Research article

On stable solutions of the weighted Lane-Emden equation involving Grushin operator

  • Received: 19 October 2020 Accepted: 23 December 2020 Published: 29 December 2020
  • MSC : 35J25, 35H20, 35B35, 35B53

  • In this article, we study the weighted Lane-Emden equation

    $ \begin{equation*} {\rm div}_{G}\big(\omega_{1}(z)|\nabla_{G}u|^{p-2}\nabla_{G}u\big) = \omega_{2}(z)|u|^{q-1}u, \ z = (x, y)\in \mathbb{R}^{N} = \mathbb{R}^{N_{1}}\times\mathbb{R}^{N_{2}}, \end{equation*} $

    where $ N = N_{1}+N_{2}\geq2, $ $ p\geq2 $ and $ q > p-1 $, while $ \omega_{i}(z)\in L^{1}_{\rm loc}(\mathbb{R}^{N})\setminus\{0\}(i = 1, 2) $ are nonnegative functions satisfying $ \omega_{1}(z)\leq C\|z\|_{G}^{\theta} $ and $ \omega_{2}(z)\geq C'\|z\|_{G}^{d} $ for large $ \|z\|_{G} $ with $ d > \theta-p. $ Here $ \alpha\geq0 $ and $ \|z\|_{G} = (|x|^{2(1+\alpha)}+|y|^{2})^{\frac{1}{2(1+\alpha)}}. $ $ \rm div_{G} $ (resp., $ \nabla_{G} $) is Grushin divergence (resp., Grushin gradient). We prove that stable weak solutions to the equation must be zero under various assumptions on $ d, \theta, p, q $ and $ N_{\alpha} = N_{1}+(1+\alpha)N_{2} $.

    Citation: Yunfeng Wei, Hongwei Yang, Hongwang Yu. On stable solutions of the weighted Lane-Emden equation involving Grushin operator[J]. AIMS Mathematics, 2021, 6(3): 2623-2635. doi: 10.3934/math.2021159

    Related Papers:

  • In this article, we study the weighted Lane-Emden equation

    $ \begin{equation*} {\rm div}_{G}\big(\omega_{1}(z)|\nabla_{G}u|^{p-2}\nabla_{G}u\big) = \omega_{2}(z)|u|^{q-1}u, \ z = (x, y)\in \mathbb{R}^{N} = \mathbb{R}^{N_{1}}\times\mathbb{R}^{N_{2}}, \end{equation*} $

    where $ N = N_{1}+N_{2}\geq2, $ $ p\geq2 $ and $ q > p-1 $, while $ \omega_{i}(z)\in L^{1}_{\rm loc}(\mathbb{R}^{N})\setminus\{0\}(i = 1, 2) $ are nonnegative functions satisfying $ \omega_{1}(z)\leq C\|z\|_{G}^{\theta} $ and $ \omega_{2}(z)\geq C'\|z\|_{G}^{d} $ for large $ \|z\|_{G} $ with $ d > \theta-p. $ Here $ \alpha\geq0 $ and $ \|z\|_{G} = (|x|^{2(1+\alpha)}+|y|^{2})^{\frac{1}{2(1+\alpha)}}. $ $ \rm div_{G} $ (resp., $ \nabla_{G} $) is Grushin divergence (resp., Grushin gradient). We prove that stable weak solutions to the equation must be zero under various assumptions on $ d, \theta, p, q $ and $ N_{\alpha} = N_{1}+(1+\alpha)N_{2} $.



    加载中


    [1] C. T. Anh, J. Lee, B. K. My, On the classification of solutions to an elliptic equation involving the Grushin operator, Complex Var. Elliptic Equ., 63 (2018), 671-688. doi: 10.1080/17476933.2017.1332051
    [2] I. Birindelli, I. Capuzzo Dolcetta, A. Cutrì, Liouville theorems for semilinear equations on the Heisenberg group, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 295-308. doi: 10.1016/S0294-1449(97)80138-2
    [3] C. S. Chen, Liouville type theorem for stable solutions of $p$-Laplace equation in $\mathbb{R}^{N}$, Appl. Math. Lett., 68 (2017), 62-67. doi: 10.1016/j.aml.2016.11.014
    [4] C. S. Chen, H. X. Song, H. W. Yang, Liouville-type theorems for stable solutions of singular quasilinear in $\mathbb{R}^{N}$, Electron. J. Differential Equations, 2018 (2018), 1-11.
    [5] C. Cowan, M. Fazly, On stable entire solutions of semi-linear elliptic equations with weights, Proc. Amer. Math. Soc., 140 (2012), 2003-2012.
    [6] L. Damascelli, A. Farina, B. Sciunzi, E. Valdinoci, Liouville results for $m$-Laplace equations of Lane-Emden-Fowler type, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 1099-1119. doi: 10.1016/j.anihpc.2008.06.001
    [7] L. D'Ambrosio, S. Lucente, Nonlinear Liouville theorems for Grushin and Tricomi operators, J. Differential Equations, 193 (2003), 511-541. doi: 10.1016/S0022-0396(03)00138-4
    [8] E. N. Dancer, Y. H. Du, Z. M. Guo, Finite Morse index solutions of an elliptic equation with supercritical exponent, J. Differential Equations, 250 (2011), 3281-3310. doi: 10.1016/j.jde.2011.02.005
    [9] E. Dibenedetto, Degenerate Parabolic Equations, New York: Universitext, Springer, 1993.
    [10] A. T. Duong, N. T. Nguyen, Liouville type theorems for elliptic equations involving Grushin operator and advection, Electron. J. Differential Equations, 2017 (2017), 1-11.
    [11] L. Dupaigne, Stable solutions of ellitpic partial differential equations, Chapman and Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 143, Boca Raton, FL, 2011.
    [12] A. Farina, On the classification of solutions of the Lane-Emden equation on unbounded domain of $\mathbb{R}^{N}, $ J. Math. Pures Appl., 87 (2007), 537-561.
    [13] M. Fazly, Liouville type theorems for stable solutions of certain elliptic systems, Adv. Nonlinear Stud., 12 (2012), 1-17.
    [14] B. Franchi, C. E. Gutiérrez, R. L. Wheeden, Weighted Sobolev-Poincaré inequalities for Grushin type operators, Comm. Partial Differential Equations, 19 (1994), 523-604. doi: 10.1080/03605309408821025
    [15] B. Gidas, J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Commun. Pure Appl. Math., 34 (1981), 525-598. doi: 10.1002/cpa.3160340406
    [16] L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147-171. doi: 10.1007/BF02392081
    [17] L. G. Hu, Liouville type results for semi-stable solutions of the weigthed Lane-Emden system, J. Math. Anal. Appl., 432 (2015), 429-440. doi: 10.1016/j.jmaa.2015.06.032
    [18] X. T. Huang, F. Y. Ma, L. H. Wang, $L^{q}$ regularity for $p$-Laplace type Baouendi-Grushin equations, Nonlinear Anal., 113 (2015), 137-146. doi: 10.1016/j.na.2014.10.001
    [19] P. Le, Liouville theorems for stable solutions of $p$-Laplace equations with convex nonlinearities, J. Math. Anal. Appl., 443 (2016), 431-444. doi: 10.1016/j.jmaa.2016.05.040
    [20] P. Le, Liouville theorems for stable weak solutions of elliptic problems involving Grushin operator, Commun. Pure Appl. Anal., 19 (2020), 511-525. doi: 10.3934/cpaa.2020025
    [21] P. Le, V. Ho, Liouville results for stable solutions of quasilinear equations with weights, Acta Math. Sci. Ser. B (Engl. Ed.), 39 (2019), 357-368.
    [22] P. Le, V. Ho, Stable solutions to weighted quasilinear problems of Lane-Emden type, Electron. J. Differential Equations, 2018 (2018), 1-11.
    [23] R. Monti, D. Morbidelli, Kelvin transform for Grushin operators and critical semilinear equations, Duke Math. J., 131 (2006), 167-202.
    [24] D. D. Monticelli, Maximum principles and the method of moving planes for a class of degenerate elliptic linear operators, J. Eur. Math. Soc., 12 (2010), 611-654.
    [25] P. Poláčik, P. Quittner, P. Souplet, Singularity and decay estimates in superlinear problems and nonlinear Liouville-type theorems, I: elliptic equations and systems, Duke Math.J., 139 (2007), 555-579.
    [26] P. Quittner, P. Souplet, Superlinear parabolic problems: blow-up, global existence and steady states, Basel: Birkhäuser, Verlag, 2007.
    [27] B. Rahal, Liouville-type theorems with finite Morse index for semilinear $\Delta_{\lambda}$-Laplace operators, NoDEA Nonlinear Differential Equations Appl., 25 (2018), 1-19. doi: 10.1007/s00030-017-0493-3
    [28] B. Rahal, On stale entire solutions of sub-elliptic system involving advection terms with negative exponents and weights, J. Inequal. Appl., 2020 (2020), 1-16. doi: 10.1186/s13660-019-2265-6
    [29] C. Wang, D. Ye, Some Liouville theorems for Hénon type elliptic equations, J. Funct. Anal., 262 (2012), 1705-1727. doi: 10.1016/j.jfa.2011.11.017
    [30] L. Wang, Hölder estimates for subelliptic operators, J. Funct. Anal., 199 (2003), 228-242. doi: 10.1016/S0022-1236(03)00093-4
    [31] Y. F. Wei, C. S. Chen, Q. Chen, H. W. Yang, Liouville-type theorem for nonlinear elliptic equation involving $p$-Laplace-type Grushin operators, Math. Methods Appl. Sci., 43 (2020), 320-333. doi: 10.1002/mma.5886
    [32] X. H. Yu, Liouville type theorem for nonlinear elliptic equation involving Grushin operators, Commun. Contemp. Math., 17 (2015), 1-12.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1239) PDF downloads(35) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog