Research article

On distance signless Laplacian eigenvalues of zero divisor graph of commutative rings

  • Received: 15 December 2021 Revised: 27 March 2022 Accepted: 05 April 2022 Published: 28 April 2022
  • MSC : 05C50, 05C12, 15A18

  • For a simple connected graph $ G $ of order $ n $, the distance signless Laplacian matrix is defined by $ D^{Q}(G) = D(G) + Tr(G) $, where $ D(G) $ and $ Tr(G) $ is the distance matrix and the diagonal matrix of vertex transmission degrees, respectively. The zero divisor graph $ \Gamma(R) $ of a finite commutative ring $ R $ is a simple graph, whose vertex set is the set of non-zero zero divisors of $ R $ and two vertices $ v, w \in \Gamma(R) $ are edge connected whenever $ vw = wv = 0 $. In this article, we find the $ D^{Q} $-eigenvalues of zero divisor graph of the ring $ \mathbb{Z}_{n} $ for general value $ n = {p_{1}^{l_{1}}p_{2}^{l_{2}}} $, where $ p_1 < p_2 $ are distinct prime numbers and $ l_{1}, l_{2} \in \mathbb{N} $. Further, we investigate the $ D^{Q} $-eigenvalues of zero divisor graphs of local rings and the rings whose associated zero divisor graphs are Hamiltonian. Also, we obtain the trace norm and the Wiener index of $ \Gamma(\mathbb{Z}_{n}) $ for some special values of $ n $.

    Citation: Bilal A. Rather, M. Aijaz, Fawad Ali, Nabil Mlaiki, Asad Ullah. On distance signless Laplacian eigenvalues of zero divisor graph of commutative rings[J]. AIMS Mathematics, 2022, 7(7): 12635-12649. doi: 10.3934/math.2022699

    Related Papers:

  • For a simple connected graph $ G $ of order $ n $, the distance signless Laplacian matrix is defined by $ D^{Q}(G) = D(G) + Tr(G) $, where $ D(G) $ and $ Tr(G) $ is the distance matrix and the diagonal matrix of vertex transmission degrees, respectively. The zero divisor graph $ \Gamma(R) $ of a finite commutative ring $ R $ is a simple graph, whose vertex set is the set of non-zero zero divisors of $ R $ and two vertices $ v, w \in \Gamma(R) $ are edge connected whenever $ vw = wv = 0 $. In this article, we find the $ D^{Q} $-eigenvalues of zero divisor graph of the ring $ \mathbb{Z}_{n} $ for general value $ n = {p_{1}^{l_{1}}p_{2}^{l_{2}}} $, where $ p_1 < p_2 $ are distinct prime numbers and $ l_{1}, l_{2} \in \mathbb{N} $. Further, we investigate the $ D^{Q} $-eigenvalues of zero divisor graphs of local rings and the rings whose associated zero divisor graphs are Hamiltonian. Also, we obtain the trace norm and the Wiener index of $ \Gamma(\mathbb{Z}_{n}) $ for some special values of $ n $.



    加载中


    [1] S. Akbari, A. Mohammadian, On zero-divisor graphs of finite rings, J. Algebra, 314 (2007), 168–184.
    [2] F. Ali, Y. Li, The connectivity and the spectral radius of commuting graphs on certain finite groups, Linear Multilinear A., 2019. https://doi.org/10.1142/S1793830918500350 doi: 10.1142/S1793830918500350
    [3] F. Ali, S. Fatima, W. Wang, On the power graph of certain of certain finite groups, Linear Multilinear A., 2020. https://doi.org/10.1080/03081087.2020.1856028 doi: 10.1080/03081087.2020.1856028
    [4] F. Ali, Bilal A. Rather, A. Din, T. Saeed, A. Ullah, Power graphs of finite groups determined by Hosoya properties, Entropy, 24 (2022), 213.
    [5] D. F. Anderson, P. S. Livingston, The zero divisor graph of a commutative ring, J. Algebra, 217 (1999), 434–447. https://doi.org/10.1006/jabr.1998.7840 doi: 10.1006/jabr.1998.7840
    [6] M. Aouchiche, P. Hansen, Two Laplacians for the distance matrix of a graph, Linear Algebra Appl., 439 (2013), 21–33.
    [7] M. Aouchiche, P. Hansen, On the distance signless Laplacian of a graph, Linear Multilinear A., 64 (2016), 1113–1123.
    [8] A. E. Brouwer, W. H. Haemers, Spectra of graphs, Springer, New York, 2010.
    [9] I. Beck, Coloring of commutative rings, J. Algebra, 116 (1988), 208–226.
    [10] S. Chattopadhyay, K. L. Patra, B. K. Sahoo, Laplacian eigenvalues of the zero divisor graph of the ring $ \mathbb{Z}_{n} $, Linear Algebra Appl., 584 (2020), 267–286.
    [11] K. C. Das, M. Aouchiche, P. Hansen, On (distance) Laplacian energy and (distance) signless Laplacian energy of graphs, Discrete Appl. Math., 243 (2018), 172–185.
    [12] K. C. Das, S. A. Mojallal, Open problems on $ \sigma $-invariant, Taiwanese J. Math., 23 (2019), 1041–1059.
    [13] R. C. Diaz, O. Rojo, Sharp upper bounds on the distance energies of a graph, Linear Algebra Appl., 545 (2018), 55–75. https://doi.org/10.11650/tjm/181104 doi: 10.11650/tjm/181104
    [14] A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: Theory and applications, Acta Appl. Math., 66 (2001), 211–249. https://doi.org/10.1016/j.laa.2018.01.032 doi: 10.1016/j.laa.2018.01.032
    [15] H. Q. Liu, K. C. Das, Characterization of extremal graphs from distance signless Laplacian eigenvalues, Linear Algebra Appl., 500 (2016), 77–87. https://doi.org/10.1016/j.amc.2016.08.025 doi: 10.1016/j.amc.2016.08.025
    [16] S. Pirzada, Bilal A. Rather, M. Aijaz, T. A. Chisti, On distance signless Laplacian spectrum of graphs and spectrum of zero divisor graphs of $ \mathbb{Z}_n$, Linear Multilinear A., 2020. http://doi.org/10.1080/03081087.2020.1838425 doi: 10.1080/03081087.2020.1838425
    [17] S. Pirzada, Bilal A. Rather, T. A. Chishti, On distance Laplacian spectrum of zero divisor graphs of $\mathbb{Z}_{n}$, Carpathian Math. Publ., 13 (2021), 48–57.
    [18] S. Pirzada, Bilal A. Rather, T. A. Chishti, U. Samee, On normalized Laplacian spectrum of zero divisor graphs of commutative ring $\mathbb{Z}_{n} $, Electronic J. Graph Theory Appl., 9 (2021), 331–345. http://doi.org/10.5614/ejgta.2021.9.2.7 doi: 10.5614/ejgta.2021.9.2.7
    [19] S. Pirzada, B. A. Rather, R. U. Shaban, Merajuddin, On graphs with minimal distance signless Laplacian energy, Acta Univ. Sapientae Math., 13 (2021), 450–467.
    [20] S. Pirzada, B. A. Rather, R. U. Shaban, Merajuddin, On signless Laplacian spectrum of zero divisor graphs of the ring $ \mathbb{Z}_{n} $, Korean J. Math., 29 (2021), 13–24. https://doi.org/10.2478/ausm-2021-0028 doi: 10.2478/ausm-2021-0028
    [21] B. A. Rather, S. Pirzada, T. A. Naikoo, Y. Shang, On Laplacian eigenvalues of the zero divisor graph associated to the ring of integers modulo $ n $, Mathematics, 9 (2021), 482. http://doi.org/10.3390/math9050482 doi: 10.3390/math9050482
    [22] B. A. Rather, S. Pirzada, M. Imran, T. A. Chishti, On Randić Eigenvalues of zero divisor graphs of $ \mathbb{Z}_{n}$, Commun. Comb. Optim., 2021, 1–12, http://doi.org/110.22049/CCO.2021.27202.1212
    [23] B. A. Rather, S. Pirzada, T. A. Chishti, A. M. A. Alghamdi, On normalized Laplacian eigenvalues of power graphs associated to finite cyclic groups, Discrete Math. Algorithms Appl., 2022, 2250070. https://doi.org/10.1142/S1793830922500707. doi: 10.1142/S1793830922500707
    [24] B. A. Rather, S. Pirzada, T. A. Naikoo, On distance signless Laplacian spectra of power graphs of the integer modulo group, Art Discrete Appl. Math., 2022. https://doi.org/10.26493/2590-9770.1393.2be doi: 10.26493/2590-9770.1393.2be
    [25] M. Young, Adjacency matrices of zero divisor graphs of integer modulo n, Involve, 8 (2015), 753–761. https://doi.org/10.26493/1855-3974.93.e75 doi: 10.26493/1855-3974.93.e75
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1681) PDF downloads(99) Cited by(8)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog