For a simple connected graph $ G $ of order $ n $, the distance signless Laplacian matrix is defined by $ D^{Q}(G) = D(G) + Tr(G) $, where $ D(G) $ and $ Tr(G) $ is the distance matrix and the diagonal matrix of vertex transmission degrees, respectively. The zero divisor graph $ \Gamma(R) $ of a finite commutative ring $ R $ is a simple graph, whose vertex set is the set of non-zero zero divisors of $ R $ and two vertices $ v, w \in \Gamma(R) $ are edge connected whenever $ vw = wv = 0 $. In this article, we find the $ D^{Q} $-eigenvalues of zero divisor graph of the ring $ \mathbb{Z}_{n} $ for general value $ n = {p_{1}^{l_{1}}p_{2}^{l_{2}}} $, where $ p_1 < p_2 $ are distinct prime numbers and $ l_{1}, l_{2} \in \mathbb{N} $. Further, we investigate the $ D^{Q} $-eigenvalues of zero divisor graphs of local rings and the rings whose associated zero divisor graphs are Hamiltonian. Also, we obtain the trace norm and the Wiener index of $ \Gamma(\mathbb{Z}_{n}) $ for some special values of $ n $.
Citation: Bilal A. Rather, M. Aijaz, Fawad Ali, Nabil Mlaiki, Asad Ullah. On distance signless Laplacian eigenvalues of zero divisor graph of commutative rings[J]. AIMS Mathematics, 2022, 7(7): 12635-12649. doi: 10.3934/math.2022699
For a simple connected graph $ G $ of order $ n $, the distance signless Laplacian matrix is defined by $ D^{Q}(G) = D(G) + Tr(G) $, where $ D(G) $ and $ Tr(G) $ is the distance matrix and the diagonal matrix of vertex transmission degrees, respectively. The zero divisor graph $ \Gamma(R) $ of a finite commutative ring $ R $ is a simple graph, whose vertex set is the set of non-zero zero divisors of $ R $ and two vertices $ v, w \in \Gamma(R) $ are edge connected whenever $ vw = wv = 0 $. In this article, we find the $ D^{Q} $-eigenvalues of zero divisor graph of the ring $ \mathbb{Z}_{n} $ for general value $ n = {p_{1}^{l_{1}}p_{2}^{l_{2}}} $, where $ p_1 < p_2 $ are distinct prime numbers and $ l_{1}, l_{2} \in \mathbb{N} $. Further, we investigate the $ D^{Q} $-eigenvalues of zero divisor graphs of local rings and the rings whose associated zero divisor graphs are Hamiltonian. Also, we obtain the trace norm and the Wiener index of $ \Gamma(\mathbb{Z}_{n}) $ for some special values of $ n $.
[1] | S. Akbari, A. Mohammadian, On zero-divisor graphs of finite rings, J. Algebra, 314 (2007), 168–184. |
[2] | F. Ali, Y. Li, The connectivity and the spectral radius of commuting graphs on certain finite groups, Linear Multilinear A., 2019. https://doi.org/10.1142/S1793830918500350 doi: 10.1142/S1793830918500350 |
[3] | F. Ali, S. Fatima, W. Wang, On the power graph of certain of certain finite groups, Linear Multilinear A., 2020. https://doi.org/10.1080/03081087.2020.1856028 doi: 10.1080/03081087.2020.1856028 |
[4] | F. Ali, Bilal A. Rather, A. Din, T. Saeed, A. Ullah, Power graphs of finite groups determined by Hosoya properties, Entropy, 24 (2022), 213. |
[5] | D. F. Anderson, P. S. Livingston, The zero divisor graph of a commutative ring, J. Algebra, 217 (1999), 434–447. https://doi.org/10.1006/jabr.1998.7840 doi: 10.1006/jabr.1998.7840 |
[6] | M. Aouchiche, P. Hansen, Two Laplacians for the distance matrix of a graph, Linear Algebra Appl., 439 (2013), 21–33. |
[7] | M. Aouchiche, P. Hansen, On the distance signless Laplacian of a graph, Linear Multilinear A., 64 (2016), 1113–1123. |
[8] | A. E. Brouwer, W. H. Haemers, Spectra of graphs, Springer, New York, 2010. |
[9] | I. Beck, Coloring of commutative rings, J. Algebra, 116 (1988), 208–226. |
[10] | S. Chattopadhyay, K. L. Patra, B. K. Sahoo, Laplacian eigenvalues of the zero divisor graph of the ring $ \mathbb{Z}_{n} $, Linear Algebra Appl., 584 (2020), 267–286. |
[11] | K. C. Das, M. Aouchiche, P. Hansen, On (distance) Laplacian energy and (distance) signless Laplacian energy of graphs, Discrete Appl. Math., 243 (2018), 172–185. |
[12] | K. C. Das, S. A. Mojallal, Open problems on $ \sigma $-invariant, Taiwanese J. Math., 23 (2019), 1041–1059. |
[13] | R. C. Diaz, O. Rojo, Sharp upper bounds on the distance energies of a graph, Linear Algebra Appl., 545 (2018), 55–75. https://doi.org/10.11650/tjm/181104 doi: 10.11650/tjm/181104 |
[14] | A. A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: Theory and applications, Acta Appl. Math., 66 (2001), 211–249. https://doi.org/10.1016/j.laa.2018.01.032 doi: 10.1016/j.laa.2018.01.032 |
[15] | H. Q. Liu, K. C. Das, Characterization of extremal graphs from distance signless Laplacian eigenvalues, Linear Algebra Appl., 500 (2016), 77–87. https://doi.org/10.1016/j.amc.2016.08.025 doi: 10.1016/j.amc.2016.08.025 |
[16] | S. Pirzada, Bilal A. Rather, M. Aijaz, T. A. Chisti, On distance signless Laplacian spectrum of graphs and spectrum of zero divisor graphs of $ \mathbb{Z}_n$, Linear Multilinear A., 2020. http://doi.org/10.1080/03081087.2020.1838425 doi: 10.1080/03081087.2020.1838425 |
[17] | S. Pirzada, Bilal A. Rather, T. A. Chishti, On distance Laplacian spectrum of zero divisor graphs of $\mathbb{Z}_{n}$, Carpathian Math. Publ., 13 (2021), 48–57. |
[18] | S. Pirzada, Bilal A. Rather, T. A. Chishti, U. Samee, On normalized Laplacian spectrum of zero divisor graphs of commutative ring $\mathbb{Z}_{n} $, Electronic J. Graph Theory Appl., 9 (2021), 331–345. http://doi.org/10.5614/ejgta.2021.9.2.7 doi: 10.5614/ejgta.2021.9.2.7 |
[19] | S. Pirzada, B. A. Rather, R. U. Shaban, Merajuddin, On graphs with minimal distance signless Laplacian energy, Acta Univ. Sapientae Math., 13 (2021), 450–467. |
[20] | S. Pirzada, B. A. Rather, R. U. Shaban, Merajuddin, On signless Laplacian spectrum of zero divisor graphs of the ring $ \mathbb{Z}_{n} $, Korean J. Math., 29 (2021), 13–24. https://doi.org/10.2478/ausm-2021-0028 doi: 10.2478/ausm-2021-0028 |
[21] | B. A. Rather, S. Pirzada, T. A. Naikoo, Y. Shang, On Laplacian eigenvalues of the zero divisor graph associated to the ring of integers modulo $ n $, Mathematics, 9 (2021), 482. http://doi.org/10.3390/math9050482 doi: 10.3390/math9050482 |
[22] | B. A. Rather, S. Pirzada, M. Imran, T. A. Chishti, On Randić Eigenvalues of zero divisor graphs of $ \mathbb{Z}_{n}$, Commun. Comb. Optim., 2021, 1–12, http://doi.org/110.22049/CCO.2021.27202.1212 |
[23] | B. A. Rather, S. Pirzada, T. A. Chishti, A. M. A. Alghamdi, On normalized Laplacian eigenvalues of power graphs associated to finite cyclic groups, Discrete Math. Algorithms Appl., 2022, 2250070. https://doi.org/10.1142/S1793830922500707. doi: 10.1142/S1793830922500707 |
[24] | B. A. Rather, S. Pirzada, T. A. Naikoo, On distance signless Laplacian spectra of power graphs of the integer modulo group, Art Discrete Appl. Math., 2022. https://doi.org/10.26493/2590-9770.1393.2be doi: 10.26493/2590-9770.1393.2be |
[25] | M. Young, Adjacency matrices of zero divisor graphs of integer modulo n, Involve, 8 (2015), 753–761. https://doi.org/10.26493/1855-3974.93.e75 doi: 10.26493/1855-3974.93.e75 |