 310 (2010), 1293-1300. doi: 10.1016/j.disc.2009.12.011
    [12] M. A. Umar, M. A. Javed, M. Hussain, et al. Super (a, d)-C4-antimagicness of Book Graphs, Open J. Math. Sci., 2 (2018), 115-121.
    [13] M. A. Umar, N. Ali, A. Tabassum, et al. Book graphs are cycle antimagic, Open J. Math. Sci., 3 (2019), 184-190. doi: 10.30538/oms2019.0061
    [14] M. A. Umar, Cycle-antimagic construction of Ladders, Eng. Appl. Sci. Lett., 2 (2019), 43-47. doi: 10.30538/psrp-easl2019.0020
    [15] M. J. Lee, W. H. Tsai, C. Lin, Super (a,1)-cycle-antimagic labeling of the grid, Ars Comb., 112 (2013), 3-12.
    [16] A. M. Marr and W. D. Wallis, Magic Graphs, Birkhäuser, New York, 2013.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3684) PDF downloads(223) Cited by(2)

Article outline

Figures and Tables

Figures(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog